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Abstract. This paper investigates several aspects of controlled K-g-fusion frames within the setting of Hilbert C∗-

modules. We provide detailed characterizations of these frames, highlighting their structural properties and demon-

strating how they adapt under transformations by various operators. A significant focus is placed on the relationship

between the quotient operator and the controlled K-g-fusion frames, exploring their algebraic properties extensively.

The results enrich the theoretical understanding of fusion frames.

1. Introduction

The theory of frames for Hilbert spaces, initially introduced in 1952 by Duffin and Schaeffer [3],

was originally developed to address challenges in nonharmonic Fourier series. This theory was

revitalized in 1986 through the work of Daubechies, Grossman, and Meyer [2], which led to its

widespread application in signal processing, data compression, and more recently, quantum com-

munication. Since then, frame theory has gained significant popularity and has been extended to a

wide variety of mathematical and applied fields, including engineering, medicine, and functional

analysis.

In the decades that followed, various generalizations of frame theory emerged, proposed by

numerous authors. Among the most notable are the g-frame [16], fusion frame [6], g-fusion

frame [10], K-g-frame [12], and K-g-fusion frame [17]. These generalizations broadened the scope

of frame theory, allowing for the handling of more complex and structured settings, particularly in

the context of Hilbert C∗-modules [1], which serve as a natural setting for operator theory. For more

detailed information on biframes theory, readers are recommended to consult: [4,5,7–9,14,19–28].
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Recently, the study of controlled frames has been gaining traction. The notion of controlled

frames has seen the introduction of several new types, such as controlled K-frames [13], controlled

g-frames [16], controlled fusion frames [6], controlled g-fusion frames [10], and controlled K-g-

fusion frames [17]. These controlled versions of frames introduce additional stability conditions,

which are essential for applications where robustness to perturbations is crucial.

This paper focuses on the progression from K-g-fusion frames to controlled K-g-fusion frames.

Specifically, we introduce a novel form of controlled g-fusion frames derived from existing con-

trolled K-g-fusion frames by applying an invertible bounded linear operator. We also establish a

necessary and sufficient condition for a controlled g-fusion Bessel sequence to qualify as a con-

trolled K-g-fusion frame. Furthermore, we explore the stability of controlled g-fusion frames and

their duals, presenting new results that deepen our understanding of the behavior of these frames

in the presence of various operators.

This paper is organized as follows: In the first section, we present the preliminaries, introducing

the necessary definitions and results for the remainder of the paper. The following section provides

two examples that help illustrate the concepts introduced earlier, aiding in the understanding of

the results discussed in subsequent sections. Finally, the last section, which forms the core of

the paper, presents the fundamental results and focuses on the main theorems. Specifically, we

investigate the core results related to controlled (P, Q) g-frames and their transformation into

controlled (P, Q) K-fusion frames. We discuss the algebraic, analytical, and order conditions on K
that are required for a Bessel controlled (P, Q) g-frame to qualify as a controlled (P, Q) K-fusion

frame. These conditions establish a framework for understanding how certain sequences can

be classified within the context of fusion frames. Additionally, we examine the commutation

conditions for the synthesis operators P, Q, and other relevant operators, as these are essential for

deriving further results and insights. Finally, the paper addresses stability results, exploring how

these frames behave under various transformations and perturbations.

Throughout this paper, let A be a unital C∗-algebra and J a countable index set. We consider

H and K as countably generated Hilbert A-modules, with
{
H j

}
j∈J

representing a sequence of

submodules within K . For each j in J, End∗
A

(
H ,H j

)
denotes the set of all adjointable A-linear

maps fromH toH j, and the collection of all adjointableA-linear maps fromH to itself is denoted by

End∗
A
(H). Additionally, GL+(H) denotes the set of all positive bounded linear invertible operators

on H with a bounded inverse. For more detailed information and fundamental results on C∗-
algebras and Hilbert C∗-modules, the reader is referred to the work of Manuilov and Troitsky [11],

as well as Arambasic’s studies [1].

2. Preliminaries

In this section, we revisit some essential definitions and theorems. We begin with Hilbert C∗-

modules and their operators. Then, we recall the definition of (P, Q)-controlled K-g-fusion frames

and some special cases.
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Theorem 2.1. [11, Proposition 2.13] Consider an operator U : H → H . The following conditions are
equivalent:

(1) U is a positive operator within End∗
A
(H).

(2) For every ξ ∈ H , the inequality 〈Uξ, ξ〉 ≥ 0 holds inA.

Note that from the previous theorem one can conclude that every positive operator T ∈
End∗

A
(H), for an Hilbert C∗-module H , has a square root, this means that there is a unique

positive operator S ∈ End∗
A
(H) such that S2 = T. We will note S = T

1
2 .

The following result is a Douglas’s theorem version relative to C∗-Hilbert modules.

Theorem 2.2. [30]
ConsiderH an HilbertA-module over a C∗-algebraA. Suppose T, S ∈ End∗

A
(H) and that the range of

S, denoted Rang(S), is closed. Then, the following conditions are equivalent:

(1) Rang(T) ⊆ Rang(S).
(2) There exists a non-negative λ ≥ 0 such that TT∗ ≤ λ2SS∗.
(3) There exists an operator Q ∈ End∗

A
(H) for which T = SQ.

Lemma 2.1. [12, Lemma 2.1] Let
(
W j

)
j∈J

denote a sequence of orthogonally complemented closed submod-

ules of H . Suppose U ∈ End∗
A
(H) is invertible and satisfies U∗UW j ⊆ W j for each j ∈ J. Under these

conditions, the sequence
(
UW j

)
j∈J

also forms a sequence of orthogonally complemented closed submodules,
and the relation πW jU

∗ = πW jU
∗πUW j holds for each j ∈ J.

The next theorem characterize the operators on Hilbert C∗-modules that possesses a Moore-

Penrose inverse

Theorem 2.3. [29, Theorem 2.2] Let H and K be two Hilbert A-modules, and let T ∈ End∗
A
(H ,K).

Then the following statements are equivalent:

(1) The range of T is closed.
(2) The Moore-Penrose inverse T† of T exists; this means that T† is an element of End∗

A
(K ,H) which

satisfies:

TT†T = T, T†TT† = T†, (TT†)∗ = TT† and (T†T)∗ = T†T.

Now, we present some fundamental definitions and key results concerning frames in Hilbert

C∗-modules, which will be essential for the development of the paper.

Definition 2.1. [18, Definition 4.2] Assume P, Q ∈ GL+(H) and K ∈ End∗
A
(H). Let {W j} j∈J represent

a collection of orthogonally complemented closed submodules of H , and {H j} j∈J denote a sequence of
submodules of a countably generated Hilbert A-module. Additionally, let {v j} j∈J be a sequence of weights
inA; this means that for each v j, j ∈ J, is a positive invertible element from the center of the algebraA. We
also assume that Γ j ∈ End∗

A
(H ,H j) for every j ∈ J.
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The collection ΓPQ = {W j, Γ j, v j} j∈J is said to form a (P, Q)-controlled K-g-fusion frame for H if it
satisfies the following condition: there exist real constants 0 < C ≤ D < ∞ such that for all ξ ∈ H ,

C〈K∗ξ, K∗ξ〉 ≤
∑
j∈J

v2
j 〈Γ jπW jPξ, Γ jπW jQξ〉 ≤ D〈ξ, ξ〉. (2.1)

Here, the constants C and D are called the lower and upper bounds of the (P, Q)-controlled K-g-fusion
frame, respectively. If the left inequality holds as an equality for all ξ, then ΓPQ is referred to as a tight
(P, Q)-controlled K-g-fusion frame forH .

Some special cases of the previous definition (Definition 2.1) correspond to well-known classical

ones; see [12, 18]. Specifically:

• If P = Q = IH , then every (P, Q)-controlled K-g-fusion frame is simply called a K-g-fusion

frame.

• If K = IH , then every (P, Q)-controlled K-g-fusion frame is referred to as a (P, Q)-controlled

g-fusion frame.

• If Γ j = P = Q = K = IH for all j ∈ J in the previous definition, then Γ acts as a fusion frame

forH .

• If only the upper bound inequality holds in (2.1), then ΓPQ is described as a (P, Q)-controlled

g-fusion Bessel sequence forH .

Suppose ΓPQ is a (P, Q)-controlled g-fusion Bessel sequence for H . The adjointable bounded

linear operator T(P,Q) : `2({H j} j∈J)→H defined by

T(P,Q)

(
{ξ j} j∈J

)
=

∑
j∈J

v j(PQ)
1
2πW j Γ

∗

jξ j, ∀{ξ j} j∈J ∈ I2({H j} j∈J)

is known as the synthesis operator for ΓPQ. The adjoint of T(P,Q) is the operator T∗
(P,Q)

: H →

`2({H j} j∈J) is given by

T∗
(P,Q)

(g) = {v jΓ jπW j(QP)
1
2 g} j∈J

and is referred to as the analysis operator for ΓPQ. When P and Q commute with each other,

and with the operator πW j Γ
∗

jΓ jπW j for each j ∈ J, the (P, Q)-controlled g-fusion frame operator

S(P,Q) : H →H is defined as

S(P,Q)(ξ) = T(P,Q)T
∗

(P,Q)
(ξ) =

∑
j∈J

v2
j QπW j Γ

∗

jΓ jπW jPξ, ∀ξ ∈ H

and we have

〈S(P,Q)(ξ), ξ〉 =
∑
j∈J

v2
j 〈Γ jπW jPξ, Γ jπW jQξ〉, ∀ξ ∈ H .

Henceforth, it is assumed that P and Q commute with each other and with the operator

πW j Γ
∗

jΓ jπW j for each j ∈ J.

Lemma 2.2. [18, Lemma 3.4] Suppose ΓPQ constitutes a (P, Q)-controlled g-fusion frame forH . It follows
that the (P, Q)-controlled g-fusion frame operator S(P,Q) is positive, self-adjoint, and invertible.
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Theorem 2.4. [12, Theorem 2.5] Assume T ∈ End∗
A
(H) is an invertible operator on H , and let ΓP,Q ={

W j, ξ j, v j

}
j∈J

denote a (P, Q)-controlled K-g-fusion frame forH , with K being an operator in End∗
A
(H).

If T∗TW j ⊆W j and both P and Q commute with T, then the transformed set ΛP,Q =
{
TW j, ξ jπW jT

∗, v j

}
j∈J

forms a (P, Q)-controlled TKT∗-g-fusion frame forH .

Theorem 2.5. [12, Theorem 2.6] Consider T as an invertible operator from End∗
A
(H) on H , and let

ΛP,Q =
{
TW j, ξ jπW jT

∗, v j

}
j∈J

represent a (P, Q)-controlled K-g-fusion frame for H , where K is also an

operator from End∗
A
(H). If T∗TW j ⊆W j, for all j ∈ J, and both control operators P and Q are commutative

with T, then the set ΓP,Q =
{
W j, ξ j, v j

}
j∈J

qualifies as a (P, Q)-controlled T−1KT-g-fusion frame forH .

Theorem 2.6. [12, Theorem 2.7] Assume K ∈ EndA∗(H) is an invertible operator on H , and let
Γ =

{
W j, Γ j, v j

}
j∈J

define a g-fusion frame for H with bounds C and D. Let SΓ denote the associated

g-fusion frame operator. If U∗UW j ⊆ W j for all j ∈ J, where U = KS−1
Γ , then the transformed set{

KS−1
Γ W j, Λ jπW jS

−1
Γ K∗, v j

}
jinJ

forms a K-g-fusion frame forH . The corresponding g-fusion frame operator

for this frame is KS−1
Γ K∗.

3. Examples

In this section, we will present two types of examples of frames on Hilbert C∗-modules. The first

one deals with frames on a Hilbert C∗-module over a C∗-algebra of finite dimension (A = C2). The

second example presents frames on Hilbert C∗-modules over a commutative infinite dimensional

C∗-algebra. Other examples of frames on Hilbert C∗-modules over non-commutative C∗-algebras

will be provided as counterexamples in the following section.

Example 3.1. Let A be the C∗-algebra C2, and let H = C6 be the Hilbert C∗-module over A, equipped
with the module operations defined as follows: for (x, y) ∈ A2 and (ak)1≤k≤n ∈ H , the action is given by

(x, y)(ak)1≤k≤n = (bk)1≤k≤n,

where b2k−1 = xa2k−1 and b2k = ya2k for 1 ≤ k ≤ n. The C∗-inner product onH is defined by

〈a, b〉 =

 n∑
k=1

a2kb2k,
n∑

k=1

a2k−1b2k−1

 = n∑
k=1

(
a2kb2k, a2k−1b2k−1

)
∈ A.

Denote
W j =

{
(ak)1≤k≤n : a2 j−1 = a2 j = 0

}
and H j = A

for i = 1, 2, 3. Those spaces are seeing as Hilbert C∗-modules over A. The operators Λ j : W j → H j,
j = 1, 2, 3 are defined by

Λ1(ak)1≤k≤n = 11(a5, a6), Λ2(ak)1≤k≤n = 3(a1, a2) and Λ3(ak)1≤k≤n = 7(a3, a4)

for all (ak)1≤k≤n ∈ H . One can check that

〈Λ1(ak)1≤k≤n, (x, y)〉 = 〈11(a5, a6), (x, y)〉
= 11(a5x, a6y)
= 〈(ak)1≤k≤n, 11(0, 0, 0, 0, x, y)1≤k≤n〉.
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Thus Λ∗1 : H1 →H is defined by Λ∗1(x, y) = 11(0, 0, 0, 0, x, y) for all (x, y) ∈ H1. We conclude that

Λ∗1Λ1(ak)1≤k≤n = 112(0, 0, 0, 0, a5, a6).

Similarly we obtain

Λ∗2(x, y) = 3(x, y, 0, 0, 0, 0) and Λ∗3(x, y) = 7(0, 0, x, y, 0, 0)

for all (x, y) ∈ H2 = H3. Therefore

Λ∗2Λ2(ak)1≤k≤n = 32(a1, a2, 0, 0, 0, 0) and Λ∗3Λ3(ak)1≤k≤n = 72(0, 0, a3, a4, 0, 0).

Observe that Λ jπW j = Λ j for j = 1, 2, 3.
Let P, Q the operators defined onH by

P(ak)1≤k≤n = (kak)1≤k≤n and Q(ak)1≤k≤n = (
1
k

ak)1≤k≤n.

In fact P, Q ∈ GB+(H) and ΓPQ serves as a (P, Q)-controlled g-fusion frame for H if and only if
Rang(K) ⊆ Rang(TC).

〈TCa, a〉 =
3∑

j=1
〈Λ∗jΛ jPa, Λ jQa〉

=
3∑

j=1
〈Λ jPa, Λ jQa〉

= 112(a5a5, a6a6) + 32(a1a1, a2a2) + 72(a3a3, a4a4)

Thus 32
〈a, a〉 ≤ 〈TCa, a〉 ≤ 112

〈a, a〉. Now let K be the operator defined onH by

K(a1, a2, a3, a4, a5, a6) =
3
11

(a3, a6, a1, a4, a3, a2).

We can see that ΓPQ serves as a (P, Q)-controlled tight K-g-fusion frame forH .

Example 3.2. Let A = C([−1, 1], C) be the C∗-algebra of all scalar continuous functions on the compact
space [−1, 1]. Denote by `n, for an integer n ≥ 5, the classical Hilbert space Cn with its canonical basis
(e1, e2, e3, e4, e5, ..., en). LetH = C([−1, 1], `n) be the space of continuous functions from [−1, 1] into `n. It
is known that (H , 〈, 〉) is a HilbertA-module with 〈 f , g〉(x) = 〈 f (x), g(x)〉, where the last notation refers
to the usual inner product of `n.

We need now to define the following sub-HilbertA-modules ofH :

W1 = C([−1, 1], span(e1, e2, e3)), W2 = C([−1, 1], span(e2, e3, e4)),

W3 = C([−1, 1], span(e3, e4, e5)), W4 = C([−1, 1], span(e1, e4, e5)),

H1 = C([−1, 1], span(e4, e5)), H2 = C([−1, 1], span(e1, e5)),

H3 = C([−1, 1], span(e1, e2)), H4 = C([−1, 1], span(e2, e3)).

Next, we define the maps Λ j : H →H j as follows:

Λ j( f ) = 〈 f , Eσ j(1)〉Eσ j+2(1) + 〈 f , Eσ j+1(1)〉Eσ j+3(1),
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where Ek : [−1, 1] → H is the constant function x 7→ ek, k = 1, ..., n, with σ being the cycle (1, 2, 3, 4, 5).
Therefore the adjoint of the operator Λ j is given by:

Λ∗j : H j → H; Λ∗j(g) = 〈g, E j+3〉E j+1 + 〈g, E j+4〉E j+2.

Thus, the positive Λ∗jΛ j is defined onH by:

Λ∗jΛ j( f ) = 〈 f , E j+1〉E j+1 + 〈 f , E j+2〉E j+2.

This can be written as:

Λ∗jΛ j = πspan(E j+1,E j+2).

Now, for a given positive invertible commuting operators P, Q ∈ End∗
A
(H), we denote SΛP,Q the associated

operator frame to ΛP,Q = {W j, Λ j, v j} j∈J, where J = {1, 2, 3, 4} and v1, v2, v3, v4 are positive real numbers.
Now let us compute the following sum:

〈SΛP,Q f , f 〉 =
4∑

j=1
v2

j 〈Λ jπW jP f , Λ jπW jQ f 〉

=
4∑

j=1
v2

j 〈QπW j Λ
∗

jΛ jπW jP f , f 〉

=
4∑

j=1
v2

j 〈C
′πspan(E j+1,E j+2)C f , f 〉.

=
4∑

j=1
v2

j 〈πspan(E j+1,E j+2)C f ,πspan(E j+1,E j+2)C
′ f 〉.

=
4∑

j=1
v2

j

(
〈C f , E j+1〉〈E j+1, C′ f 〉+ 〈P f , E j+2〉〈E j+2, Q f 〉

)
.

Now, let P and Q be defined onH as:

P f (x) = ex f (x) and Q f (x) = (x + 2)2 f (x),

for all f ∈ H and x ∈ [−1, 1]. Substitute these expressions into the previous sum we obtain:

〈Θ f , f 〉(x) =
4∑

j=1

v2
j

(
〈ex f (x), E j+1〉〈E j+1, (x + 2)2 f (x)〉+ 〈ex f (x), E j+2〉〈E j+2, (x + 2)2 f (x)〉

)
.

Using the notations f j = 〈 f , E j〉 for every f ∈ H and 1 ≤ j ≤ n. This simplifies the above expression to:

〈SΛP,Q f , f 〉(x) = ex(2 + x)2
4∑

j=1

v2
j

(
| fσ j(1)(x)|

2 + | fσ j+1(1)(x)|
2
)

.

for all f ∈ H and x ∈ [−1, 1]. Finally, the expression can be written as:

〈SΛP,Q f , f 〉(x) = ex(2 + x)2(v2
4 + v2

5)| f1(x)|
2 + ex(2 + x)2(v2

5 + v2
1)| f2(x)|

2

+ ex(2 + x)2(v2
1 + v2

2)| f3(x)|
2 + ex(2 + x)2(v2

2 + v2
3)| f4(x)|

2

+ ex(2 + x)2(v2
3 + v2

4)| f5(x)|
2
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for all f ∈ H and x ∈ [−1, 1]. This expression tells us that ΛP,Q is a (P, Q)-controlled g-fusion Bessel
sequence forH with:

〈SΛP,Q f , f 〉 ≤ 9e

 5∑
j=1

v2
j

 〈 f , f 〉.

Furthermore we have:

(1) If n = 5, then ΛP,Q =
{
W j, Λ j, v j

}
j∈J

is a (P, Q)-controlled g-fusion frame for H with lower and

upper bounds A and B given by 0 < A = e−1 min j(v2
j ) ≤ B = 9e

(∑4
j=1 v2

j

)
< ∞, more precisely:

e−1 min
1≤ j≤4

(v2
j )〈 f , f 〉 ≤ 〈SΛP,Q f , f 〉 ≤ 9e

 4∑
j=1

v2
j

 〈 f , f 〉.

(2) If n ≥ 6, for K = πsapn(E1,...,E5), K∗ = K and we have ΛP,Q =
{
W j, Λ j, v j

}
j∈J

is not a (P, Q)-

controlled g-fusion frame. But it is a (P, Q)-controlled K-g-fusion frame for H with lower and

upper bounds A and B given by 0 < A = e−1 min j(v2
j ) ≤ B = 9e

(∑4
j=1 v2

j

)
< ∞, more precisely:

e−1 min
1≤ j≤4

(v2
j )〈K

∗ f , K∗ f 〉 ≤ 〈SΛP,Q f , f 〉 ≤ 4e

 5∑
j=1

v2
j

 〈 f , f 〉.

(3) If Q = P and (P f )(x) = f (−x), x ∈ [−1, 1], then the following properties hold: P2 = P,
P < End∗

A
(H) and P is an isometry on the normed Banach space (H , ‖ · ‖), where ‖ f ‖ :=

maxx∈[−1,1] ‖ f (x)‖`n .
In this case, ΛP,Q =

{
H , IH , 1

}
is not a (P, Q)-controlled Bessel sequence for H . To see this,

assume the contrary and let fk(x) = ekxe1, for x ∈ [−1, 1].
Then, there exists a real scalar D > 0 such that the following inequality holds:

e−2kx = 〈(P fk)(x), (Q fk)(x)〉 = 〈P fk, Q fk〉(x)
≤ D〈 fk, fk〉(x)
≤ D〈 fk(x), fk(x)〉 = De2kx.

This inequality holds for all x ∈ [−1, 1] and k ∈ N. However, this leads to a contradiction.
Specifically, for x = −1, we obtain e4k

≤ D for all integers k. Therefore, the assumption that ΛP,Q

is a (P, Q)-controlled Bessel sequence must be false.

4. Main results

Here, we present our investigation on the (P, Q)-controlled K-g-fusion frame for the Hilbert

C∗-module H . We begin by discussing some algebraic, analytic, and order conditions that allow

us to view a (P, Q)-controlled g-fusion Bessel sequence for H as a (P, Q)-controlled K-g-fusion

frame for H . Additionally, we will discuss some perturbation results related to frames. We will

also provide counterexamples that show that certain assumptions, which may seem restrictive in

our results, are actually necessary.
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Theorem 4.1. Consider K ∈ End∗
A
(H), and let ΓPQ = {W j, Γ j, v j} j∈J be a (P, Q)-controlled g-fusion Bessel

sequence for H , with the synthesis operator TC associated with ΓPQ. Assuming that the range Rang(TC)

is closed, then the following propositions hold:

(1) ΓPQ serves as a (P, Q)-controlled K-g-fusion frame forH if and only if Rang(K) ⊆ Rang(TC).
(2) The equality Rang(K) = Rang(TC) holds if and only if there are constants 0 < A ≤ B < ∞ such

that:

A〈K∗ξ, K∗ξ〉 ≤
∑
j∈J

v2
j 〈Γ jπW jPξ, Γ jπW jQξ〉 ≤ B〈K∗ξ, K∗ξ〉, ∀ξ ∈ H

(3) ΓPQ is a (P, Q)-controlled tight K-g-fusion frame forH , then Rang(K) = Rang(TC).

Proof. (1) Assume ΓPQ qualifies as a (P, Q)-controlled K-g-fusion frame forH . Consequently,

for any ξ ∈ H , the following inequality holds:

A〈K∗ξ, K∗ξ〉 ≤
∑
j∈J

v2
j 〈Γ jπW jQξ, Γ jπW jPξ〉

= 〈(v jΓ jπW jQξ) j∈J, (v jΓ jπW jPξ) j∈J〉

= 〈T∗Cξ, T∗Cξ〉

This implies:

〈AKK∗ξ, ξ〉 ≤ 〈TCT∗Cξ, ξ〉

for all ξ ∈ H . Thus:

AKK∗ ≤ TCT∗C

Therefore, according to Theorem 2.2 and since the rang of TC is closed, we have the suitable

inequality Rang(K) ⊆ Rang(TC).

(2) If it is given that Rang(K) = Rang(TC), per Theorem 2.2, constants A, B > 0 exist such that:

AKK∗ ≤ TCT∗C ≤ BKK∗

This implies, for every ξ ∈ H :

〈AKK∗ξ, ξ〉 ≤ 〈TCT∗Cξ, ξ〉 ≤ 〈BKK∗ξ, ξ〉

Then

A〈KK∗ξ, ξ〉 ≤ 〈TCT∗Cξ, ξ〉 ≤ B〈KK∗ξ, ξ〉

Consequently:

A〈K∗ξ, K∗ξ〉 ≤
∑
j∈J

v2
j 〈Γ jπW jQξ, Γ jπW jPξ〉 ≤ B〈K∗ξ, K∗ξ〉

Assuming the existence of constants A, B > 0 satisfying the above inequalities for every

ξ ∈ H , then:

AKK∗ ≤ TCT∗C ≤ BKK∗

This, by Theorem 2.2, affirms that Rang(TC) = Rang(K).
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(3) Assume that ΓPQ qualifies as a (P, Q)-controlled tight K-g-fusion frame for H . Conse-

quently, for any ξ ∈ H , the following equalities hold:

A〈K∗ξ, K∗ξ〉 =
∑
j∈J

v2
j 〈Γ jπW jQξ, Γ jπW jPξ〉

= 〈(v jΓ jπW jQξ) j∈J, (v jΓ jπW jPξ) j∈J〉

= 〈T∗Cξ, T∗Cξ〉

This implies:

〈AKK∗ξ, ξ〉 = 〈TCT∗Cξ, ξ〉

Thus:

AKK∗ = TCT∗C

Therefore, according to Theorem 2.2, the ranges Rang(TC) and Rang(K) are equal.

�

The following example, quoted from [15, Example 3.1], illustrates that the closeness of the range

of TC is necessary in Theorem 4.1, even if Rang(TC) is orthogonally complemented inH .

Example 4.1. Let H1 = A be the C∗-algebra of all bounded linear operators on the Hilbert space `2, and
let H denote the ideal of compact operators on `2, which we also denote by A. Then both H and H1 are
Hilbert C∗-modules overA, equipped with the inner product 〈U, V〉 := UV∗.

Let Λ1 : H → H1 be the right multiplication operator, defined by Λ1(ξ) = Lξ, where L is the compact
positive operator on `2 defined by Len = 1

n en for all n ∈N.
Now, denote W1 = H , P = Q = IH , and v1 = 1. Let ΓPQ = {W1, Γ1, v1} be defined as a (P, Q)-

controlled K-g-fusion frame forH , where K : H →H is the operator defined by Kξ = Lξ.
It can be verified that the synthesis operator TC : H1 → H is given by TCξ = Lξ. Therefore,

by [15, Example 3.1], the adjoint operator T∗C : H → H1 is given by T∗Cξ = Lξ, and Rang(TC) is
complemented in H , as the two spaces are equal. Hence, we obtain the equality KK∗ = TCT∗C. This
shows that ΓPQ is a (P, Q)-controlled tight K-g-fusion frame for H . On the other hand, from the proof
of [15, Corollary 3.2], we deduce that the inclusion Rang(K) ⊆ Rang(TC) does not hold. Therefore,
assertions (1) and (3) of Theorem 4.1 do not remain valid if the range of TC is not closed, even if its closure
is orthogonally complemented.

Theorem 4.2. Let K ∈ End∗
A
(H). Under this assumption the following statements hold:

(i) Any (P, Q)-controlled g-fusion frame is also a (P, Q)-controlled K-g-fusion frame.
(ii) If Rang(K) is closed, then any (P, Q)-controlled K-g-fusion frame is also a (P, Q)-controlled g-

fusion frame relative to Rang(K).

Proof. (i) Consider ΓPQ as a (P, Q)-controlled g-fusion frame forH with bounds C and D. For

each ξ ∈ H , the following inequality holds:
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C
‖K‖2

〈K∗ξ, K∗ξ〉 ≤ C〈ξ, ξ〉 ≤
∑
j∈J

v2
j 〈Γ jπW jQξ, Γ jπW jPξ〉 ≤ D〈ξ, ξ〉

Consequently, ΓPQ also functions as a (P, Q)-controlled K-g-fusion frame for H with

adjusted bounds C
‖K‖2 and D.

(ii) Assuming ΓPQ operates as a (P, Q)-controlled K-g-fusion frame forH with bounds C and

D, and given that Rang(K) is closed, according to Theorem 2.3, there exists an operator

K† ∈ End∗
A
(H) such that (K†)∗K∗ = (KK†)∗ = KK† and KK†ξ = ξ for all ξ within Rang(K).

Therefore, for each ξ in Rang(K), we derive:

C
1+‖K†‖2 〈ξ, ξ〉 = C

1+‖K†‖2 〈KK†ξ, KK†ξ〉

= C
1+‖K†‖2 〈(K

†)∗K∗ξ, (K†)∗K∗ξ〉

≤
‖(K†)∗‖2

1+‖K†‖2 C〈K∗ξ, K∗ξ〉

≤
∑
j∈J

v2
j 〈Γ jπW jQξ, Γ jπW jPξ〉 ≤ D〈ξ, ξ〉

This establishes that ΓPQ acts as a (P, Q)-controlled g-fusion frame for Rang(K) with mod-

ified bounds C
1+‖K†‖2 and D.

�

Theorem 4.3. Assume K ∈ End∗
A
(H) with closed range, and that ΓPQ represents a (P, Q)-controlled

K-g-fusion frame for H with bounds C and D. If V ∈ End∗
A
(H) such that Rang(V) is included within

Rang(K), then ΓPQ is also a (P, Q)-controlled V-g-fusion frame forH .

Proof. Given that ΓPQ constitutes a (P, Q)-controlled K-g-fusion frame forH , it holds that for each

ξ ∈ H ,

C〈K∗ξ, K∗ξ〉 ≤
∑
j∈J

v2
j 〈Γ jπW jQξ, Γ jπW jPξ〉 ≤ D〈ξ, ξ〉

Furthermore, considering that Rang(V) ⊂ Rang(K), according to Theorem 2.2, there exists a

coefficient λ > 0 such that VV∗ ≤ λKK∗. Consequently, for any ξ ∈ H , we can deduce:

C
λ
〈V∗ξ, V∗ξ〉 ≤ C〈K∗ξ, K∗ξ〉 ≤

∑
j∈J

v2
j 〈Γ jπW jQξ, Γ jπW jPξ〉 ≤ D〈ξ, ξ〉

This establishes that ΓPQ also serves as a (P, Q)-controlled V-g-fusion frame forH . The subse-

quent theorem elucidates that any controlled K-g-fusion frame inherently functions as a K-g-fusion

frame, and vice versa, under specific conditions. �

In the following theorem, we establish a necessary and sufficient condition that allows a con-

trolled g-fusion Bessel sequence to qualify as a controlled K-g-fusion frame by utilizing the quotient

operator. Recall that if U ∈ End∗
A
(H ,H1) and V ∈ End∗

A
(H ,H2), whereH ,H1, andH2 are Hilbert
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C∗-modules over a C∗-algebraA, with the kernel condition N(U) ⊆ N(V), the quotient [V/U] of

the bounded operators U and V is defined from Rang(U) to Rang(V) by

[V/U](Uξ) = Vξ for all ξ ∈ H .

We note that [U/V] ◦U = V and that the quotient of two bounded operators is not necessarily

bounded.

Theorem 4.4. Assume K ∈ End∗
A
(H) and ΓPQ represents a (P, Q)-controlled g-fusion Bessel sequence in

H with a frame operator SP,Q. The sequence ΓPU is a (P, Q)-controlled K-g-fusion frame forH if and only
if the quotient operator

[
K∗/S1/2

P,Q

]
is well-defined and bounded.

Proof. First, let ΓPQ be assumed to act as a (P, Q)-controlled K-g-fusion frame forH with bounds

C and D. For every element ξ inH , the following inequality holds:

C〈K∗ξ, K∗ξ〉 ≤
∑
j∈J

v2
j 〈Γ jπW jQξ, Γ jπW jPξ〉 ≤ D〈ξ, ξ〉

Consequently, for every ξ inH :

C〈K∗ξ, K∗ξ〉 ≤ 〈SP,Qξ, ξ〉 = 〈S1/2
P,Qξ, S1/2

P,Qξ〉

Therefore

C‖K∗ξ‖2 ≤ ‖S1/2
P,Qξ‖

2

It is straightforward to confirm that the quotient operator U : Rang(S1/2
P,Q)→ Rang(K∗), defined by

U(S1/2
P,Qξ) = K∗ξ for all ξ inH , is both well-defined and bounded.

Conversely, if the quotient operator U := [K∗/S1/2
P,Q] is well defined and bounded fromRang(S1/2

P,Q)

into Rang(K∗). Then US1/2
P,Q = K∗ and

‖Ug‖ = ‖Uπ
Rang(S1/2

P,Q)
g‖ ≤ ‖Uπ

Rang(S1/2
P,Q)
‖‖g‖

for all g in Rang(S1/2
P,Q). This implies that

〈K∗ξ, K∗ξ〉 = 〈US1/2
P,Qξ, US1/2

P,Qξ〉 ≤ ‖UπRang(S1/2
P,Q)
‖

2
〈S1/2

P,Qξ, S1/2
P,Qξ〉

for all ξ inH . Hence

1
‖Uπ

Rang(S1/2
P,Q)
‖2 + 1

〈K∗ξ, K∗ξ〉 ≤ 〈S1/2
P,Qξ, S1/2

P,Qξ〉 =
∑
j∈J

v2
j 〈Γ jπW jQξ, Γ jπW jPξ〉

for all ξ inH . Therefore, ΓPQ can be seen as a (P, Q)-controlled K-g-fusion frame forH . �

We now prove that the boundedness of a quotient operator correlates directly with the trans-

formation of a controlled K-g-fusion frame into a controlled VK-g-fusion frame, for some given

V ∈ End∗
A
(H).
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Theorem 4.5. Suppose K ∈ End∗
A
(H), and ΓPQ is a (P, Q)-controlled K-g-fusion frame for H , with its

associated frame operator SP,Q. Let V be an invertible operator in End∗
A
(H) that commutes with both P

and Q and assume that V(W j) is complemented inH for every j ∈ J. Under these conditions, the following
statements are equivalent:

(1) ΓPQ =
{(

VW j, Γ jπW jV
∗, v j

)}
j∈J

acts as a (P, Q)-controlled VK-g-fusion frame for H , and its
associated frame operator is VSP,QV∗.

(2) The quotient operator
[
(VK)∗/S1/2

P,QV∗
]

is bounded.

(3) The quotient operator
[
(VK)∗/(VSP,QV∗)1/2

]
is bounded.

Proof. The equivalence (2) ⇐⇒ (3) follows immediately from the definition of a quotient operator

and the fact that 〈S1/2
P,QV∗ξ, S1/2

P,QV∗ξ〉 = 〈(VSP,QV∗)1/2ξ, (VSP,QV∗)1/2ξ〉 for all ξ ∈ H .

Now, we have to prove the equivalence (1) ⇐⇒ (2). First, note that we have some consequences

of Lemma 2.1. Precisely, for each ξ ∈ H , we have:∑
j∈J

v2
j 〈Γ jπW jV

∗πVW jQξ, Γ jπW jV
∗πVW jPξ〉 =

∑
j∈J

v2
j 〈Γ jπW jV

∗Qξ, Γ jπW jV
∗Pξ〉

=
∑
j∈J

v2
j 〈Γ jπW jQV∗ξ, Γ jπW jPV∗ξ〉

= 〈SP,QV∗ξ, V∗ξ〉.

Thus ∑
j∈J

v2
j 〈Γ jπW jV

∗πVW jQξ, Γ jπW jV
∗πVW jPξ〉 = 〈S

1/2
P,QV∗ξ, S1/2

P,QV∗ξ〉. (4.1)

Proof of (1) =⇒ (2):Assume that ΓPQ acts as a (P, Q)-controlled VK-g-fusion frame forH with

bounds C and D. For any ξ ∈ H , the following inequalities hold:

C〈(VK)∗ξ, (VK)∗ξ〉 ≤
∑
j∈J

v2
j 〈Γ jπW jV

∗πVW jQξ, Γ jπW jV
∗πVW jPξ〉 ≤ D〈ξ, ξ〉

Thus from (4.1) owe obtain that:

C〈(VK)∗ξ, (VK)∗ξ〉 ≤ 〈S1/2
P,QV∗ξ, S1/2

P,QV∗ξ〉 ≤ D〈ξ, ξ〉,

for all ξ ∈ H . This ensures the quotient operator U : Rang(S1/2
P,QV∗)→ Rang((VK)∗), defined by

U(S1/2
P,QV∗ξ) = (VK)∗ξ for all ξ ∈ H ,

is well-defined and bounded.

Proof of (2)⇒ (1): If the quotient operator U :=
[
(VK)∗/S1/2

P,QV∗
]

is well defined onRang(S1/2
P,QV∗)

and bounded, then for each ξ ∈ H , we have:

〈(VK)∗ξ, (VK)∗ξ〉 = 〈US1/2
P,QV∗ξ, US1/2

P,QV∗ξ〉 ≤ ‖Uπ
Rang(S1/2

P,QV∗)‖
2
〈S1/2

P,QV∗ξ, S1/2
P,QV∗ξ〉

Therefore, returning to (4.1) one can see that ΓPQ functions as a (P, Q)-controlled VK-g-fusion

frame forH . This concludes the proof. �

In the upcoming theorem, we explore algebraic properties en K of controlled K-g fusion frames.
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Theorem 4.6. ΓPQ = {W j, Γ j, v j} j∈J is defined as a (P, Q)-controlled g-fusion Bessel sequence forH with
the synthesis operator SP,Q associated with ΓPQ. Denote K(ΓPQ) the set of all operators K ∈ End∗

A
(H)

such that ΓPQ operates as a (P, Q)-controlled K-g-fusion frame forH . Then the following statements hold:

(1) K(ΓPQ) is a right ideal in End∗
A
(H).

(2) K(ΓPQ) is closed whenever Rang(TP,Q) is closed.

Proof. (1) First we claim that for L1, ..., Ln ∈ End∗
A
(H), n ∈N, we have for every ξ ∈ H :

〈(
n∑

k=1
Lk)ξ, (

n∑
k=1

Lk)ξ〉 ≤ 2n−1
m∑

k=1
〈Lkξ, Lkξ〉

〈L1L2ξ, L1L2ξ〉 ≤ ‖L1‖
2
〈L2ξ, L2ξ〉.

Indeed, By Theorem 2.1 the first inequality is equivalent to the inequality:

(L1 + ... + Ln)
∗(L1 + ... + Ln) ≤ 2n−1

(
L∗1L1 + ... + L∗nLn

)
,

which follows, by induction, from the fact that for every u, v ∈ End∗
A
(H):

u∗u + v∗v− u∗v− v∗u = (u− v)∗(u− v)

is positive a positive element in End∗
A
(H), thus

(u + v)∗(u + v) = u∗u + v∗v + u∗v + v∗u ≤ 2(u∗u + v∗v).

The second inequality is obvious.

Now, given that ΓPQ is a (P, Q)-controlled Ki-g-fusion frame for H for each i ∈ {1, ..., n}. Then

there exist constants C1, ...Cn, D > 0 such that:

Ck〈K∗kξ, K∗kξ〉 ≤ 〈SP,Qξ, ξ〉 =
∑
j∈J

v2
j 〈Γ jπW jQξ, Γ jπW jPξ〉 ≤ D〈ξ, ξ〉

for k ∈ {1, ..., n}. Now, for operator K = K1L1 + · · ·+ KnLn, where L1, ..., Ln ∈ End∗
A
(H), we have

〈L∗kK∗kξ, L∗kK∗kξ〉 ≤ ‖L
∗

k‖
2
〈K∗kξ, K∗kξ〉 ≤ ‖L

∗

k‖
2C−1

k 〈SP,Qξ, ξ〉

for all k ∈ {1, ..., n}. Denote

C′ = max
{
‖L∗k‖

2C−1
k : 1 ≤ k ≤ n

}
,

thus we have

〈K∗ξ, K∗ξ〉 ≤ 2n−1nC′〈SP,Qξ, ξ〉,

〈K∗ξ, K∗ξ〉 = 〈(L∗1K∗1 + ... + L∗nK∗n)ξ, (L∗1K∗1 + ... + L∗nK∗n)ξ〉
≤ 2n−1(〈L∗1K∗1ξ, L∗1K∗1ξ〉+ ... + 〈L∗nK∗nξ, L∗nK∗nξ〉)
≤ 2n−1(C′〈SP,Qξ, ξ〉+ ... + C′〈SP,Qξ, ξ〉)

= 2n−1nC′〈SP,Qξ, ξ〉,

for all ξ ∈ H . Therefore, ΓPQ operates as a (P, Q)-controlled
n∑

k=1
KkLk-g-fusion frame for H . This

proves the theorem.
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(2) Assume that Rang(TP,Q) is closed and let (Kn)n∈N be a sequence of elements of K(ΓPQ) that

converges to K in End∗
A
(H). Then, by Theorem 4.1, we haveRang(Kn) ⊆ Rang(TP,Q) for all n ∈N.

This implies that for every ξ ∈ H , we have

Kξ = lim
n→∞

Knξ ∈ Rang(TP,Q).

Thus, Rang(K) ⊆ Rang(TP,Q). Again, by Theorem 4.1, ΓPQ acts as a (P, Q)-controlled K-g-fusion

frame forH .

�

As consequence one can derive:

Corollary 4.1. Assume each Ki ∈ End∗
A
(H) and ΛTU operates as a (T, U)-controlled Ki-g-fusion frame

forH for indices i = 1, 2, . . . , n. The following properties then hold:

(1) Given a set of scalars ai, for i = 1, 2, . . . , n, ΛTU also forms a (T, U)-controlled
n∑

i=1
aiKi-g-fusion

frame forH .
(2) ΛTU constitutes a (T, U)-controlled K1 · · ·Kn-g-fusion frame forH .

The following example shows that, without the assumption of the closeness of the synthesis

operator of ΛTU, the right ideal K(ΛTU) introduced in the previous theorem is not necessarily

closed, even in the classical setting of Hilbert spaces over C.

Example 4.2. Let H = `2 be the classical Hilbert space with its basis (en)n∈N. Let Λ1 be the operator
defined on `2 by

Λ1(en) =
1
n

en for all n ∈N.

For every n ∈N, let Kn := en ⊗ en be the operator onH defined by Kn(ξ) = 〈ξ, en〉en for all ξ ∈ H . It can
be shown that the following limit exists

K = lim
n→∞

n∑
k=1

k−2/3ek ⊗ ek.

Let SC be the operator frame associated with

Γ =
{
(W1, Λ1, 1)

}
, where W1 = H .

Now, for every n ∈ N, one can easily see that Γ is a (IH , IH )-controlled Kn-g-fusion frame forH . On the
other hand, we have

SCen = n−2en for all n ∈N.

Thus, for every positive real number A, the inequality AKK∗ ≤ SC does not hold. Indeed, assuming the
contrary, we get

An−4/3 = A〈KK∗en, en〉 ≤ 〈SCen, en〉 = n−2 for all n ∈N,

which leads to a contradiction.
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This theorem explores how certain operators interact within a controlled K-g-fusion frame

setting when they commute with each other

Theorem 4.7. Assume K ∈ End∗
A
(H) and both P, Q ∈ GL+(H), with K commuting with P and Q.

Additionally, suppose that the K-g-fusion frame operator SΓ commutes with P, i.e., SΓP = PSΓ. Under
these conditions, ΓPQ qualifies as a (P, Q)-controlled K-g-fusion frame forH if and only if ΓPQ serves as a
K-g-fusion frame forH . The frame operator SΓ is given by:

SΓξ =
∑
j∈J

v2
jπW j Γ

∗

jΓ jπW jξ, for all ξ ∈ H

Proof. Initially, we assume that ΓPQ operates as a K-g-fusion frame forH with established bounds

C and D. For any element ξ withinH , the following relation holds:

C〈K∗ξ, K∗ξ〉 ≤
∑
j∈J

v2
j 〈Γ jπW jξ, Γ jπW jξ〉 ≤ D〈ξ, ξ〉

Referencing Corollary 2.2 of [1], we infer:

mm′CKK∗ ≤ PSΓQ ≤MM′DIH ,

where m, m′, M and M′ are positive real numbers. Therefore, for each ξ ∈ H :

mm′C〈K∗ξ, K∗ξ〉 ≤
∑
j∈J

v2
j 〈PπW j Γ

∗

jΓ jπW jQξ, ξ〉 ≤MM′D〈ξ, ξ〉.

Thus

mm′C〈K∗ξ, K∗ξ〉 ≤
∑
j∈J

v2
j 〈Γ jπW jQξ, Γ jπW jPξ〉 ≤MM′D〈ξ, ξ〉

Consequently, ΓPQ is established as a (P, Q)-controlled K-g-fusion frame forH .

Conversely, if we assume ΓPQ is a (P, Q)-controlled K-g-fusion frame for H , then there exist

constants C, D > 0 such that:

C〈K∗ξ, K∗ξ〉 ≤
∑
j∈J

v2
j 〈Γ jπW jQξ, Γ jπW jPξ〉 ≤ D〈ξ, ξ〉

Now, analyzing further for each ξ ∈ H :

C〈K∗ξ, K∗ξ〉 = C〈(PQ)1/2(PQ)−1/2K∗ξ, (PQ)1/2(PQ)−1/2K∗ξ〉

= C〈(PQ)1/2K∗(PQ)−1/2ξ, (PQ)1/2K∗(PQ)−1/2ξ〉

≤ ‖(PQ)1/2
‖

2
∑
j∈J

v2
j 〈Γ jπW jQ(PQ)−1/2ξ, Γ jπW jP(PQ)−1/2ξ〉

= ‖(PQ)1/2
‖

2
〈SΓξ, ξ〉

= ‖(PQ)1/2
‖

2
∑
j∈J

v2
j 〈πW j Γ

∗

jΓ jπW jξ, ξ〉.

Then we deduce that
C

‖(PQ)1/2‖2
〈K∗ξ, K∗ξ〉 ≤

∑
j∈J

v2
j 〈Γ jπW jξ, Γ jπW jξ〉
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In summary, these calculations affirm that ΓPQ is indeed a K-g-fusion frame forH . The proof is

thus complete.

�

The following theorem provides a detailed characterization of a controlled K-g-fusion frame.

Theorem 4.8. Assume K ∈ EndA(H), with P, Q ∈ GL+(H), and note that K commutes with both P
and Q. Furthermore, assume SΓP = PSΓ. Under these conditions, ΓPQ qualifies as a (P, Q)-controlled
K-g-fusion frame forH if and only if it can be characterized as a (PQ, IH )-controlled K-g-fusion frame for
H . The K-g-fusion frame operator SΓ is defined as:

SΓξ =
∑
j∈J

v2
jπW j Γ

∗

jΓ jπW jξ, for all ξ ∈ H

Proof. For any ξ inH , it can be shown that:∑
j∈J

v2
j 〈Γ jπW jQξ, Γ jπW jPξ〉 = 〈

∑
j∈J

v2
j PπW j Γ

∗

jΓ jπW jQξ, ξ〉

= 〈PSΓQξ, ξ〉 = 〈SΓPQξ, ξ〉

= 〈
∑
j∈J

v2
jπW j Γ

∗

jΓ jπW jPQξ, ξ〉

=
∑
j∈J

v2
j 〈Γ jπW jPQξ, Γ jπW jξ〉

Therefore, the condition that ΓPQ is a (P, Q)-controlled K-g-fusion frame for H with bounds C
and D translates into:

C〈K∗ξ, K∗ξ〉 ≤
∑
j∈J

v2
j 〈Γ jπW jPQξ, Γ jπW jξ〉 ≤ D〈ξ, ξ〉,∀ξ ∈ H

From this, we deduce that ΓPQ indeed qualifies as a (PQ, IH )-controlled K-g-fusion frame forH

with the specified bounds C and D. This affirmation concludes the proof.

�

Corollary 4.2. Assume K ∈ EndA(H), with P, Q ∈ GL+(H), and that K commutes with both P and Q.
Additionally, suppose SΓP = PSΓ. Under these conditions, ΓPQ qualifies as a (P, Q)-controlled K-g-fusion
frame forH if and only if it can also be characterized as a ((PQ)1/2, (PQ)1/2)-controlled K-g-fusion frame
forH .

Proof. Following the proof presented in Theorem 4.8, for each function ξ in H , the computation

proceeds as follows:∑
j∈J

v2
j 〈Γ jπW jQξ, Γ jπW jPξ〉 = 〈SΓ(PQ)1/2ξ, (PQ)1/2ξ〉

= 〈
∑
j∈J

v2
jπW j Γ

∗

jΓ jπW j(PQ)1/2ξ, (PQ)1/2ξ〉

=
∑
j∈J

v2
j 〈Γ jπW j(PQ)1/2ξ, Γ jπW j(PQ)1/2ξ〉
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Therefore, ΓPQ qualifies as a (P, Q)-controlled K-g-fusion frame for H if and only if ΓPQ is a

((PQ)1/2, (PQ)1/2)-controlled K-g-fusion frame forH .

�

The following theorem investigates the stability of controlled K-g-fusion frames in the presence

of perturbations, confirming that certain modifications do not compromise their effectiveness

within a controlled setting

Theorem 4.9. Suppose ΓPQ =
{(

W j, Γ j, v j

)}
j∈J

functions as a (P, Q)-controlled K-g-fusion frame for H

with established bounds C and D. Consider ΛPQ =
{(

V j, Λ j, v j

)}
j∈J

. Assume there are constants λ1,λ2,µ

where 0 ≤ λ1,λ2 < 1 and 0 ≤ µ < C(1− λ1). If for every ξ ∈ H , the following inequality holds:

0 ≤
∑
j∈J

v2
j 〈P
∗

(
πV j Λ

∗

jΛ jπV j −πW j Γ
∗

jΓ jπW j

)
Qξ, ξ〉

≤ µ〈K∗ξ, K∗ξ〉+ λ1
∑
j∈J

v2
j 〈P
∗πW j Γ

∗

jΓ jπW jQξ, ξ〉

+λ2
∑
j∈J

v2
j 〈P
∗πV j Λ

∗

jΛ jπV jQξ, ξ〉

then ΛPQ qualifies as a (P, Q)-controlled K-g-fusion frame forH .

Proof. Given that ΓPQ operates as a (P, Q)-controlled K-g-fusion frame forH with bounds C, D, for

each ξ ∈ H the following relation is observed:

C〈K∗ξ, K∗ξ〉 ≤
∑
j∈J

v2
j 〈Γ jπW jQξ, Γ jπW jPξ〉 ≤ D〈ξ, ξ〉

Examining further, for each ξ ∈ H :

∑
j∈J

v2
j 〈P
∗πV j Λ

∗

jΛ jπV jQξ, ξ〉 =
∑
j∈J

v2
j 〈P
∗

(
πV j Λ

∗

jΛ jπV j −πW j Γ
∗

jΓ jπW j

)
Qξ, ξ〉

+
∑
j∈J

v2
j 〈P
∗πW j Γ

∗

jΓ jπW jQξ, ξ〉

Hence

(1− λ2)
∑
j∈J

v2
j 〈P
∗πV j Λ

∗

jΛ jπV jQξ, ξ〉 ≤ (1 + λ1)
∑
j∈J

v2
j 〈P
∗πW j Γ

∗

jΓ jπW jQξ, ξ〉+ µ〈K∗ξ, K∗ξ〉

This implies that ∑
j∈J

v2
j 〈Λ jπV jQξ, Λ jπV jPξ〉 ≤

[
(1 + λ1)D + µ‖K‖2

(1− λ2)

]
〈ξ, ξ〉.

Now we have to prove the left inequality, pick ξ ∈ H , then we have:
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∑
j∈J

v2
j 〈P
∗πV j Λ

∗

jΛ jπV jQξ, ξ〉

≥∑
j∈J

v2
j 〈P
∗πW j Γ

∗

jΓ jπW jQξ, ξ〉 −
∑
j∈J

v2
j 〈P
∗

(
πV j Λ

∗

jΛ jπV j −πW j Γ
∗

jΓ jπW j

)
Qξ, ξ〉

This implies that

(1 + λ2)
∑
j∈J

v2
j 〈P
∗πV j Λ

∗

jΛ jπV jQξ, ξ〉 ≥ (1− λ1)
∑
j∈J

v2
j 〈P
∗πW j Γ

∗

jΓ jπW jQξ, ξ〉 − µ〈K∗ξ, K∗ξ〉

Hence ∑
j∈J

v2
j 〈Λ jπV jQξ, Λ jπV jPξ〉 ≥

[
(1− λ1)C− µ

(1 + λ2)

]
〈K∗ξ, K∗ξ〉

Therefore, ΛPQ confirms its role as a (P, Q)-controlled K-g-fusion frame forH . �

Corollary 4.3. Assume that ΓPQ is a (P, Q)-controlled K-g-fusion frame forH with bounds C and D. Let
ΛPQ =

{(
V j, Λ j, v j

)}
j∈J

. If a constant 0 < E < C ensures that for every ξ ∈ H ,

0 ≤
∑
j∈J

v2
j 〈P
∗
(
πV j Λ

∗

jΛ jπV j −πW j Γ
∗

jΓ jπW j

)
Qξ, ξ〉 ≤ E〈K∗ξ, K∗ξ〉

then ΛPQ qualifies as a (P, Q)-controlled K-g-fusion frame forH .

Proof. For each ξ ∈ H , we have

∑
j∈J

v2
j

〈
Λ jπV jQξ, Λ jπV jPξ

〉
=

∑
j∈J

v2
j

〈
P∗πV j Λ

∗

jΛ jπV jQξ, ξ
〉

=
∑
j∈J

v2
j

〈
P∗

(
πV j Λ

∗

jΛ jπV j −πW j Γ
∗

jΓ jπW j

)
Qξ, ξ

〉
+

∑
j∈J

v2
j

〈
P∗πW j Γ

∗

jΓ jπW jQξ, ξ
〉

≤

(
D + E‖K‖2

)
〈ξ, ξ〉

On the other hand,

∑
j∈J

v2
j

〈
P∗πV j Λ

∗

jΛ jπV jQξ, ξ
〉
≥

∑
j∈J

v2
j

〈
P∗πW j Γ

∗

jΓ jπW jQξ, ξ
〉

−
∑
j∈J

v2
j

〈
P∗

(
πV j Λ

∗

jΛ jπV j −πW j Γ
∗

jΓ jπW j

)
Qξ, ξ

〉
≥ (C− E)〈ξ, ξ〉,

for all ξ ∈ H . This completes the proof. �

Theorem 4.10. Suppose that ΓPQ is a (P, Q)-controlled g-fusion frame forH with the frame operator SP,Q.
If S−1

P,Q commutes with P and Q, then ΛPQ =
{(

S−1
P,QW j, Γ jπW jS

−1
P,Q, v j

)}
j∈J

constitutes a (P, Q)-controlled

g-fusion frame forH , where the corresponding frame operator is S−1
P,Q.

Proof. The proof of this theorem follows directly from applying Theorem 2.6, by setting K = IH . �
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