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Abstract. This paper introduces a new family of distributions by compounding the left k-truncated power series

distribution with the k-th order statistic of the Weibull distribution. The new family provides a flexible framework for

modeling complex data, particularly in reliability engineering and survival analysis. We derive key functions, including

the probability density function (PDF), cumulative distribution function (CDF), and hazard rate function (HRF). Several

important special cases—such as the geometric, Poisson, binomial, and logarithmic power series distributions—are

discussed. Fundamental properties of the family, including moments and quantiles, are explored. Parameter estimation

is addressed using the maximum likelihood and the expectation-maximization methods. The paper concludes with

potential applications and future research directions.

1. Introduction

The Weibull distribution is a cornerstone of reliability analysis for its versatility in modeling

diverse hazard rates—monotonically increasing, decreasing, or constant—governed by its shape

parameter. Its flexibility makes it one of the most widely used distributions for analyzing the

lifespan of systems and their components. However, its utility wanes when modeling complex

systems where failure times are interdependent or the number of components varies, requiring

more flexible frameworks to reflect real-world complexities [1, 2].

To overcome these limitations, several extensions of the Weibull distribution have been devel-

oped [3, 4]. The exponentiated Weibull distribution introduces an additional shape parameter,

enabling it to model non-monotonic hazard rates [5]. Similarly, the generalized Weibull distribu-

tion adds a parameter to enhance its flexibility in representing diverse failure patterns [6]. For
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systems with random or variable component counts, compound distributions offer further innova-

tion. The Weibull-Poisson distribution integrates a Poisson process, while the Weibull-geometric

distribution leverages a geometric framework, both providing robust options for intricate scenar-

ios [7, 8].

These advanced models significantly expand the applicability of Weibull-based approaches,

proving effective in reliability studies and survival analysis. By addressing the shortcomings

of the standard Weibull distribution, they enable more accurate modeling of multi-component

systems and complex failure mechanisms, reinforcing their practical value across diverse fields.

Order statistics are also essential for modeling systems where failure times depend on the sequence

of events. In reliability systems with redundant components, the k-th order statistic plays a crucial

role, as it represents the time of the k-th failure, which often determines the system’s overall

lifetime.

This paper introduces a novel family of distributions by compounding the k-th order Weibull

distribution with the left k-truncated power series distribution. The left k-truncated power series

distribution provides a versatile framework for modeling discrete random variables with a lower

truncation point–common in applications where data below a certain threshold is unobserved.

By incorporating order statistics and left truncation, this approach extends the work of Morais &

Barreto-Souza [9] and Rahmouni & Orabi [10–12], significantly enhancing modeling capabilities

for reliability and survival analysis. This combination increases modeling flexibility and unifies

several well-known distributions, including the geometric, Poisson, binomial, and logarithmic

distributions. Moreover, it accommodates diverse hazard rate shapes, such as bathtub-shaped and

unimodal patterns, making it particularly useful for systems with varying numbers of components.

The rest of the paper is organized as follows: Section 2 introduces the new family of distributions,

including the probability density function (PDF), cumulative distribution function (CDF), and

special members of the family. Section 3 discusses the mathematical properties of the new family,

including moments, quantiles, and hazard rate functions. Section 4 presents the estimation of the

model parameters using the maximum likelihood method and the expectation-maximization (EM)

algorithm. Finally, Section 5 concludes the paper with a discussion of potential applications and

future research directions.

2. The New Family of Distributions

Let X(k) denote the k-th order statistic from a sample of size n drawn from a Weibull distribution

with parameters α and β. The CDF of X(k), denoted by FX(k)(y; n,α, β), is given by:

FX(k)(y; n,α, β) =
n∑

j=k

(
n
j

) (
1− e−(βy)α

) j
e−(n− j)(βy)α ,

where α > 0 is the shape parameter, and β > 0 is the scale parameter of the Weibull distribution.

This CDF represents the probability that the k-th smallest value, X(k), in a sample of size n is less
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than or equal to x, incorporating the cumulative behavior of the Weibull distribution for the order

statistic.

Let N be a discrete random variable following a left k-truncated power series distribution with

the probability mass function (PMF):

P(N = n) =
anθn

CL
k (θ)

, n ≥ k,

where an ≥ 0 are coefficients depending on n, and θ > 0 is the power series parameter. The

normalization constant CL
k (θ) ensures the PMF sums to unity and is defined as:

CL
k (θ) =

∞∑
n=k

anθ
n.

Let’s denote the random variable of this new family as Y = X(k). The CDF of the new family of

distributions is obtained by summing over all values of N, weighted by the PMF of N:

FY(y) = P(Y ≤ y) =
∞∑

n=k

P(X(k) ≤ y|N = n)P(N = n),

where FX(k)(y) = P(X(k) ≤ y|N = n) is the CDF of the k-th order statistic for a sample of size n.

Thus,

FY(y;α, β,θ, k) =
∞∑

n=k

anθn

CL
k (θ)

FX(k)(y; n,α, β).

FY(y;α, β,θ, k) =
∞∑

n=k

anθn

CL
k (θ)

1− k−1∑
j=0

(
n
j

) (
1− e−(βy)α

) j
e−(n− j)(βy)α

 .

This expression models the cumulative probability of the k-th order statistic under the left k-

truncated power series distribution and the Weibull order statistics. The CDF of the Weibull order

statistic can also be expressed using the regularized incomplete beta function I(p; a, b):

FX(k)(y; n,α, β) = I
(
1− e−(βy)α ; k, n− k + 1

)
,

where

I(p; a, b) =
B(p; a, b)
B(a, b)

,

with B(p; a, b) being the incomplete beta function and B(a, b) the complete beta function. Thus, the

CDF of the new family becomes:

FY(y;α, β,θ, k) =
∞∑

n=k

anθn

CL
k (θ)

I
(
1− e−(βy)α ; k, n− k + 1

)
.

Proof. For a sample X1, X2, . . . , Xn, the k-th order statistic X(k) is the k-th smallest value, so:

X(1) ≤ X(2) ≤ · · · ≤ X(n).

The CDF of X(k) is P(X(k) ≤ y), the probability that the k-th smallest value is less than or equal to y.

Let S be the number of observations Xi that are less than or equal to y. For each Xi, the event Xi ≤ y
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is a Bernoulli trial with success probability p = FX(k)(y). With n independent trials, S follows a

binomial distribution with parameters n and p. The probability of exactly j successes (i.e., exactly

j observations ≤ y) is:

P(S = j) =
(
n
j

)
[FX(k)(y)] j[1− FX(k)(y)]n− j.

The event X(k) ≤ y corresponds to S ≥ k. Thus, the CDF is the cumulative probability of S from

j = k to j = n:

P(X(k) ≤ y) = P(S ≥ k) =
n∑

j=k

P(S = j).

Substituting the binomial probability:

P(X(k) ≤ y) =
n∑

j=k

(
n
j

)
[FX(k)(y)] j[1− FX(k)(y)]n− j.

Note that the regularized incomplete beta function is defined as:

I(p; a, b) =
1

B(a, b)

∫ p

0
ta−1(1− t)b−1 dt,

where B(a, b) = Γ(a)Γ(b)
Γ(a+b) is the beta function, and Γ is the gamma function. For positive integers a

and b, the following identity holds:

I(p; a, b) =
n∑

j=a

(
n
j

)
p j(1− p)n− j.

Thus, the binomial sum becomes:

I(p; a, b) =
n∑

j=k

(
n
j

)
[FX(k)(y)] j[1− FX(k)(y)]n− j = I(FX(k)(y); k, n− k + 1).

Therefore:

P(X(k) ≤ y) = I(FX(k)(y); k, n− k + 1).

The PDF of the new family of distributions is:

fY(y;α, β,θ, k) =
∞∑

n=k

anθn

CL
k (θ)

(
n

k− 1

) (
1− e−(βy)α

)k−1
e−(n−k+1)(βy)ααβαyα−1.

fY(y;α, β,θ, k) =
αβαyα−1

(
1− e−(βy)α

)k−1
e(k−1)(βy)α

CL
k (θ)

∞∑
n=k

an

(
n

k− 1

) (
θe−(βy)α

)n
.

We denote a random variable Y following the generalized Weibull-left k-truncated power series

(GWPS) distribution with parameters α, β, and θ by Y ∼ GWPS(α, β,θ). This new class of

distributions generalizes several existing models. The Weibull-geometric (WG) distribution is

obtained by setting CL
k (θ) = θ(1 − θ)−1 with θ ∈ (0, 1). Similarly, the Weibull-Poisson (WP)

and Weibull-logarithmic (WL) distributions arise by taking CL
k (θ) = eθ − 1,θ > 0 and CL

k (θ) =
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− log(1 − θ),θ ∈ (0, 1), respectively. The GWPS model encompasses these as special cases while

allowing for greater flexibility in modeling survival and reliability data. Additionally, extending

the parameter space of θ beyond its conventional domain may lead to broader generalizations, as

seen in other power series-based distributions.

The flexibility of the new model allows various choices of power series distributions for N,

leading to different sub-models. The new family includes several special cases depending on the

choice of the power series distribution. Table 1 summarizes the useful quantities for some power

series distributions.

Table 1. Useful quantities of some power series distributions.

Distribution an CL
k (θ) C′Lk (θ) C′′Lk (θ) θ

Geometric 1
θk

1− θ
kθk−1

(1− θ)2
k(k− 1)θk−2

(1− θ)3 +
2kθk−1

(1− θ)3
θ ∈ (0, 1)

Poisson
1
n!

eθ −
k−1∑
j=0

θ j

j!
eθ −

k−1∑
j=0

jθ j−1

j!
eθ −

k−1∑
j=0

j( j− 1)θ j−2

j! θ ∈ (0,∞)

Binomial
(
m
n

) (θ+ 1)m

−

k−1∑
j=0

(
m
j

)
θ j

m(θ+ 1)m−1

−

k−1∑
j=0

j
(
m
j

)
θ j−1

m(m− 1)(θ+ 1)m−2

−

k−1∑
j=0

j( j− 1)
(
m
j

)
θ j−2 θ ∈ (0, 1)

Logarithmic
1
n

− log(1− θ)

−ϕ(k)
k−1∑
j=1

θ j

j

1
1− θ

−ϕ(k)
k−1∑
j=1

θ j−1

1
(1− θ)2

−ϕ(k)
k−1∑
j=1

( j− 1)θ j−2
θ ∈ (0, 1)

ϕ(k) =

0 if k = 1

1 if k = 2, 3, ..., n

Figure 1 illustrates the PDFs of a generalized Weibull distribution mixed with some truncated

discrete distributions, namely the geometric, Poisson, logarithmic, and binomial distributions

under a left k-truncated power series framework. Each figure contains subplots corresponding to

different values of the power series parameter θ (e.g., 0.2, 0.5, 0.9), with each subplot displaying

five curves representing the order statistic parameter k (1, 2, 3, 4, 5). Lower values of θ result in

PDFs concentrated around smaller y values with sharper peaks, indicating lower variability, while

higher values of θ lead to a broader spread and a rightward shift, reflecting increased variability.

As k increases, the PDF shifts further to the right, consistent with the behavior of higher-order

statistics. The tail behavior differs across distributions: geometric and logarithmic distributions

exhibit heavier tails, indicating a higher probability of larger y values, whereas Poisson and

binomial distributions display a smoother decay, reflecting a more gradual transition. These

visualizations provide a comprehensive understanding of how θ, k, and the underlying power
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series distribution collectively shape the Weibull density function’s characteristics, including its

spread and tail behavior.

Generalized Weibull geometric distr.

Generalized Weibull Poisson distr.

Generalized Weibull logarithmic distr.

Generalized Weibull binomial distr.

Figure 1. PDF of the GWPS distribution with β = 1 and α = 1.5.
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3. Properties

3.1. Moments. The moments of the new family are essential for understanding its statistical

properties. The first moments are derived using integral representations, and the skewness and

kurtosis are analyzed to assess the distribution’s tail behavior and shape characteristics.

The general expression for the r-th moment of the new family is given by:

E[Xr
(k)] =

∞∑
n=k

anθn

CL
k (θ)

E[Xr
(k)|N = n], (3.1)

where E[Xr
(k)|N = n] represents the r-th moment of the Weibull order statistic for a fixed N = n.

The explicit form of these moments can be obtained using recurrence relations or numerical

integration.

The r-th raw moment of the k-th order Weibull statistic for a sample of size n is given by:

µr(n) = β−r
(

n
k− 1

) k−1∑
j=0

(−1) j
(
k− 1

j

)
(n− j)−r/αΓ

( r
α
+ 1

)
,

where Γ(·) is the gamma function. The r-th raw moment of the new family is expressed as:

µr =
∞∑

n=k

anθn

CL
k (θ)

µr(n).

Table 2. Moments for different distributions
Distribution µr E[Y] (r = 1) E[Y2] (r = 2)

Geometric
∑
∞

n=k(1− θ)θ
n−kµr(n) β−1Γ

(
1
α + 1

)
1−θ
θ Li1/α(θ) β−2Γ

(
2
α + 1

)
1−θ
θ Li2/α(θ)

Poisson
∑
∞

n=k

θn
n!

eθ−
∑k−1

m=0
θm
m!
µr(n)

β−1Γ( 1
α+1)

eθ−1

∑
∞

n=1
θn

n! n−1/α β−2Γ( 2
α+1)

eθ−1

∑
∞

n=1
θn

n! n−2/α

Binomial
∑m

n=k
(m

n)θ
n

(θ+1)m−
∑k−1

n=0 (
m
n)θ

nµr(n)
β−1Γ( 1

α+1)
(θ+1)m−1

∑m
n=1 (

m
n)θ

nn−1/α β−2Γ( 2
α+1)

(θ+1)m−1

∑m
n=1 (

m
n)θ

nn−2/α

Logarithmic
∑
∞

n=k

θn
n

− log(1−θ)−ϕ(k)
∑k−1

n=1
θn
n
µr(n)

β−1Γ( 1
α+1)

− log(1−θ) Li1+1/α(θ)
β−2Γ( 2

α+1)
− log(1−θ) Li1+2/α(θ)

Note: µr(n) = β−rn−r/αΓ
(

r
α + 1

)
for k = 1, and Lis(θ) =

∑
∞

n=1 n−sθn is the polylogarithm function.

Proof. The r-th moment µr of Y = X(k) is defined as:

µr = E[Xr
(k)] =

∫
∞

0
yr fX(k)(y;α, β,θ, k) dx.

Substituting the PDF:

µr =

∫
∞

0
xr

αβ
αyα−1

(
1− e−(βy)α

)k−1
e(k−1)(βy)α

CL
k (θ)

∞∑
n=k

an

(
n

k− 1

) (
θe−(βy)α

)n

 dy.
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µr =
αβα

CL
k (θ)

∞∑
n=k

an

(
n

k− 1

)
θn

∫
∞

0
yα+r−1

(
1− e−(βy)α

)k−1
e−(n−k+1)(βy)α dy.

Let

t = (βy)α ⇒ dt = αβαyα−1dy.

Since y = (β−1t1/α), we substitute:

dy =
dt

αβαyα−1
=

dt
αβα

t(1−α)/α.

Thus,

µr =
1

CL
k (θ)

∞∑
n=k

an

(
n

k− 1

)
θnβ−r

∫
∞

0
tr/α(1− e−t)k−1e−(n−k+1)t dt.

The moment expression is:

µr(n) = β−r
(

n
k− 1

) k−1∑
j=0

(−1) j
(
k− 1

j

)
(n− j)−r/αΓ

( r
α
+ 1

)
.

Thus,

µr =
∞∑

n=k

anθn

CL
k (θ)

µr(n).

This expression shows that the r-th moment of the new family is a weighted sum of the r-th raw

moments of the k-th order Weibull statistic, with the weights given by anθn

CL
k (θ)

.

3.2. Quantiles. The quantile function Qk(p) of the new family is the value of y that satisfies:

FX(Qk(p);α, β,θ, k) = p,

where FX(y;α, β,θ, k) is the CDF, and p is a given probability in the range (0, 1). To determine

Qk(p), we should solve the equation:

p =
∞∑

n=k

anθn

CL
k (θ)

1− k−1∑
j=0

(
n
j

) (
1− e−(βQk(p))α

) j
e−(n− j)(βQk(p))α

 .

3.3. Hazard rate function. The hazard rate function (HRF), also known as the failure rate or force of
mortality, is a key concept in survival analysis and reliability theory. It represents the instantaneous

failure rate at a given time y, conditioned on survival up to that point. The hazard rate hY(y) is

defined as:

hY(y) =
fY(y)
SY(y)

=
fY(y)

1− FY(y)
,

where SY(y) = 1− FY(y) is the survival function. Substituting the expressions for the PDF fX(k)(y)
and CDF FX(k)(y), we obtain:

hY(y;α, β,θ, k) =

∑
∞

n=k
anθn

CL
k (θ)

( n
k−1)

(
1− e−(βy)α

)k−1
e−(n−k+1)(βy)ααβαyα−1

1−
∑
∞

n=k
anθn

CL
k (θ)

[
1−

∑k−1
j=0 (

n
j)

(
1− e−(βy)α

) j
e−(n− j)(βy)α

] .
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The flexibility of the GWPS model allows various choices of the power series distribution for N,

leading to different sub-models. For CK(θ) = θ
1−θ ,θ ∈ (0, 1), the hazard rate corresponds to the

Weibull-geometric distribution. The hazard rate reduces to the Weibull-Poisson distribution when

CK(θ) = eθ − 1,θ > 0. When CK(θ) = − log(1 − θ),θ ∈ (0, 1), the hazard rate corresponds to

the Weibull-Logarithmic distribution. These special cases demonstrate the flexibility of the GWPS

distribution, making it a versatile tool for modeling survival and reliability data across different

fields.

4. Estimation

4.1. Maximum likelihood estimation (MLE). The parameters of the proposed distribution can

be estimated using the maximum likelihood estimation method. This approach involves deriving

the likelihood function and maximizing the corresponding log-likelihood function to obtain the

parameter estimates.

Let y1, y2, . . . , ym be a random sample from the GWPS distribution. The likelihood function

L(α, β,θ, k) is the product of the individual probability densities evaluated at each sample point:

L(α, β,θ, k) =
m∏

i=1

fY(yi;α, β,θ, k).

The log-likelihood function is the natural logarithm of the likelihood function:

`(α, β,θ, k) =
m∑

i=1

log ( fY(yi;α, β,θ, k)) .

Substituting the PDF of the new distribution, the log-likelihood function then becomes:

`(α, β,θ, k) =
m∑

i=1

log

αβ
αyα−1

i

(
1− e−(βyi)

α
)k−1

e(k−1)(βyi)
α

CL
k (θ)

∞∑
n=k

an

(
n

k− 1

) (
θe−(βyi)

α
)n

 .

The first derivative of the log-likelihood function with respect to α is:

∂`
∂α

=
m∑

i=1

( 1
α
+ log(yi) + (k− 1) log

(
1− e−(βyi)

α
)
− (k− 1)(βyi)

α
)

.

Setting ∂`
∂α = 0 results in the equation for α:

m∑
i=1

( 1
α
+ log(yi) + (k− 1) log

(
1− e−(βyi)

α
)
− (k− 1)(βyi)

α
)
= 0.

This equation is nonlinear in α and generally requires numerical methods for solution.

The first derivative of the log-likelihood function with respect to β is:

∂`
∂β

=
m∑

i=1

(
α
β
+ (k− 1)

e−(βyi)
α

1− e−(βyi)α
− (k− 1)(βyi)

α log(yi)

)
.

Setting ∂`
∂β = 0 gives the equation for β:
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m∑
i=1

(
α
β
+ (k− 1)

e−(βyi)
α

1− e−(βyi)α
− (k− 1)(βyi)

α log(yi)

)
= 0.

The partial derivative of the log-likelihood function with respect to θ is:

∂`
∂θ

=
m∑

i=1

 ∞∑
n=k

an

CL
k (θ)

(
θe−(βyi)

α
)n

 .

Setting ∂`
∂θ = 0 gives the equation for θ:

m∑
i=1

 ∞∑
n=k

an

CL
k (θ)

(
θe−(βyi)

α
)n

 = 0.

The MLEs for the parameters α, β, and θ of the proposed distribution are obtained by solving

the system of nonlinear equations derived from the log-likelihood function. These equations can

be solved numerically using optimization methods such as Newton-Raphson or the expectation-

maximization (EM) algorithm. The Fisher information matrix (FIM) is a key quantity in statistical

inference, representing the expected value of the observed information. It is used to assess the

precision of parameter estimates and plays a fundamental role in deriving asymptotic properties

such as the Cramér-Rao lower bound. FIM is computed from the second-order derivatives of the

log-likelihood function. For f (y;α, β,θ) with parameter vector ϕ = (α, β,θ), the FIM, I(ϕ), is a

symmetric matrix whose elements are defined as:

Ii j(ϕ) = E

[(
∂
∂ϕi

log f (X(k);ϕ)
) (

∂
∂ϕ j

log f (X(k);ϕ)
)]

,

where ϕi and ϕ j are parameters in the vectorϕ = (α, β,θ). Alternatively, this can be written as:

Ii j(ϕ) = −E

[
∂2

∂ϕi∂ϕ j
log f (X(k);ϕ)

]
.

The second derivatives of the log-likelihood function are essential for calculating the FIM compo-

nents. The log-likelihood function for a single observation y is given by:

log f (y;α, β,θ) = logα+ α log β+ (α− 1) log y + (k− 1) log
(
1− e−(βy)α

)
+(k− 1)(βy)α − log CL

k (θ) + log

 ∞∑
n=k

an

(
k− 1

n

) (
θe−(βy)α

)n
 ,

where CL
k (θ) =

∑
∞

n=k anθn is the normalization constant, and S(y) =
∑
∞

n=k an(
k−1

n )
(
θe−(βy)α

)n
. The

FIM for the parameter vectorϕ = (α, β,θ) is a 3× 3 matrix:

I(ϕ) =


Iαα Iαβ Iαθ

Iβα Iββ Iβθ

Iθα Iθβ Iθθ

 ,
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where the diagonal elements Iαα, Iββ, and Iθθ measure the amount of information about each

parameter individually, and the off-diagonal elements Iαβ, Iαθ, and Iβθ capture the interactions

between pairs of parameters.

To compute the FIM, we need the second-order partial derivatives of the log-likelihood function

with respect to the parameters α, β, and θ.

The first derivative with respect to α is:

∂
∂α

log f =
1
α
+ log β+ log y+(k−1)

[
(βy)α log(βy)

1− e−(βy)α
+ (βy)α log(βy)

]
−
∂
∂α

log CL
k (θ)+

∂
∂α

logS(y).

The second derivative with respect to α is:

∂2

∂α2 log f = −
1
α2 + (k− 1)

 (βy)α log2(βy)

(1− e−(βy)α)2
+

(βy)α log(βy)

1− e−(βy)α

 .

The first derivative with respect to β is:

∂
∂β

log f =
α
β
− (k− 1)α(βy)α−1x

[ 1
1− e−(βy)α

+ 1
]
+
∂
∂β

logS(y).

The second derivative with respect to β is:

∂2

∂β2 log f = −
α

β2 − (k− 1)α(α− 1)(βy)α−2y2
[ 1
1− e−(βy)α

+ 1
]

−(k− 1)α(βy)α−1y
[
α(βy)α−1

(1− e−(βy)α)2

]
.

The first derivative with respect to θ is:

∂
∂θ

log f = −
∂
∂θ

log CL
k (θ) +

∑
∞

n=k annθn−1( n
k−1)e

−n(βy)α

S(y)
.

The second derivative with respect to θ is:

∂2

∂θ2 log f = −
∂2

∂θ2 log CL
k (θ) +

∑
∞

n=k ann(n− 1)θn−2( n
k−1)e

−n(βy)α

S(y)
.

We can compute the elements of the FIM. These elements are the expected values of the second-

order partial derivatives.

Iαα = E

[
∂2

∂α2 log f
]

.

Iββ = E

[
∂2

∂β2 log f
]

.

Iθθ = E

[
∂2

∂θ2 log f
]

.

Iαβ = E

[
∂
∂α

log f ·
∂
∂β

log f
]

.

Iαθ = E

[
∂
∂α

log f ·
∂
∂θ

log f
]

.
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Iβθ = E

[
∂
∂β

log f ·
∂
∂θ

log f
]

.

4.2. Expectation-maximization (EM) algorithm. Let {xi}
n
i=1 denote the k-th order Weibull statistics

with scale parameter β > 0 and shape parameter α > 0. These are obtained from samples of size

Ni, where Ni ≥ k follows a left k-truncated power series distribution. The parameter vector is:

ϕ = (α, β,θ).

If we observed Ni alongside xi, the joint density would be:

fX,N(xi, Ni;α, β,θ) =
aNiθ

Ni

CL
k (θ)

fX(k)(xi; Ni,α, β).

The complete-data likelihood is:

Lc(ϕ) =
n∏

i=1

aNiθ
Ni

CL
k (θ)

fX(k)(xi; Ni,α, β)

 ,

and the log-likelihood is:

`c(ϕ) =
n∑

i=1

[
log aNi + Ni logθ− log CL

k (θ) + log fX(k)(xi; Ni,α, β)
]

.

E-step. At the r-th iteration with current parametersϕ(r) = (α(r), β(r),θ(r)), compute:

P(Ni = n | xi;ϕ(r)) =
anθ(r)n fX(k)(xi; n,α(r), β(r))∑
∞

m=k amθ(r)m fX(k)(xi; m,α(r), β(r))
, n ≥ k

Define the conditional expectations:

O(r)
i = E(Ni | xi;ϕ(r)) =

∞∑
n=k

nP(Ni = n | xi;ϕ(r)),

and

T(r)
i =

∞∑
n=k

(n− k + 1)P(Ni = n | xi;ϕ(r)).

The expected complete-data log-likelihood is:

Q(ϕ | ϕ(r)) =
n∑

i=1

∞∑
n=k

P(Ni = n | xi;ϕ(r))
[
log an + n logθ+ log fX(k)(xi; n,α, β)

]
− n log CL

k (θ).

M-step. Maximize Q(ϕ | ϕ(r)) with respect toϕ.

(a) Update for θ:

Qθ(θ) = S(r) logθ− n log CL
k (θ) + constant, S(r) =

n∑
i=1

O(r)
i .

Solve:
∂Qθ

∂θ
=

S(r)

θ
− n

CL
k (θ)

′

CL
k (θ)

= 0.
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(b) Updates for α and β:

log fX(k)(xi; n,α, β) = log
n!

(k− 1)!(n− k)!
+ (k− 1) log(1− e−(βxi)

α
)

− (n− k + 1)(βxi)
α + logα+ α log β+ (α− 1) log xi.

Qα,β(α, β) =
n∑

i=1

∞∑
n=k

P(Ni = n | xi;ϕ(r))
[

log
n!

(k− 1)!(n− k)!

+ (k− 1) log(1− e−(βxi)
α
) − (n− k + 1)(βxi)

α + logα+ α log β+ (α− 1) log xi

]
.

Qα,β(α, β) =
n∑

i=1

[
(k− 1) log(1− e−(βxi)

α
) − T(r)

i (βxi)
α + logα+ α log β+ (α− 1) log xi

]
+ constant,

where the constant includes log n!
(k−1)!(n−k)! terms. Maximize by taking partial derivatives:

∂Qα,β

∂β
=

n∑
i=1

− (k− 1)αβα−1xαi e−(βxi)
α

1− e−(βxi)α
− T(r)

i αβα−1xαi +
α
β

 = 0.

β(r+1) =

1
n

n∑
i=1

xα
(r+1)

i

T(r)
i −

(k− 1)e−(β
(r+1)xi)

α(r+1)

1− e−(β(r+1)xi)α
(r+1)



−1/α(r+1)

.

β(r+1) =

1
n

n∑
i=1

xα
(r+1)

i

T(r)
i −

(k− 1)a(r+1)
i

1− a(r+1)
i



−1/α(r+1)

.

For α, the expression is complex and typically solved numerically or iteratively with β, often

requiring the previous iteration’s values. Using T(r)
i , updates are:

α(r+1) =

 n∑
i=1

ln(b(r+1)
i )

(T(r)
i + 1)(b(r+1)

i )α
(r+1)
−
(k− 1)(b(r+1)

i )α
(r+1)

a(r+1)
i

1− a(r+1)
i

− 1



−1

,

where a(r+1)
i = e−(β

(r+1)xi)
α(r+1)

, b(r+1)
i = β(r+1)xi.

5. Conclusion

This paper presents a novel generalization of the Weibull power series family by compound-

ing k-th order statistics and a left truncated power series distribution, significantly enhancing

flexibility for modeling survival, reliability, and lifetime data. The proposed new family of distri-

butions captures ordered failure mechanisms in multi-component systems while accounting for

left-truncated sample sizes common in real-world applications. By unifying these concepts, our

framework extends several classical lifetime distributions and provides a robust tool for complex

data analysis in engineering, finance, and medical research. Future work should explore Bayesian

estimation methods, model selection criteria, and applications to competing risks and extreme

value analysis, further broadening the model’s practical utility.
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This research bridges theoretical advancements with practical needs, offering a versatile ap-

proach for analyzing lifetime data where traditional distributions fall short. The integration of

order statistics and truncated count distributions opens new possibilities for reliability modeling,

risk assessment, and beyond.
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