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ABSTRACT. We introduce an analytic conformable semigroup which is a solution operator of an evolution equation 

involving conformable fractional derivative and a sectorial linear operator. The evolution equation is called a 

conformable fractional Cauchy problem. We here also derive the properties of the analytic conformable semigroup 

by employing the properties of the analytic semigroup. The analytic conformable semigroup is then used to study the 

regularity of solutions to the conformable fractional Cauchy problem under Hölder continuity as a regularity 

condition. An example is given to show the applicability of our regularity results. 

 

 

1. Introduction 

Khalil et al [8] introduced a new fractional derivative 𝑇𝑡
𝛼 of a function 𝑓: [0, ∞) → ℝ of 

order 𝛼 ∈ (0,1) defined by 

𝑇𝑡
𝛼𝑓(𝑡) = lim

𝜀→0

𝑓(𝑡 + 𝜀𝑡1−𝛼) − 𝑓(𝑡)

𝜀
, 𝑡 > 0 

which is called the conformable fractional derivative. It is a local operator and different from 

some fractional derivatives such as Riemann-Liouville and Caputo fractional derivatives which 

are nonlocal operator. The use of the conformable fractional derivative has some advantages 

compared to that of Riemann-Liouville or Caputo fractional derivatives. The first one is that the 

definition of the conformable fractional derivative is simpler than those of the fractional 

derivatives such as Riemann-Liouville and Caputo fractional derivatives ([1],[8]). The second 

one is that the conformable fractional derivative satisfies some properties of usual derivative 
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which are not satisfied by Riemann-Liouville and Caputo fractional derivatives such as the rule 

for the derivation of the product of two functions, chain rule, mean value theorem, and Rolle 

theorem ([1],[8]). The third one is that some real phenomena can be described by using the 

conformable fractional derivative as reported in ([3],[5],[6],[7],[10],[12],[19],[20],[21],[22]).  

By employing the conformable fractional derivative 𝑇𝑡
𝛼, we here study an analytic 

solution operator to the Cauchy problem in Banach space 𝑋 

                                                                  
𝑇𝑡

𝛼𝑢(𝑡) = 𝐴𝑢(𝑡) + 𝑓(𝑡),   𝑡 > 0

𝑢(0) = 𝑢0,
                                                       (1.1) 

with 𝛼 ∈ (0,1), 𝐴: 𝐷(𝐴) ⊆ 𝑋 → 𝑋 is a sectorial linear operator, 𝑢0 ∈ 𝑋, and 𝑓: (0, 𝑇] → 𝑋. A linear 

operator 𝐴 is said to be sectorial if 𝐴 satisfies the property that there exist constants 𝜃 ∈ (𝜋/2, 𝜋) 

and 𝑀 > 0 such that 

𝜌(𝐴) ⊃ Σ𝜃 = {𝜆 ∈ ℂ: 𝜆 ≠ 0, |arg(𝜆)| < 𝜃}, 

‖𝑅(𝜆; 𝐴)‖ ≤
𝑀

|𝜆|
, 𝜆 ∈ Σ𝜃 

where 𝜌(𝐴) is the resolvent set of 𝐴 and 𝑅(𝜆; 𝐴) = (𝜆 − 𝐴)−1 is the resolvent operator of 𝐴. We 

call the problem (1.1) conformable fractional Cauchy problem. The study of an analytic solution 

operator to the problem (1.1) is important and useful since it can be applied to investigate the 

existence, uniqueness, and regularity of the solutions to some real models associated with the 

problem 1.1, for instance, the conformable diffusion equation as studied in ([7],[21],[22]) of the 

form 

                                                                             𝑇𝑡
𝛼𝑢(𝑡) = 𝐷𝛼∆𝑢(𝑥, 𝑡)                                                                  (1.2) 

with 𝐷𝛼 is a constant associated with the equation (1.2). In [7], the multidimensional 

conformable diffusion equation was derived via the random walk theory. The survival function 

used in the diffusion process associated with the equation (1.2) is the stretched exponential 

function 𝑒− 𝑡𝛼/[𝛾𝛼Γ(1+𝛼)], 𝛾 > 0. The equation (1.2) can be used as an alternative model to 

describe slow diffusion phenomenon since the mean square displacement (MSD) of moving 

particles in the diffusion process is proportional to 𝑡𝛼 with 0 < 𝛼 < 1. This fact is similar to 

MSD of moving particles in slow diffusion process involving Mittag-Leffler function 𝐸𝛼,1(−𝑡𝛼/

𝛾𝛼), 𝛾 > 0 as a survival function where 

𝐸𝛼,𝛽(𝑧) = ∑
𝑧𝑛

Γ(𝛼𝑛 + 𝛽)

∞

𝑛=0

,  𝛼 > 0, 𝑧 ∈ ℂ. 

Such a process is modeled by the diffusion equation as derived in ([11],[13]) of the form 

                                                                         𝐷𝑡
𝛼𝐶 𝑢(𝑥, 𝑡) = 𝐾𝛼∆𝑢(𝑥, 𝑡)                                                              (1.3) 

where 𝐷𝑡
𝛼 is Caputo fractional derivative with 0 < 𝛼 < 1 as defined in ([9],[15]) by  

𝐷𝑡
𝛼𝐶 𝑢(𝑡) = ∫

(𝑡 − 𝜏)−𝛼

Γ(1 − 𝛼)

𝑑

𝑑𝜏
𝑓(𝜏)𝑑𝜏

𝑡

0
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and 𝐾𝛼 is a constant associated with the equation (1.3). 

There have been few existence, uniqueness, and regularity results of the problem (1.1). 

In ([2],[18]), a solution operator to the homogeneous case of the problem (1.1) called a 𝐶0 𝛼-

semigroup was discussed. Furthermore, in ([16],[17]), the existence, uniqueness, and regularity 

of the mild solutions to the problem (1.1) were discussed by employing the 𝐶0 𝛼-semigroup. In 

[4], the 𝐶0 𝛼-semigroup is used to investigate the existence of a mild solution to the problem 

(1.1) with finite delay and nonlocal initial conditions. Meanwhile, as our new results, here: 

1. we introduce an analytic conformable semigroup 𝑆𝛼(𝑡) defined by 

                                                       𝑆𝛼(𝑡) =
1

2𝜋𝑖
∫ 𝑒𝜆

𝑡𝛼

𝛼 𝑅(𝜆; 𝐴)𝑑𝜆

Γ𝑟,𝜔

,   𝑡 > 0.                                                (1.4) 

and derive its properties. If 𝛼 =1, the operator (1.4) is an analytic semigroup. The analytic 

conformable semigroup (1.4) has the property 

                                                               𝑆𝛼 (𝑡
1

𝛼) 𝑆𝛼 (𝑠
1

𝛼) = 𝑆𝛼 ((𝑡 + 𝑠)
1

𝛼)                                                     (1.5) 

which is called by conformable semigroup law. If 𝛼 =1, the property (1.5) is the semigroup 

law.   

2. we obtain the stronger regularity results for the problem (1.1) than those in ([16],[17]) under 

the Hölder continuity of 𝑓 as our regularity condition by employing the analytic conformable 

semigroup 𝑆𝛼(𝑡) as expressed in (1.4). The 𝐶0 𝛼-semigroup as used in ([16],[17]) to obtain 

their regularity results can not be used to obtain our regularity results under the Hölder 

continuity of 𝑓.    

This paper consists of six sections. The research’s motivation and novelty are mentioned 

in the first section. In second section, we briefly provide concerning conformable fractional 

derivative. Preliminaries results are presented in third section. Meanwhile, main results are 

discussed in fourth section. An example to show the applicability of the main results is given in 

fifth section. The last section contains conclusion. 

 

2. Conformable Fractional Derivative 

In this section, we provide briefly regarding the conformable fractional derivative and 

another mathematical notions associated with it. 

Definition 2.1. [8] The conformable fractional derivative of 𝑓: [0, ∞) → ℝ of order 𝛼 ∈ (0,1) is 

defined by  

𝑇𝑡
𝛼𝑓(𝑡) = lim

𝜀→0

𝑓(𝑡 + 𝜀𝑡1−𝛼) − 𝑓(𝑡)

𝜀
 

for 𝑡 > 0. If the limit exists then 𝑓 is said to be 𝛼-differentiable at 𝑡. If 𝑓 is 𝛼-differentiable in 

(0, 𝑎) with 𝑎 > 0 and lim
𝑡→0+

𝑇𝑡
𝛼𝑓(𝑡) exists then the conformable fractional derivative of 𝑓 of order 
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𝛼 at 𝑡 = 0 is defined by 

𝑇𝑡
𝛼𝑓(0) = lim

𝑡→0+
𝑇𝑡

𝛼𝑓(𝑡). 

Theorem 2.1. [8] If 𝑓: [0, ∞) → ℝ is a differentiable function at 𝑡 > 0 then, for 𝛼 ∈ (0,1],  

𝑇𝑡
𝛼𝑓(𝑡) = 𝑡1−𝛼

𝑑

𝑑𝑡
𝑓(𝑡). 

If 𝛼 = 1 then the conformable fractional derivative is usual derivative 

Definition 2.2. [1] Given a function 𝑓: [0, ∞) → ℝ and 𝛼 ∈ (0,1]. The fractional Laplace 

transform of order 𝛼 of 𝑓 is defined by 

ℒ𝛼{𝑓(𝑡)}(𝑠) = 𝑓𝛼(𝑠) = ∫ 𝑒−𝑠
𝑡𝛼

𝛼 𝑡𝛼−1𝑓(𝑡)

∞

0

𝑑𝑡. 

If 𝛼 = 1 then the fractional Laplace transform is usual Laplace transform, that is 

      ℒ1{𝑓(𝑡)}(𝑠) = ℒ{𝑓(𝑡)}(𝑠) = 𝑓(𝑠) = ∫ 𝑒−𝑠𝑡𝑓(𝑡)

∞

0

𝑑𝑡.       

Theorem 2.2. [1] If 𝑓: [0, ∞) → ℝ is a differentiable function in (0, ∞) and 𝛼 ∈ (0,1] then  

ℒ𝛼{𝑇𝑡
𝛼𝑓(𝑠)}(𝑠) = 𝑠𝑓𝛼(𝑠) − 𝑓(0). 

We next define 𝛼-convolution of functions 𝑓 and 𝑔 as written in the following definition. 

Definition 2.3. If 𝑓 and 𝑔 are piecewise continuous functions on [0, ∞) then 𝛼-convolution 

𝑓 ∗𝛼 𝑔 of  𝑓 and 𝑔 is defined by 

(𝑓 ∗𝛼 𝑔)(𝑡) = ∫ 𝑓 ((𝑡𝛼 − 𝜏𝛼)
1

𝛼) 𝑔(𝜏)𝜏𝛼−1

𝑡

0

𝑑𝜏. 

It is not difficult to show the following theorem. 

Theorem 2.3. If 𝑓 and 𝑔 are piecewise continuous functions on [0, ∞) then the fractional Laplace 

transform of the convolution 𝑓 ∗𝛼 𝑔 of 𝑓 and 𝑔 is given by 

ℒ𝛼{(𝑓 ∗𝛼 𝑔)(𝑡)}(𝑠) = 𝑓𝛼(𝑠)�̃�𝛼(𝑠). 

Next, consider that, since 

𝐹𝛼(𝑠) = ℒ𝛼{𝑓(𝑡)}(𝑠) = ∫ 𝑒−𝑠
𝑡𝛼

𝛼

∞

0

𝑡𝛼−1𝑓(𝑡)𝑑𝑡 = ∫ 𝑒−𝑠𝜇
∞

0

𝑓((𝛼𝜇)1/𝛼)𝑑𝜇 

then 

𝑔(𝜇) = 𝑓((𝛼𝜇)1/𝛼) =
1

2𝜋𝑖
∫ 𝑒𝑠𝜇𝐹𝛼(𝑠)

Γ

𝑑𝑠 

implying 

                                                               𝑓(𝜇) = 𝑔 (
𝜇𝛼

𝛼
) =

1

2𝜋𝑖
∫ 𝑒𝑠

𝜇𝛼

𝛼 𝐹𝛼(𝑠)

Γ

𝑑𝑠                                                (2.1) 
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where Γ is the vertical line Re(𝑠) = 𝑐 such that 𝑐 is greater than all real part of singularities of 

the integrand in the integral (2.1). Motivated by (2.1), we have a definition of the inverse of 

fractional Laplace transform as defined in the following definition. 

Definition 2.4. Let 0 < 𝛼 < 1 and 𝐹𝛼(𝑠) be the fractional Laplace transform of order 𝛼 of a 

function 𝑓: [0, ∞) → ℝ. The inverse of the fractional Laplace transform of order 𝛼 of 𝐹𝛼(𝑠) is 

defined by 

                                                        𝑓(𝑡) = ℒ𝛼
−1{𝐹𝛼(𝑠)}(𝑡) =

1

2𝜋𝑖
∫ 𝑒𝑠

𝑡𝛼

𝛼 𝐹𝛼(𝑠)

Γ

𝑑𝑠.                                           (2.2) 

 

3. Preliminaries Results 

3.1 Analytic Conformable Semigroup 

Observe that the fractional Laplace transform of the problem (1.1) is  

𝑠𝑈𝛼(𝑠) − 𝑢(0) = 𝐴𝑈𝛼(𝑠) + 𝐹𝛼(𝑠). 

It follows that 

                                                                       𝑈𝛼(𝑠) = 𝑅(𝑠; 𝐴)𝑢0 + 𝑅(𝑠; 𝐴)𝐹𝛼(𝑠).                                              (3.1) 

Then, by applying the inverse of the fractional Laplace transform to the equation (3.1), we have 

                                              𝑢(𝑡) =
1

2𝜋𝑖
∫ 𝑒𝑠

𝑡𝛼

𝛼 𝑅(𝑠; 𝐴)

Γ

𝑢0𝑑𝑠 +
1

2𝜋𝑖
∫ 𝑒𝑠

𝑡𝛼

𝛼 𝑅(𝑠; 𝐴)

Γ

𝐹𝛼(𝑠)𝑑𝑠                       (3.2) 

is a solution to the problem (1.1). Note that 

                                                                           𝑢(𝑡) =
1

2𝜋𝑖
∫ 𝑒𝑠

𝑡𝛼

𝛼 𝑅(𝑠; 𝐴)

Γ

𝑢0𝑑𝑠                                                 (3.3) 

is a solution to the homogeneous case of the problem (1.1). Motivated by the solution (3.3), we 

define an operator 

                                                                   𝑆𝛼(𝑡) =
1

2𝜋𝑖
∫ 𝑒𝜆

𝑡𝛼

𝛼 𝑅(𝜆; 𝐴)

Γ𝑟,𝜔

𝑑𝜆,   𝑡 > 0                                          (3.4) 

where 

Γ𝑟,𝜔 = {𝜆 ∈ ℂ: |arg(𝜆)| = 𝜔, |𝜆| ≥ 𝑟} ∪ {𝜆 ∈ ℂ: |arg(𝜆)| ≤ 𝜔, |𝜆| = 𝑟}, 

with 𝑟 > 0, 𝜔 ∈ (𝜋/2, 𝜃), and Γ𝑟,𝜔 is oriented counterclockwise. By Cauchy’s theorem, the 

integral (3.4) is independent of 𝑟 > 0 and 𝜔 ∈ (𝜋/2, 𝜃).  

We next give some properties of 𝑆𝛼(𝑡) defined by the operator (3.4). The properties are derived 

by employing the properties of an analytic semigroup operator generated by the sectorial linear 

operator 𝐴 i.e. 

                                                                      𝑆(𝑡) =
1

2𝜋𝑖
∫ 𝑒𝑠𝑡𝑅(𝑠; 𝐴)

Γ𝑟,𝜔

𝑑𝑠,   𝑡 > 0.                                           (3.5) 
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The analytic semigroup operator 𝑆(𝑡) defined by the operator (3.5) has some properties as 

mentioned by the following theorems. Let 𝐵(𝑋) be a set of all bounded linear operator on 𝑋 and 

𝐵(𝑋: 𝐷(𝐴)) be a set all bounded linear operators from 𝑋 into 𝐷(𝐴). 

Theorem 3.1. [14] Let 𝐴: 𝐷(𝐴) ⊆ 𝑋 → 𝑋 be a sectorial linear operator. If 𝑆(𝑡) is an analytic 

semigroup generated by 𝐴 expressed by the operator (3.5) then 

(i) 𝑆(𝑡) ∈ 𝐵(𝑋) and there exists 𝐶1 > 0 such that 

‖𝑆(𝑡)‖ ≤ 𝐶1, 𝑡 > 0; 

(ii) 𝑆(𝑡) ∈ 𝐵(𝑋: 𝐷(𝐴)) for 𝑡 > 0 and if 𝑥 ∈ 𝐷(𝐴) then 𝐴𝑆(𝑡)𝑥 = 𝑆(𝑡)𝐴𝑥. Moreover, there exists 

𝑀 > 0 such that 

‖𝐴𝑆(𝑡)‖ ≤ 𝑀𝑡−1, 𝑡 > 0; 

(iii) the function 𝑡 ↦ 𝑆(𝑡) is infinitely continuously differentiable on (0, ∞), 

𝑑𝑛

𝑑𝑡𝑛
𝑆(𝑡)(𝑡) = 𝐴𝑛𝑆(𝑡), 

and there exists  𝑀𝑛 > 0 such that 

‖
𝑑𝑛

𝑑𝑡𝑛
𝑆(𝑡)‖ ≤ 𝑀𝑛𝑡−𝑛, 𝑡 > 0 

for 𝑛 = 1,2,3, …. Moreover, the operator 𝑆(𝑡) has an analytic continuation to the sector  Σ𝜃−
𝜋

2
 

and, for 𝑧 ∈  Σ𝜃−
𝜋

2
, 𝜂 ∈ (

𝜋

2
, 𝜃), 

𝑆(𝑧) =
1

2𝜋𝑖
∫ 𝑒𝜆𝑧𝑅(𝜆; 𝐴)

Γ𝑟,𝜂

 𝑑𝜆; 

(iv) for 𝑡 > 0 and 𝑥 ∈ 𝑋, 

𝑑

𝑑𝑡
𝑆(𝑡)𝑥 = 𝐴𝑆(𝑡)𝑥; 

(v) for 𝑠, 𝑡 > 0,  

𝑆(𝑡)𝑆(𝑠) = 𝑆(𝑡 + 𝑠). 

Theorem 3.2. [14] Let 𝐴: 𝐷(𝐴) ⊆ 𝑋 → 𝑋 be a sectorial linear operator. If 𝑆(𝑡) is an analytic 

semigroup generated by 𝐴 expressed by the operator (3.5) then the following statements hold. 

(i) If 𝑥 ∈ 𝐷(𝐴)̅̅ ̅̅ ̅̅ ̅ then lim
𝑡→0+

𝑆(𝑡)𝑥 = 𝑥 ; 

(ii) For 𝑥 ∈ 𝑋 and 𝑡 ≥ 0,  

∫ 𝑆(𝜏)𝑥

𝑡

0

𝑑𝜏 ∈ 𝐷(𝐴), 

𝐴 ∫ 𝑆(𝜏)𝑥

𝑡

0

𝑑𝜏 = 𝑆(𝑡)𝑥 − 𝑥. 

Moreover, if 𝜏 ↦ 𝐴𝑆(𝜏)𝑥 is integrable on (0, 𝜀) for some 𝜀 > 0 then, for 𝑡 ≥ 0, 
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𝑆(𝑡)𝑥 − 𝑥 = ∫ 𝐴𝑆(𝜏)𝑥

𝑡

0

𝑑𝜏; 

(iii) If 𝑥 ∈ 𝐷(𝐴) and 𝐴𝑥 ∈ 𝐷(𝐴)̅̅ ̅̅ ̅̅ ̅ then  

lim
𝑡→0+

𝑆(𝑡)𝑥 − 𝑥

𝑡
= 𝐴𝑥; 

(iv) If 𝑥 ∈ 𝐷(𝐴) and 𝐴𝑥 ∈ 𝐷(𝐴)̅̅ ̅̅ ̅̅ ̅ then  

lim
𝑡→0+

𝐴𝑆(𝑡)𝑥 = 𝐴𝑥. 

Theorem 3.3. [14] Let 𝐴: 𝐷(𝐴) ⊆ 𝑋 → 𝑋 be a sectorial linear operator. If 𝑆(𝑡) is an analytic 

semigroup generated by 𝐴 expressed by the operator (3.5) then, for 𝜆 ∈ ℂ with Re(𝜆) > 0,  

𝑅(𝜆: 𝐴) = ∫ 𝑒−𝜆𝑡𝑆(𝑡)

∞

0

𝑑𝑡. 

By the relationship 𝑆𝛼(𝑡) = 𝑆(𝑡𝛼/𝛼) and employing Theorem 3.1-3.3, we derive some properties 

of 𝑆𝛼(𝑡) defined by the operator (3.4) as stated by the following theorems.  

Theorem 3.4. Let 𝐴: 𝐷(𝐴) ⊆ 𝑋 → 𝑋 be a sectorial linear operator. If 𝑆𝛼(𝑡) is an operator defined 

by the operator (3.4) then 

(i) 𝑆𝛼(𝑡) ∈ 𝐵(𝑋) for 𝑡 > 0 and there exists 𝐶1 > 0 such that ‖𝑆𝛼(𝑡)‖ ≤ 𝐶1; 

(ii) 𝑆𝛼(𝑡) ∈ 𝐵(𝑋: 𝐷(𝐴)) for 𝑡 > 0 and if 𝑥 ∈ 𝐷(𝐴) then 𝐴𝑆𝛼(𝑡)𝑥 = 𝑆𝛼(𝑡)𝐴𝑥. Moreover, there exists 

𝑀 = 𝑀(𝛼) > 0 such that 

‖𝐴𝑆𝛼(𝑡)𝑥‖ ≤
𝑀

𝑡𝛼
,  𝑡 > 0; 

(iii) The function 𝑡 ↦ 𝑆𝛼(𝑡) is differentiable in (0, ∞) and 

𝐷𝑡𝑆𝛼(𝑡) = 𝑡𝛼−1𝐴𝑆𝛼(𝑡) 

and there exists 𝑁 = 𝑁(𝛼) > 0 such that  

‖𝐷𝑡𝑆𝛼(𝑡)‖ ≤
𝑁

𝑡
,  𝑡 > 0; 

       Moreover, the operator 𝑆𝛼(𝑡) has an analytic continuation 𝑆𝛼(𝑧) to the sector 𝛴𝜃−
𝜋

2
 and for 

𝑧 ∈ 𝛴𝜃−
𝜋

2
, 𝜂 ∈ (𝜋/2, 𝜃), 

𝑆𝛼(𝑧) =
1

2𝜋𝑖
∫ 𝑒𝜆

𝑧𝛼

𝛼 𝑅(𝜆; 𝐴)
Γ𝑟,𝜂

 𝑑𝜆; 

(iv) for 𝑡 > 0 and 𝑥 ∈ 𝑋, 

𝑇𝑡
𝛼𝑆𝛼(𝑡)𝑥 = 𝐴𝑆𝛼(𝑡)𝑥; 

(v) for 𝑡, 𝑠 > 0, 

𝑆𝛼(𝑡1/𝛼)𝑆𝛼(𝑠1/𝛼) = 𝑆𝛼((𝑡 + 𝑠)1/𝛼). 

Proof.  

(i) By Theorem 3.1(i), for 𝑡 > 0, 
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‖𝑆𝛼(𝑡)‖ = ‖𝑆 (
𝑡𝛼

𝛼
)‖ ≤ 𝐶1; 

(ii) By Theorem 3.1(ii), if 𝑥 ∈ 𝐷(𝐴) then, for 𝑡 > 0, 

𝐴𝑆𝛼(𝑡)𝑥 = 𝐴𝑆 (
𝑡𝛼

𝛼
) 𝑥 = 𝑆 (

𝑡𝛼

𝛼
) 𝐴𝑥 = 𝑆𝛼(𝑡)𝐴𝑥 

and  

‖𝐴𝑆𝛼(𝑡)‖ = ‖𝐴𝑆 (
𝑡𝛼

𝛼
)‖ ≤ 𝑀 (

𝑡𝛼

𝛼
)

−1

=
𝛼𝑀

𝑡𝛼
. 

(iii) By theorem 3.1(iii), for 𝑡 > 0,  

𝑆𝛼
′ (𝑡) =

𝑑

𝑑𝑡
𝑆 (

𝑡𝛼

𝛼
) = 𝑡𝛼−1𝑆′ (

𝑡𝛼

𝛼
) = 𝑡𝛼−1𝐴𝑆 (

𝑡𝛼

𝛼
) = 𝑡𝛼−1𝐴𝑆𝛼(𝑡) 

and 

‖𝑆𝛼
′ (𝑡)‖ = ‖𝑡𝛼−1𝐴𝑆𝛼(𝑡)‖ = 𝑡𝛼−1‖𝐴𝑆𝛼(𝑡)‖ ≤ 𝑡𝛼−1𝑀𝑡−𝛼 =

𝑀

𝑡
. 

Now, we suppose 0 < 𝛿 < 𝜃 − 𝜋/2 and 𝜂 = 𝜃 − 𝛿. If 𝑧 ∈ Σ𝜂−𝜋/2 with 𝜆 = |𝜆|𝑒±𝜂𝑖 and |𝜆| ≥ 𝑟 

then 𝜆𝑧𝛼 = |𝜆||𝑧|𝛼𝑒𝑖(𝛼arg(𝑧)±𝜂) with 𝜋/2 < 𝛼arg(𝑧) + 𝜂 < 3𝜋/2 and −3𝜋/2 < 𝛼arg(𝑧) − 𝜂 <

−𝜋/2. It means that Re(𝜆𝑧𝛼) < 0 implying 

                          ‖𝑆𝛼(𝑧)‖ = ‖
1

2𝜋𝑖
∫ 𝑒𝜆

𝑧𝛼

𝛼 𝑅(𝜆; 𝐴)

Γ𝑟,𝜂

𝑑𝜆‖ 

                                          = ‖
1

2𝜋𝑖
∫ 𝑒𝜆

𝑧𝛼

𝛼 𝑅(𝜆; 𝐴)

Γ|𝑧|−𝛼,𝜂

𝑑𝜆‖ 

                                          ≤
1

2𝜋
∫

𝑒
|𝜆|

|𝑧|𝛼

𝛼
cos(𝛼arg(𝑧)±𝜂)

|𝜆|
Γ|𝑧|−𝛼,𝜂

𝑑|𝜆| 

                                          ≤
1

2𝜋
∫ 𝑒

𝜌

𝛼
cos(𝛼arg(𝑧)±𝜂)𝜌−1

Γ1,𝜂

𝑑𝜌 

which is bounded. Therefore, for 𝑧 ∈ Σ𝜂−𝜋/2, the function 𝑧 ↦ 𝑆𝛼(𝑧) is bounded. Now, 

observe that the value of  𝑧𝛼 is not a unique with 

𝑧𝛼 = 𝑒𝛼 log 𝑧 = 𝑒
𝛼(ln|𝑧|+𝑖(Arg(𝑧)+2𝑘𝜋))

= |𝑧|𝛼𝑒𝑖𝛼(Arg(𝑧)+2𝑘𝜋), 𝑘 = 0, ±1, ±2, …. 

If 𝑘 = 0, we have the principle value of 𝑧𝛼, that is 𝑧𝛼 = |𝑧|𝛼𝑒𝑖𝛼Arg(𝑧). It is a unique. Thus, for 

𝑧 ∈ Σ𝜃−
𝜋

2
, 𝜂 ∈ (𝜋/2, 𝜃), 

𝑧 ↦ 𝑆𝛼(𝑧) =
1

2𝜋𝑖
∫ 𝑒𝜆

𝑧𝛼

𝛼 𝑅(𝜆; 𝐴)

Γ𝑟,𝜂

𝑑𝜆, 
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with the principle value of 𝑧𝛼, can be considered as an analytic continuation of 𝑆𝛼(𝑡) to the 

sector Σ𝜃−
𝜋

2
. Since union of the sector Σ𝜂−𝜋/2 is Σ𝜃−𝜋/2, the function ia also analytic on 

Σ𝜃−𝜋/2;  

(iv) In proof of (iii), we proved that for 𝑡 > 0 and 𝑥 ∈ 𝑋, 

𝑆𝛼
′ (𝑡)𝑥 = 𝑡𝛼−1𝐴𝑆𝛼(𝑡)𝑥 

implying 

𝑇𝑡
𝛼𝑆𝛼(𝑡)𝑥 = 𝑡1−𝛼𝑆𝛼

′ (𝑡)𝑥 = 𝐴𝑆𝛼(𝑡)𝑥; 

(v) By Theorem 3.1(v), for 𝑡, 𝑠 > 0, 

                              𝑆𝛼(𝑡1/𝛼)𝑆𝛼(𝑠1/𝛼)𝑥 = 𝑆 (
𝑡

𝛼
) 𝑆 (

𝑠

𝛼
) 𝑥 = 𝑆 (

𝑡 + 𝑠

𝛼
) = 𝑆𝛼((𝑡 + 𝑠)1/𝛼).                         ∎ 

Theorem 3.5. Let 𝐴: 𝐷(𝐴) ⊆ 𝑋 → 𝑋 be a sectorial linear operator. If 𝑆𝛼(𝑡) is an operator defined 

by the operator (3.4) then the following statements hold. 

(i) If 𝑥 ∈ 𝐷(𝐴)̅̅ ̅̅ ̅̅ ̅ then lim
𝑡→0+

𝑆𝛼(𝑡)𝑥 = 𝑥 ; 

(ii) For 𝑥 ∈ 𝑋 and 𝑡 ≥ 0, 

∫ 𝜏𝛼−1𝑆𝛼(𝜏)𝑥

𝑡

0

𝑑𝜏 ∈ 𝐷(𝐴),   𝐴 ∫ 𝜏𝛼−1𝑆𝛼(𝜏)𝑥

𝑡

0

𝑑𝜏 = 𝑆𝛼(𝑡)𝑥 − 𝑥; 

(iii) If 𝑥 ∈ 𝐷(𝐴) and 𝐴𝑥 ∈ 𝐷(𝐴)̅̅ ̅̅ ̅̅ ̅ then 

lim
𝑡→0+

𝑆𝛼(𝑡)𝑥 − 𝑥

𝑡𝛼
=

1

𝛼
𝐴𝑥. 

Proof.  

(i) By Theorem 3.2(i), if 𝑥 ∈ 𝐷(𝐴)̅̅ ̅̅ ̅̅ ̅ then  

lim
𝑡→0+

𝑆𝛼(𝑡)𝑥 = lim
𝑡→0+

𝑆 (
𝑡𝛼

𝛼
) 𝑥 = lim

𝑡→0+
𝑆(𝑡)𝑥 = 𝑥; 

(ii) By Theorem 3.2(ii), for 𝑡 ≥ 0 and 𝑥 ∈ 𝑋,  

∫ 𝜏𝛼−1𝑆𝛼(𝜏)𝑥

𝑡

0

𝑑𝜏 = ∫ 𝜏𝛼−1𝑆 (
𝜏𝛼

𝛼
) 𝑥

𝑡

0

𝑑𝜏 = ∫ 𝑆(𝑟)𝑥

𝑡𝛼

𝛼

0

𝑑𝑟 ∈ 𝐷(𝐴), 

𝐴 ∫ 𝜏𝛼−1𝑆𝛼(𝜏)𝑥

𝑡

0

𝑑𝜏 = 𝐴 ∫ 𝑆(𝑟)𝑥

𝑡𝛼

𝛼

0

𝑑𝑟 = 𝑆 (
𝑡𝛼

𝛼
) 𝑥 − 𝑥 = 𝑆𝛼(𝑡)𝑥 − 𝑥. 

Furthermore, if 𝜏 ↦ 𝜏𝛼−1𝐴𝑆𝛼(𝜏)𝑥 is integrable on (0, 𝜀) for some 𝜀 > 0 then, for 𝑡 ≥ 0, 

𝑆𝛼(𝑡)𝑥 − 𝑥 = ∫ 𝜏𝛼−1𝐴𝑆𝛼(𝜏)𝑥

𝑡

0

𝑑𝜏; 

(iii) By Theorem 3.2(iii), if 𝑥 ∈ 𝐷(𝐴) and 𝐴𝑥 ∈ 𝐷(𝐴)̅̅ ̅̅ ̅̅ ̅ then 
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                              lim
𝑡→0+

𝑆𝛼(𝑡)𝑥 − 𝑥

𝑡𝛼
=

1

𝛼
lim

𝑡→0+

𝑆 (
𝑡𝛼

𝛼
) 𝑥 − 𝑥

𝑡𝛼

𝛼

=
1

𝛼
lim

𝑡→0+

𝑆(𝑡)𝑥 − 𝑥

𝑡
=

1

𝛼
𝐴𝑥.                         ∎ 

Theorem 3.6. Let 𝐴: 𝐷(𝐴) ⊆ 𝑋 → 𝑋 be a sectorial linear operator. For 𝜆 ∈ ℂ with Re(𝜆) > 0, 

𝑅(𝜆: 𝐴) = ∫ 𝑒−𝜆
𝑡𝛼

𝛼 𝑡𝛼−1𝑆𝛼(𝑡)

∞

0

𝑑𝑡. 

Proof. By Theorem 3.3, for 𝜆 ∈ ℂ with Re(𝜆) > 0, 

                             ∫ 𝑒−𝜆
𝑡𝛼

𝛼 𝑡𝛼−1𝑆𝛼(𝑡)

∞

0

𝑑𝑡 = ∫ 𝑒−𝜆
𝑡𝛼

𝛼 𝑡𝛼−1𝑆 (
𝑡𝛼

𝛼
)

∞

0

𝑑𝑡 = ∫ 𝑒−𝜆𝜏𝑆(𝜏)

∞

0

𝑑𝜏 = 𝑅(𝜆: 𝐴).                 ∎ 

We call the operator 𝑆𝛼(𝑡) defined by (3.4) the analytic conformable semigroup generated by the 

sectorial linear operator 𝐴: 𝐷(𝐴) ⊆ 𝑋 → 𝑋. The analytic conformable semigroup is a solution 

operator to the homogeneous case of the problem (1.1) i.e. 

                                                                  
𝑇𝑡

𝛼𝑢(𝑡) = 𝐴𝑢(𝑡),   𝑡 > 0

𝑢(0) = 𝑢0.
 

3.2 A Solution to Conformable Fractional Cauchy Problem 

We define Banach space 𝐿𝛼,𝑝((0, 𝑇]; 𝑋) by 

𝐿𝛼,𝑝((0, 𝑇]; 𝑋) = {𝑓: (0, 𝑇] → 𝑋: ∫‖𝑓(𝑡)‖𝑝𝑡𝛼−1𝑑𝑡

𝑇

0

< +∞} , 0 < 𝛼 < 1, 𝑝 ≥ 1 

with its norm 

‖𝑓‖𝛼,𝑝 = ∫‖𝑓(𝑡)‖𝑝𝑡𝛼−1𝑑𝑡

𝑇

0

. 

Motivated by the solution (3.2), we get a solution to the problem (1.1) as stated by the following 

theorem. 

Theorem 3.9. Let 𝑢0 ∈ 𝑋 and 𝑓 ∈ 𝐿𝛼,1((0, 𝑇]; 𝑋). If 𝑢: [0, 𝑇] → 𝑋 is a solution to the problem (1.1) 

then 

𝑢(𝑡) = 𝑆𝛼(𝑡)𝑢0 + ∫ 𝑆𝛼((𝑡𝛼 − 𝜏𝛼)1/𝛼)𝑓(𝜏)𝜏𝛼−1

𝑡

0

𝑑𝜏,  0 < 𝑡 ≤ 𝑇. 

Proof.  Since 𝑆𝛼(𝑡) is the analytic conformable semigroup generated by 𝐴 and 𝑢 is a solution to 

the problem (1.1), then  

𝑣(𝜏) = 𝑆𝛼((𝑡𝛼 − 𝜏𝛼)1/𝛼)𝑢(𝜏) = 𝑆 (
𝑡𝛼

𝛼
−

𝜏𝛼

𝛼
) 𝑢(𝜏) 

is differentiable for 0 < 𝜏 < 𝑡 and by, Theorem 3.1(ii-iv), 

                𝑣′(𝜏) = −𝜏𝛼−1𝑆′ (
𝑡𝛼

𝛼
−

𝜏𝛼

𝛼
) 𝑢(𝜏) + 𝑆 (

𝑡𝛼

𝛼
−

𝜏𝛼

𝛼
) 𝑢′(𝜏) 
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                           = −𝜏𝛼−1𝐴𝑆 (
𝑡𝛼

𝛼
−

𝜏𝛼

𝛼
) 𝑢(𝜏) + 𝑆 (

𝑡𝛼

𝛼
−

𝜏𝛼

𝛼
) (𝜏𝛼−1𝐴𝑢(𝜏) + 𝜏𝛼−1𝑓(𝜏)) 

                           = 𝑆 (
𝑡𝛼

𝛼
−

𝜏𝛼

𝛼
) 𝑓(𝜏)𝜏𝛼−1.                                                                                                             (3.6) 

If 𝑓 ∈ 𝐿𝛼,1((0, 𝑇]; 𝑋) then 𝑆(𝑡𝛼/𝛼 − 𝜏𝛼/𝛼)𝑓(𝜏)𝜏𝛼−1 is integrable. By integrating both side of the 

equation (3.6) from 0 to 𝑡, we have 

𝑣(𝑡) − 𝑣(0) = ∫ 𝑆 (
𝑡𝛼

𝛼
−

𝜏𝛼

𝛼
) 𝑓(𝜏)𝜏𝛼−1

𝑡

0

𝑑𝜏 

or 

𝑢(𝑡) = 𝑆 (
𝑡𝛼

𝛼
) 𝑢(0) + ∫ 𝑆 (

𝑡𝛼

𝛼
−

𝜏𝛼

𝛼
) 𝑓(𝜏)𝜏𝛼−1

𝑡

0

𝑑𝜏. 

It means that  

                                       𝑢(𝑡) = 𝑆𝛼(𝑡)𝑢0 + ∫ 𝑆𝛼 ((𝑡𝛼 − 𝜏𝛼)
1

𝛼) 𝑓(𝜏)𝜏𝛼−1

𝑡

0

𝑑𝜏,  0 < 𝑡 ≤ 𝑇.                                  ∎ 

Remark 3.10. If 𝑓 = 0 then 𝑡 ↦ 𝑢(𝑡) = 𝑆𝛼(𝑡)𝑢0 is the unique solution to the homogeneous case of 

the problem (1.1). Theorem 3.9 also implies the uniqueness of the solution to the problem (1.1). 

 

4. Main Results 

In this section, we show the regularity of mild solution to the problem (1.1). We first 

define two types of solutions to the problem (1.1) 

Definition 4.1. Let 𝑢0 ∈ 𝑋 and 𝑓 ∈ 𝐿𝛼,1((0, 𝑇]; 𝑋). A function 𝑢: [0, 𝑇] → 𝑋 is a mild solution to 

the problem (1.1) if it satisfies 

𝑢(𝑡) = 𝑆𝛼(𝑡)𝑢0 + ∫ 𝑆𝛼((𝑡𝛼 − 𝜏𝛼)1/𝛼)𝑓(𝜏)𝜏𝛼−1

𝑡

0

𝑑𝜏,  0 < 𝑡 ≤ 𝑇. 

Definition 4.2. Let 𝑢0 ∈ 𝑋. A function 𝑢: [0, 𝑇] → 𝑋 is a classical solution to the problem (1.1) if 

𝑢 ∈ 𝐶((0, 𝑇]; 𝐷(𝐴)) ∩ 𝐶([0, 𝑇]; 𝑋), 𝑇𝑡
𝛼𝑢 ∈ 𝐶((0, 𝑇]; 𝑋 ), and it satisfies the the problem (1.1). 

The following theorem shows us regarding the Hölder continuity of a mild solution to the 

problem (1.1). 

Theorem 4.1. Let 𝐴 be a sectorial linear operator, 𝑆𝛼(𝑡) be an analytic conformable semigroup 

generated by 𝐴, and 𝑓 ∈ 𝐿𝛼,𝑝((0, 𝑇]; 𝑋) with 𝑝 > 1.  

(i) If 𝑢 is a mild solution to the problem (1.1) then 𝑢 is Hölder continuous with exponent 

𝛼(𝑝 − 1)/𝑝 on [𝜀, 𝑇] for every 𝜀 > 0.  

(ii) If 𝑢0 ∈ 𝐷(𝐴) then 𝑢 is Hölder continuous with the same exponent on [0, 𝑇]. 

Proof. Consider the mild solution 𝑢 to to the problem (1.1) i.e. 
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                        𝑢(𝑡) = 𝑆𝛼(𝑡)𝑢0 + ∫ 𝑆𝛼 ((𝑡𝛼 − 𝜏𝛼)
1

𝛼) 𝑓(𝜏)𝜏𝛼−1

𝑡

0

𝑑𝜏 = 𝑆𝛼(𝑡)𝑢0 + 𝑣(𝑡),               𝑡 > 0. 

Note that based on Theorem 3.5(ii), for 𝑡 ∈ [𝜀, 𝑇] and ℎ > 0, 

‖𝑆𝛼(𝑡 + ℎ)𝑢0 − 𝑆𝛼(𝑡)𝑢0‖ ≤ ∫ ‖𝐴𝑆𝛼(𝜏)𝑢0‖𝜏𝛼−1𝑑𝜏

𝑡+ℎ

𝑡

 

                                                                                                 ≤ 𝑀(𝛼)‖𝑢0‖ ∫ 𝜏−1𝑑𝜏

𝑡+ℎ

𝑡

 

                                                                                                 =
𝑀(𝛼)‖𝑢0‖

𝑡
ℎ   

                                                                                                 ≤
𝑀(𝛼)‖𝑢0‖

𝜀
ℎ. 

It means that 𝑆𝛼(𝑡)𝑢0 is Lipschitz continuous on [𝜀, 𝑇]. We now consider, for 𝑡 ∈ [0, 𝑇] and ℎ >

0, 

𝑣(𝑡 + ℎ) − 𝑣(𝑡) = ∫ 𝑆𝛼 (((𝑡 + ℎ)𝛼 − 𝜏𝛼)
1

𝛼) 𝑓(𝜏)𝜏𝛼−1

𝑡+ℎ

0

𝑑𝜏 − ∫ 𝑆𝛼 ((𝑡𝛼 − 𝜏𝛼)
1

𝛼) 𝑓(𝜏)𝜏𝛼−1

𝑡

0

𝑑𝜏 

                                         = ∫ [𝑆𝛼 (((𝑡 + ℎ)𝛼 − 𝜏𝛼)
1

𝛼) − 𝑆𝛼 ((𝑡𝛼 − 𝜏𝛼)
1

𝛼)] 𝑓(𝜏)𝜏𝛼−1

𝑡

0

𝑑𝜏 

                                           + ∫ 𝑆𝛼 (((𝑡 + ℎ)𝛼 − 𝜏𝛼)
1

𝛼) 𝑓(𝜏)𝜏𝛼−1

𝑡+ℎ

𝑡

𝑑𝜏 

                                        = 𝐼1 + 𝐼2. 

Therefore, by using Hölder’s inequality, we have, for 𝑡 ∈ [0, 𝑇] and ℎ > 0, 

‖𝐼2‖ ≤ ∫ ‖𝑆𝛼 (((𝑡 + ℎ)𝛼 − 𝜏𝛼)
1

𝛼)‖ ‖𝑓(𝜏)𝜏𝛼−1‖

𝑡+ℎ

𝑡

𝜏𝛼−1𝑑𝜏 

                                                    =
1

𝛼
∫ ‖𝑆𝛼 (((𝑡 + ℎ)𝛼 − 𝑟)

1

𝛼)‖ ‖𝑓(𝑟1/𝛼)‖

(𝑡+ℎ)𝛼

𝑡𝛼

𝑑𝑟 

                                                    ≤
1

𝛼
( ∫ 𝐶1

𝑝/(𝑝−1)
𝑑𝑟

(𝑡+ℎ)𝛼

𝑡𝛼

)

(𝑝−1)/𝑝

( ∫ ‖𝑓(𝑟1/𝛼)‖
𝑝

(𝑡+ℎ)𝛼

𝑡𝛼

𝑑𝑟)

1/𝑝

 

                                                    =
𝐶1

𝛼
((𝑡 + ℎ)𝛼 − 𝑡𝛼)(𝑝−1)/𝑝 (∫ ‖𝑓(𝑠)‖𝑝

𝑡+ℎ

𝑡

𝑠𝛼−1𝑑𝑟)

1

𝑝

 

                                                    ≤
𝐶1

𝛼
ℎ𝛼(𝑝−1)/𝑝‖𝑓‖𝛼,𝑝. 
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We next estimate 𝐼1. Based on Theorem 3.4(i), we observe that for ℎ > 0, 𝑡 ∈ [0, 𝑇], and 0 < 𝜏 <

𝑡,  

‖𝑆𝛼 (((𝑡 + ℎ)𝛼 − 𝜏𝛼)
1

𝛼) − 𝑆𝛼 ((𝑡𝛼 − 𝜏𝛼)
1

𝛼)‖ ≤ 2𝐶1. 

By Theorem 3.2(ii) and Theorem 3.5(ii), for ℎ > 0, 𝑡 ∈ (0, 𝑇], and 0 < 𝜏 < 𝑡, 

‖𝑆𝛼 (((𝑡 + ℎ)𝛼 − 𝜏𝛼)
1

𝛼) − 𝑆𝛼 ((𝑡𝛼 − 𝜏𝛼)
1

𝛼)‖ ≤ ‖‖ ∫ 𝑟𝛼−1𝐴𝑆𝛼(𝑟)

((𝑡+ℎ)𝛼−𝜏𝛼)
1
𝛼

(𝑡𝛼−𝜏𝛼)
1
𝛼

𝑑𝑟‖‖ 

                                                                                                            = ‖
‖ ∫ 𝐴𝑆(𝑟)

(𝑡+ℎ)𝛼

𝛼
−

𝜏𝛼

𝛼

𝑡𝛼

𝛼
−

𝜏𝛼

𝛼

𝑑𝑟‖
‖ 

                                                                                                            ≤ 𝑀 ∫ ‖𝐴𝑆(𝑟)‖

(𝑡+ℎ)𝛼

𝛼
−

𝜏𝛼

𝛼

𝑡𝛼

𝛼
−

𝜏𝛼

𝛼

𝑑𝑟 

                                                                                                            ≤
𝑀

𝑡𝛼

𝛼
−

𝜏𝛼

𝛼

(
(𝑡 + ℎ)𝛼

𝛼
−

𝑡𝛼

𝛼
) 

                                                                                                            ≤
𝑀

𝑡𝛼 − 𝜏𝛼
ℎ𝛼. 

Consequently, for 𝑡 ∈ [0, 𝑇] and ℎ > 0, 

‖𝑆𝛼 (((𝑡 + ℎ)𝛼 − 𝜏𝛼)
1

𝛼) − 𝑆𝛼 ((𝑡𝛼 − 𝜏𝛼)
1

𝛼)‖ ≤ 𝐶min {1,
ℎ𝛼

𝑡𝛼 − 𝜏𝛼} 

where 𝐶 = max{2𝐶1, 𝑀}. Therefore, for 𝑡 ∈ [0, 𝑇] and ℎ > 0, 

 ‖𝐼1‖ ≤ 𝐶 ∫ min {1,
ℎ𝛼

𝑡𝛼 − 𝜏𝛼} ‖𝑓(𝜏)‖𝜏𝛼−1𝑑𝜏

𝑡

0

 

                                                                 = 𝐶 ∫ min {1,
ℎ𝛼

𝑟
} ‖𝑓((𝑡𝛼 − 𝑟)1/𝛼)‖𝑑𝑟

𝑡𝛼

0

 

                                                                 ≤ 𝐶 (∫ (min {1,
ℎ𝛼

𝑟
})

𝑝

(𝑝−1)

𝑑𝑟

𝑡𝛼

0

)

(𝑝−1)

𝑝

(∫ ‖𝑓 ((𝑡𝛼 − 𝑟)
1

𝛼)‖
𝑝

𝑑𝑟

𝑡𝛼

0

)

1

𝑝

 

                                                                 = 𝛼𝐶 (∫ (min {1,
ℎ𝛼

𝑟
})

𝑝

(𝑝−1)

𝑑𝑟

𝑡𝛼

0

)

(𝑝−1)

𝑝

(∫‖𝑓(𝑠)‖𝑝𝑠𝛼−1𝑑𝑠

𝑡

0

)

1

𝑝

 

                                                                 = 𝛼𝐶‖𝑓‖𝛼,𝑝 (∫ (min {1,
ℎ𝛼

𝑟
})

𝑝/(𝑝−1)

𝑑𝑟

𝑡𝛼

0

)

(𝑝−1)/𝑝
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                                                                 = 𝛼𝐶‖𝑓‖𝛼,𝑝 (∫ 𝑑𝑟

ℎ𝛼

0

+ ∫ (
ℎ𝛼

𝑟
)

𝑝/(𝑝−1)

𝑑𝑟

∞

ℎ𝛼

)

(𝑝−1)/𝑝

 

                                                                 = 𝛼𝐶‖𝑓‖𝛼,𝑝 (ℎ𝛼 + ℎ𝛼 ∫ (
1

𝑟
)

𝑝/(𝑝−1)

𝑑𝑟

∞

ℎ𝛼

)

(𝑝−1)/𝑝

 

                                                                 ≤ 𝛼𝐶‖𝑓‖𝛼,𝑝 (ℎ𝛼 + ℎ𝛼𝑝/(𝑝−1) ∫ (
1

𝑟
)

𝑝/(𝑝−1)

𝑑𝑟

∞

ℎ𝛼

)

(𝑝−1)/𝑝

 

                                                                 = 𝛼𝐶‖𝑓‖𝛼,𝑝 (ℎ𝛼 + ℎ𝛼𝑝/(𝑝−1)(1 − 𝑝) [(
1

𝑟
)

1/(𝑝−1)

]
ℎ𝛼

∞

)

(𝑝−1)/𝑝

 

                                                                 = 𝛼𝐶‖𝑓‖𝛼,𝑝 (ℎ𝛼 + ℎ𝛼𝑝/(𝑝−1)(1 − 𝑝)(−ℎ−𝛼/(𝑝−1)))
(𝑝−1)/𝑝

 

                                                                 = 𝛼𝐶‖𝑓‖𝛼,𝑝(ℎ𝛼 − ℎ𝛼(1 − 𝑝))
(𝑝−1)/𝑝

 

                                                                 = 𝛼𝐶‖𝑓‖𝛼,𝑝𝑝(𝑝−1)/𝑝ℎ𝛼(𝑝−1)/𝑝 . 

Thus, the part (i) is proven. 

Next, by Theorem 3.4(i) and Theorem 3.5(ii), if 𝑢0 ∈ 𝐷(𝐴) then, for 𝑡 ∈ [0, 𝑇] and ℎ > 0, 

‖𝑆𝛼(𝑡 + ℎ)𝑢0 − 𝑆𝛼(𝑡)𝑢0‖ ≤ ∫ ‖𝑆𝛼(𝜏)𝐴𝑢0‖𝜏𝛼−1𝑑𝜏

𝑡+ℎ

𝑡

 

                                                                                                 ≤ 𝐶1‖𝐴𝑢0‖ ∫ 𝜏𝛼−1𝑑𝜏

𝑡+ℎ

𝑡

 

                                                                                                 =
𝐶1‖𝐴𝑢0‖

𝛼
((𝑡 + ℎ)𝛼 − 𝑡𝛼) 

                                                                                                 ≤
𝐶1‖𝐴𝑢0‖

𝛼
ℎ𝛼 . 

Therefore, 𝑆𝛼(𝑡)𝑢0 is Hölder continuous with exponent 𝛼 on [0, 𝑇]. This proves the part (ii).      ∎         

The following lemma is needed to prove the regularity of the solution to the problem (1.1) 

under Hölder continuity condition on 𝑓. 

Lemma 4.2. Let 𝐴 be a sectorial linear operator and 𝑆𝛼(𝑡) be an analytic conformable semigroup 

generated by 𝐴 with 𝛼 = 1/𝑛, 𝑛 = 1,2,3,4, …. Let 𝑓: [0, 𝑇] → 𝑋 and there exist a constant 𝐾 > 0 

and 0 < 𝜗 < 1 such that  

                                                                        ‖𝑓(𝑡) − 𝑓(𝑠)‖ ≤ 𝐾|𝑡 − 𝑠|𝜗.                                                           (4.1) 

If  

𝑣1(𝑡) = ∫ 𝑆𝛼 ((𝑡𝛼 − 𝑠𝛼)
1

𝛼) (𝑓(𝑠) − 𝑓(𝑡))𝑠𝛼−1𝑑𝑠

𝑡

0
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then 𝑣1(𝑡) ∈ 𝐷(𝐴) for 𝑡 ∈ (0, 𝑇] and, for every 𝜀 > 0, 𝐴𝑣1(𝑡) is Hölder continuous with exponent 

𝛼𝜗 on [𝜀, 𝑇]. 

Proof. Consider that, by Theorem 3.4(i) and the condition (4.1), for 𝑡 ∈ (0, 𝑇] and 0 < 𝑠 < 𝑡 ≤ 𝑇, 

‖𝑆𝛼 ((𝑡𝛼 − 𝑠𝛼)
1

𝛼) (𝑓(𝑠) − 𝑓(𝑡))𝑠𝛼−1‖ ≤ 𝐶1𝐾(𝑡 − 𝑠)𝜗𝑠𝛼−1 ∈ 𝐿1((0, 𝑇): 𝑋). 

Observe now that, by Theorem 3.4(ii) and the condition (4.1), for 𝑡 ∈ [0, 𝑇], 

‖𝐴𝑆𝛼 ((𝑡𝛼 − 𝑠𝛼)
1

𝛼) (𝑓(𝑠) − 𝑓(𝑡))𝑠𝛼−1‖ ≤ 𝑀𝐾
(𝑡 − 𝑠)𝜗

𝑡𝛼 − 𝑠𝛼
𝑠𝛼−1 

                                                                            = 𝑀𝐾
(𝑡𝛼𝑛 − 𝑠𝛼𝑛)𝜗

𝑡𝛼 − 𝑠𝛼
𝑠𝛼−1 

                                                                            = 𝑀𝐾
(𝑡𝛼 − 𝑠𝛼)𝜗(𝑡𝛼(𝑛−1) + 𝑡𝛼(𝑛−2)𝑠𝛼 + ⋯ + 𝑠𝛼(𝑛−1))

𝜗

𝑡𝛼 − 𝑠𝛼
𝑠𝛼−1 

                                                                            ≤ 𝑛𝑀𝐾𝑇𝛼𝜗(𝑛−1)
(𝑡𝛼 − 𝑠𝛼)𝜗

𝑡𝛼 − 𝑠𝛼
𝑠𝛼−1                                            

                                                                            = 𝑛𝑀𝐾𝑇𝜗−𝛼𝜗(𝑡𝛼 − 𝑠𝛼)𝜗−1𝑠𝛼−1 ∈ 𝐿1((0, 𝑇): 𝑋). 

Since 𝐴 is closed, we have, for 𝑡 ∈ (0, 𝑇], 

𝐴𝑣1(𝑡) = ∫ 𝐴𝑆𝛼 ((𝑡𝛼 − 𝑠𝛼)
1

𝛼) (𝑓(𝑠) − 𝑓(𝑡))𝑠𝛼−1

𝑡

0

𝑑𝑠. 

Then, 𝑣1(𝑡) ∈ 𝐷(𝐴), for 𝑡 ∈ (0, 𝑇].  

Given 𝜀 > 0. We next show the Hölder continuity of 𝐴𝑣1(𝑡) on [𝜀, 𝑇]. Consider that, for 

0 < 𝑡 < 𝑡 + ℎ < 𝑇 with 0 < ℎ < 1, 

𝐴𝑣1(𝑡 + ℎ) − 𝐴𝑣1(𝑡) = 𝐴 ∫ (𝑆𝛼 (((𝑡 + ℎ)𝛼 − 𝑠𝛼)
1

𝛼) − 𝑆𝛼 ((𝑡𝛼 − 𝑠𝛼)
1

𝛼)) (𝑓(𝑠) − 𝑓(𝑡))𝑠𝛼−1

𝑡

0

𝑑𝑠 

                                                    +𝐴 ∫ 𝑆𝛼 (((𝑡 + ℎ)𝛼 − 𝑠𝛼)
1

𝛼) (𝑓(𝑡) − 𝑓(𝑡 + ℎ))𝑠𝛼−1

𝑡

0

𝑑𝑠 

                                                    +𝐴 ∫ 𝑆𝛼 (((𝑡 + ℎ)𝛼 − 𝑠𝛼)
1

𝛼) (𝑓(𝑠) − 𝑓(𝑡 + ℎ))𝑠𝛼−1

𝑡+ℎ

𝑡

𝑑𝑠 

                                                = 𝐼1 + 𝐼2 + 𝐼3. 

Note that, by Theorem 3.1(iii), for 0 < 𝑠 < 𝑡 < 𝑡 + ℎ ≤ 𝑇, 

‖𝐴𝑆𝛼 (((𝑡 + ℎ)𝛼 − 𝑠𝛼)
1

𝛼) − 𝐴𝑆𝛼 ((𝑡𝛼 − 𝑠𝛼)
1

𝛼)‖ = ‖𝐴𝑆 (
(𝑡 + ℎ)𝛼

𝛼
−

𝑠𝛼

𝛼
) − 𝐴𝑆 (

𝑡𝛼

𝛼
−

𝑠𝛼

𝛼
)‖ 

                                                                                                      = ‖
‖ ∫ 𝐷𝜏

2𝑆(𝜏)

(𝑡+ℎ)𝛼

𝛼
−

𝑠𝛼

𝛼

𝑡𝛼

𝛼
−

𝑠𝛼

𝛼

𝑑𝜏‖
‖ 
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                                                                                                      ≤ ∫ ‖𝐷𝜏
2𝑆(𝜏)‖

(𝑡+ℎ)𝛼

𝛼
−

𝑠𝛼

𝛼

𝑡𝛼

𝛼
−

𝑠𝛼

𝛼

𝑑𝜏 

                                                                                                      ≤ 𝑀2 ∫ 𝜏−2

(𝑡+ℎ)𝛼

𝛼
−

𝑠𝛼

𝛼

𝑡𝛼

𝛼
−

𝑠𝛼

𝛼

𝑑𝜏 

                                                                                                      = 𝛼𝑀2 (
1

𝑡𝛼 − 𝑠𝛼
−

1

(𝑡 + ℎ)𝛼 − 𝑠𝛼
) 

                                                                                                      = 𝛼𝑀2

(𝑡 + ℎ)𝛼 − 𝑡𝛼

(𝑡𝛼 − 𝑠𝛼)((𝑡 + ℎ)𝛼 − 𝑠𝛼)
 

                                                                                                      ≤ 𝛼𝑀2ℎ𝛼
1

(𝑡𝛼 − 𝑠𝛼)((𝑡 + ℎ)𝛼 − 𝑠𝛼)
. 

Then, by the condition (4.1), for 𝜀 ≤ 𝑠 < 𝑡 < 𝑡 + ℎ ≤ 𝑇,  

‖𝐼1‖ ≤ 𝛼𝑀2ℎ𝛼 ∫ ‖𝐴𝑆𝛼 (((𝑡 + ℎ)𝛼 − 𝑠𝛼)
1

𝛼) − 𝐴𝑆𝛼 ((𝑡𝛼 − 𝑠𝛼)
1

𝛼)‖

𝑡

0

‖𝑓(𝑠) − 𝑓(𝑡)‖𝑠𝛼−1𝑑𝑠 

                       ≤ 𝛼𝑀2𝐾ℎ𝛼 ∫
(𝑡 − 𝑠)𝜗

(𝑡𝛼 − 𝑠𝛼)((𝑡 + ℎ)𝛼 − 𝑠𝛼)
𝑠𝛼−1

𝑡

0

𝑑𝑠 

                       ≤ 𝛼𝑛𝑀2𝐾𝑇𝛼𝜗(𝑛−1)ℎ𝛼 ∫
(𝑡𝛼 − 𝑠𝛼)𝜗−1

(𝑡 + ℎ)𝛼 − 𝑠𝛼
𝑠𝛼−1

𝑡

0

𝑑𝑠 

                       = 𝑀2𝐾𝑇𝜗−𝛼𝜗ℎ𝛼 ∫
(𝑡𝛼 − 𝑠𝛼)𝜗−1

(𝑡 + ℎ)𝛼 − 𝑠𝛼

𝑡

0

𝑠𝛼−1𝑑𝑠 

                       = 𝑀2𝐾𝑇𝜗−𝛼𝜗ℎ𝛼 (∫
(𝑡𝛼 − 𝑠𝛼)𝜗−1

(𝑡 + ℎ)𝛼 − 𝑠𝛼
𝑠𝛼−1

ℎ

0

𝑑𝑠 + ∫
(𝑡𝛼 − 𝑠𝛼)𝜗−1

(𝑡 + ℎ)𝛼 − 𝑠𝛼
𝑠𝛼−1

𝑡

ℎ

𝑑𝑠) 

                       =
𝑀2𝐾𝑇𝜗−𝛼𝜗ℎ𝛼

𝛼
(∫

𝑟𝜗−1

(𝑡 + ℎ)𝛼 − 𝑡𝛼 + 𝑟

ℎ𝛼

0

𝑑𝑟 + ∫
𝑟𝜗−1

(𝑡 + ℎ)𝛼 − 𝑡𝛼 + 𝑟

𝑡𝛼

ℎ𝛼

𝑑𝑟) 

                       ≤
𝑀2𝐾𝑇𝜗−𝛼𝜗ℎ𝛼

𝛼
(

1

(𝑡 + ℎ)𝛼 − ℎ𝛼
∫ 𝑟𝜗−1

ℎ𝛼

0

𝑑𝑠 + ∫ 𝑟𝜗−2

∞

ℎ𝛼

𝑑𝑟) 

                       ≤
𝑀2𝐾𝑇𝜗−𝛼𝜗ℎ𝛼

𝛼
(

ℎ𝛼𝜗

((𝜀 + ℎ)𝛼 − ℎ𝛼)𝜗
+

ℎ𝛼(𝜗−1)

1 − 𝜗
) 

                       =
𝑀2𝐾𝑇𝜗−𝛼𝜗ℎ𝛼

𝛼
(

ℎ𝛼𝜗

𝜀𝜗
((𝜀 + ℎ)𝛼(𝑛−1) + (𝜀 + ℎ)𝛼(𝑛−2)ℎ𝛼 + ⋯ + ℎ𝛼(𝑛−1)) +

ℎ𝛼(𝜗−1)

1 − 𝜗
) 

                       ≤
𝑀2𝐾𝑇𝜗−𝛼𝜗ℎ𝛼

𝛼
(

ℎ𝛼𝜗

𝜀𝜗
(𝜀 + ℎ)1−𝛼 +

ℎ𝛼(𝜗−1)

1 − 𝜗
) 
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                       ≤
𝑀2𝐾𝑇𝜗−𝛼𝜗

𝛼
(

ℎ𝛼𝜗

𝜀𝜗
ℎ𝛼(𝜀 + ℎ)1−𝛼 +

ℎ𝛼𝜗

1 − 𝜗
) 

                       ≤
𝑀2𝐾𝑇𝜗−𝛼𝜗

𝛼
(

𝜀 + ℎ

𝜀𝜗
+

1

1 − 𝜗
) ℎ𝛼𝜗 

                       ≤
𝑀2𝐾𝑇𝜗−𝛼𝜗

𝛼
(

𝑇

𝜀𝜗
+

1

1 − 𝜗
) ℎ𝛼𝜗. 

Next, consider that, by Theorem 3.4(i) and the condition (4.1), for 0 < 𝑠 < 𝑡 < 𝑡 + ℎ < 𝑇, 

‖𝐼2‖ ≤ ‖𝐴 ∫ 𝑆𝛼 (((𝑡 + ℎ)𝛼 − 𝑠𝛼)
1

𝛼) (𝑓(𝑡) − 𝑓(𝑡 + ℎ))𝑠𝛼−1

𝑡

0

𝑑𝑠‖ 

  = ‖𝐴 ∫ 𝑆 (
(𝑡 + ℎ)𝛼

𝛼
−

𝑠𝛼

𝛼
) 𝑠𝛼−1

𝑡

0

𝑑𝑠(𝑓(𝑡) − 𝑓(𝑡 + ℎ))‖ 

                                              = ‖𝐴 ∫ 𝑆(𝑟)

(𝑡+ℎ)𝛼/𝛼

((𝑡+ℎ)𝛼−𝑡𝛼)/𝛼

𝑑𝑟(𝑓(𝑡) − 𝑓(𝑡 + ℎ))‖ 

                                              = ‖𝑆 (
(𝑡 + ℎ)𝛼

𝛼
) − 𝑆 (

(𝑡 + ℎ)𝛼

𝛼
−

𝑡𝛼

𝛼
)‖ ‖(𝑓(𝑡) − 𝑓(𝑡 + ℎ))‖ 

                                              = ‖𝑆𝛼(𝑡 + ℎ) − 𝑆𝛼(((𝑡 + ℎ)𝛼 − 𝑡𝛼)1/𝛼)‖‖(𝑓(𝑡) − 𝑓(𝑡 + ℎ))‖ 

                                              ≤ 2𝐶1ℎ𝜗 ≤ 2𝐶1ℎ𝛼𝜗. 

and 

‖𝐼3‖ ≤ ∫ ‖𝐴𝑆𝛼 (((𝑡 + ℎ)𝛼 − 𝑠𝛼)
1

𝛼) (𝑓(𝑠) − 𝑓(𝑡 + ℎ))‖ 𝑠𝛼−1

𝑡+ℎ

𝑡

𝑑𝑠 

                                             ≤ 𝐾𝑀 ∫
(𝑡 + ℎ − 𝑠)𝜗

(𝑡 + ℎ)𝛼 − 𝑠𝛼
𝑠𝛼−1

𝑡+ℎ

𝑡

𝑑𝑠 

                                             ≤ 𝑛𝐾𝑀(𝑡 + ℎ)𝛼𝜗(𝑛−1) ∫ ((𝑡 + ℎ)𝛼 − 𝑠𝛼)𝜗−1𝑠𝛼−1

𝑡+ℎ

𝑡

𝑑𝑠 

                                             ≤ 𝑛𝐾𝑀𝑇𝛼𝜗(𝑛−1) ∫ ((𝑡 + ℎ)𝛼 − 𝑟)𝜗−1

(𝑡+ℎ)𝛼

𝑡𝛼

𝑑𝑟 

                                             =
𝐾𝑀𝑇𝜗−𝛼𝜗

𝛼𝜗
((𝑡 + ℎ)𝛼 − 𝑡𝛼)𝜗 

                                             ≤
𝐾𝑀𝑇𝜗−𝛼𝜗

𝛼𝜗
ℎ𝛼𝜗.                                                                                                               ∎ 

 

The following theorem provides the regularity of the solution to the problem (1.1) under Hölder 

continuity condition on 𝑓. 
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Theorem 4.3. Let 𝐴 be a sectorial linear operator and 𝑆𝛼(𝑡) be an analytic conformable 

semigroup generated by 𝐴 with 𝛼 = 1/𝑛, 𝑛 = 1,2,3,4, …. Let 𝑓: [0, 𝑇] → 𝑋 and there exist a 

constant 𝐾 > 0 and 0 < 𝜗 < 1 such that, for 𝑠, 𝑡 ∈ [0, 𝑇],  

‖𝑓(𝑡) − 𝑓(𝑠)‖ ≤ 𝐾|𝑡 − 𝑠|𝜗. 

If 𝑢 is a solution to the problem (1.1) on [0, 𝑇] then, for every 𝛿 > 0, 𝐴𝑢 and 𝑇𝑡
𝛼𝑢 are Hölder 

continuous with exponent 𝛼𝜗 on [𝛿, 𝑇].  

Proof. By Theorem 3.9, for 0 < 𝑡 ≤ 𝑇, 

𝑢(𝑡) = 𝑆𝛼(𝑡)𝑢0 + ∫ 𝑆𝛼 ((𝑡𝛼 − 𝜏𝛼)
1

𝛼) 𝑓(𝜏)𝜏𝛼−1

𝑡

0

𝑑𝜏 = 𝑆𝛼(𝑡)𝑢0 + 𝑣(𝑡). 

We first show that 𝐴𝑆𝛼(𝑡)𝑢0 is Hölder continuous with exponent 𝛼 on [𝛿, 𝑇] for every 𝛿 > 0. 

Consider that, for 𝑡, ℎ > 0, 

‖𝐴𝑆𝛼(𝑡 + ℎ) − 𝐴𝑆𝛼(𝑡)‖ = ‖𝐴𝑆 (
(𝑡 + ℎ)𝛼

𝛼
) − 𝐴𝑆 (

𝑡𝛼

𝛼
)‖ 

                                                                                          = ‖
‖ ∫ 𝐷𝜏

2𝑆(𝜏)

(𝑡+ℎ)𝛼

𝛼

𝑡𝛼

𝛼

𝑑𝜏‖
‖ 

                                                                                          ≤ ∫ ‖𝐷𝜏
2𝑆(𝜏)‖

(𝑡+ℎ)𝛼

𝛼

𝑡𝛼

𝛼

𝑑𝜏 

                                                                                          ≤ 𝑀2 ∫ 𝜏−2

(𝑡+ℎ)𝛼

𝛼

𝑡𝛼

𝛼

𝑑𝜏 

                                                                                          = 𝛼𝑀2 (
1

𝑡𝛼
−

1

(𝑡 + ℎ)𝛼
) 

                                                                                          = 𝛼𝑀2

(𝑡 + ℎ)𝛼 − 𝑡𝛼

𝑡𝛼(𝑡 + ℎ)𝛼
 

                                                                                          ≤ 𝛼𝑀2ℎ𝛼𝑡−𝛼(𝑡 + ℎ)−𝛼. 

We then show that 𝐴𝑣(𝑡) is Hölder continuous with exponent 𝛼𝜗 on [𝛿, 𝑇]. In order to do this, 

we decompose 𝑣 as 

𝑣(𝑡) = ∫ 𝑆𝛼 ((𝑡𝛼 − 𝑠𝛼)
1

𝛼) (𝑓(𝑠) − 𝑓(𝑡))𝑠𝛼−1𝑑𝑠

𝑡

0

+ ∫ 𝑆𝛼 ((𝑡𝛼 − 𝑠𝛼)
1

𝛼) 𝑓(𝑡)𝑠𝛼−1𝑑𝑠

𝑡

0

= 𝑣1(𝑡) + 𝑣2(𝑡). 

From Lemma 4.2, we proved that 𝐴𝑣1(𝑡) is Hölder continuous with exponent 𝛼𝜗 on [𝛿, 𝑇] for 

every 𝛿 > 0. We next show 𝐴𝑣2(𝑡) is Hölder continuous with exponent 𝛼𝜗 on [𝛿, 𝑇]. Note that, 

by Theorem 3.5(ii), for 𝑡 ≥ 0, 
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𝐴𝑣2(𝑡) = 𝐴 ∫ 𝑆𝛼 ((𝑡𝛼 − 𝑠𝛼)
1

𝛼) 𝑓(𝑡)𝑠𝛼−1𝑑𝑠

𝑡

0

= 𝐴 ∫ 𝑆𝛼(𝑟)𝑟𝛼−1𝑓(𝑡)

𝑡

0

𝑑𝑟 = 𝑆𝛼(𝑡)𝑓(𝑡) − 𝑓(𝑡). 

We now consider that, by Theorem 3.4(i), Theorem 3.5(ii), and the condition (4.1), for 𝑡 ≥ 𝛿 and 

ℎ > 0, 

   ‖𝑆𝛼(𝑡 + ℎ)𝑓(𝑡 + ℎ) − 𝑆𝛼(𝑡)𝑓(𝑡)‖ 

                                         = ‖𝑆𝛼(𝑡 + ℎ)𝑓(𝑡 + ℎ) − 𝑆𝛼(𝑡 + ℎ)𝑓(𝑡) + 𝑆𝛼(𝑡 + ℎ)𝑓(𝑡) − 𝑆𝛼(𝑡)𝑓(𝑡)‖ 

                                         ≤ ‖𝑆𝛼(𝑡 + ℎ)𝑓(𝑡 + ℎ) − 𝑆𝛼(𝑡 + ℎ)𝑓(𝑡)‖ + ‖𝑆𝛼(𝑡 + ℎ)𝑓(𝑡) − 𝑆𝛼(𝑡)𝑓(𝑡)‖ 

                                         ≤ ‖𝑆𝛼(𝑡 + ℎ)‖‖𝑓(𝑡 + ℎ) − 𝑓(𝑡)‖ + ‖𝑆𝛼(𝑡 + ℎ) − 𝑆𝛼(𝑡)‖‖𝑓(𝑡)‖ 

                                         ≤ 𝐶1𝐾ℎ𝜗 + ∫ ‖𝜏𝛼−1𝐴𝑆𝛼(𝜏)𝑥‖

𝑡+ℎ

𝑡

𝑑𝜏‖𝑓(𝑡)‖ 

                                         ≤ 𝐶1𝐾ℎ𝜗 + ∫ 𝜏−1

𝑡+ℎ

𝑡

𝑑𝜏‖𝑓‖∞ 

                                         ≤ 𝐶1𝐾ℎ𝜗 +
𝑀ℎ

𝛿
‖𝑓‖∞ 

                                         ≤ 𝐶′ℎ𝛼𝜗 

with 𝐶′ = max{𝐶1𝐾, 𝑀‖𝑓‖∞/𝛿}. It means that 𝐴𝑣2(𝑡) is Hölder continuous with exponent 𝛼𝜗 on 

[𝛿, 𝑇]. Thus, 𝐴𝑣(𝑡) is Hölder continuous with exponent 𝛼𝜗 on [𝛿, 𝑇]. Since 𝐴𝑆𝛼(𝑡)𝑢0 is Hölder 

continuous with exponent 𝛼 and 𝐴𝑣(𝑡) is Hölder continuous with exponent 𝛼𝜗 on [𝛿, 𝑇], 𝐴𝑢(𝑡) 

is Hölder continuous with exponent 𝛼𝜗 on [𝛿, 𝑇]. Consequently, since 𝑢 is the solution to the 

problem (1.1) and 𝑓 is Hölder continuous with exponent 𝜗 on [0, 𝑇], 𝑇𝑡
𝛼𝑢 is Hölder continuous 

with exponent 𝛼𝜗 on [𝛿, 𝑇]. This completes the proof.                                                                         ∎ 

 

5. Examples 

Consider the nonlinear conformable diffusion equation 

                                
𝑇𝑡

𝛼𝑢(𝑥, 𝑡) = ∆𝑢(𝑥, 𝑡) + 𝑘 ∫(𝑡 − 𝜏)−𝛾𝑢(𝑥, 𝜏)

𝑡

0

𝑑𝜏,  (𝑥, 𝑡) ∈ Ω × (0, 𝑇)

𝑢(𝑥, 0) = 𝑢0(𝑥) in Ω                                                                             

                         (5.1) 

where 0 < 𝛾 < 1, Ω ⊂ ℝ𝑛 is a bounded domain with 𝐶2 boundary, and 𝑘 is a positive constant. 

We next investigate the existence and uniqueness of a solution to the problem (5.1) with 

Neumann boundary condition 

                                                                              
𝜕𝑢

𝜕𝜈
= 0 on 𝜕Ω × (0, 𝑇).                                                             (5.2) 

The abstract formulation of the problem (5.1) with Neumann boundary condition (5.2) is 

𝑇𝑡
𝛼𝑢 = 𝐴𝑢 + 𝑓(𝑡, 𝑢),   0 < 𝑡 < 𝑇 

                                                                 𝑢(0) = 𝑢0 in Ω 
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in 𝑋 = {𝑢: 𝑢 ∈ 𝐿2(Ω)} where 0 < 𝛼 < 1, 𝐴 = ∆, and 

𝑓(𝑡, 𝑢) = 𝑘 ∫(𝑡 − 𝜏)−𝛾𝑢(𝑥, 𝜏)

𝑡

0

𝑑𝜏 

with 0 < 𝛾 < 1. Note that 𝑢 ≥ 0 in Ω × (0, 𝑇). We next set  

𝐷(𝐴) = {𝑢 ∈ 𝐻2(Ω):
𝜕𝑢

𝜕𝜈
= 0 on 𝜕Ω}. 

The operator 𝐴 is dissipative and self adjoint. It means that 𝐴 is sectorial in 𝑋. 

Next, observe that for 0 < 𝑠 < 𝑡 < 𝑇 and 𝑢 ∈ 𝑌 = 𝐵𝐶((0, 𝑇); 𝑋), 

𝑓(𝑡, 𝑢) − 𝑓(𝑠, 𝑢) = 𝑘 ∫(𝑡 − 𝜏)−𝛾𝑢(∙, 𝜏)

𝑡

0

𝑑𝜏 − 𝑘 ∫(𝑠 − 𝜏)−𝛾𝑢(∙, 𝜏)

𝑠

0

𝑑𝜏 

                                                                 ≤ 𝑘 ∫(𝑡 − 𝜏)−𝛾𝑢(∙, 𝜏)

𝑡

0

𝑑𝜏 − 𝑘 ∫(𝑡 − 𝜏)−𝛾𝑢(∙, 𝜏)

𝑠

0

𝑑𝜏 

                                                                 = 𝑘 ∫(𝑡 − 𝜏)−𝛾𝑢(∙, 𝜏)

𝑡

𝑠

𝑑𝜏 

                                                                 ≤ 𝑘‖𝑢‖𝑌 ∫(𝑡 − 𝜏)−𝛾

𝑡

𝑠

𝑑𝜏 

                                                                 = 𝑘‖𝑢‖𝑌 ∫ 𝜏−𝛾

𝑡−𝑠

0

𝑑𝜏 

                                                                 =
𝑘‖𝑢‖𝑌

1 − 𝛾
(𝑡 − 𝑠)1−𝛾 . 

It follows that 𝑓 is Hölder continuous with exponent 1 − 𝛾. According to Theorem 4.3, if 𝑢 solve 

the problem (5.1) then 𝑢 is a classical solution.  

 

6. Conclusion 

By employing the analytic conformal semigroup generated by the sectorial linear 

operator 𝐴 and imposing the condition on 𝑓 i.e. the Hölder continuity of 𝑓 as our regularity 

condition, we obtain stronger results regarding the regularity of solutions to the Cauchy 

problem (1.1) than those in ([16],[17]). To obtain our regularity results under the Hölder 

continuity of 𝑓, we can not use 𝐶0 𝛼-semigroup as used in ([16],[17]) to obtain their regularity 

results. For further work, a global solution to the Cauchy problem (1.1) under the regularity 

conditions is an interesting topic to study. 
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