Spherical Picture Fuzzy Sets: Enhancing Decision-Making with Geometric Bonferroni Methods

Main Article Content

R. Ramesh, S. Krishnaprakash, Nikola Ivkovic, Mario Konecki, Chiranjibe Jana

Abstract

The representation of a spherical picture fuzzy set (SPFS) employs a spherical framework to depict uncertainty across positive, negative, and neutral membership functions, effectively capturing the vagueness inherent in these degrees. Through this structure, SPFS enable nuanced decision-making, supported by novel ranking mechanisms, parametric distance measures and Euclidean distance evaluations. Additionally, an extended version of the spherical picture fuzzy Bonferroni method is introduced, tailored to MCDM scenarios. Applied to diverse stakeholder contexts, this approach overcomes the limitations of traditional averaging methods, offering a comprehensive representation of collective opinions within a spherical framework. In contrast to conventional picture fuzz set theories, our research introduces the SPFS, revolutionizing decision-making paradigms with its geometric model.

Article Details

References

  1. M. Akram, A. Khan, A. Luqman, T. Senapati, D. Pamucar, An Extended MARCOS Method for MCGDM under 2-Tuple Linguistic q-Rung Picture Fuzzy Environment, Eng. Appl. Artif. Intell. 120 (2023), 105892. https://doi.org/10.1016/j.engappai.2023.105892.
  2. D. Alghazzawi, H. Alolaiyan, L. Latif, et al. A Cutting-Edge TOPSIS Approach for Navigating MCDM Challenges Under t-Intuitionistic Fuzzy Environments, IEEE Access 12 (2024), 44873–44887. https://doi.org/10.1109/ACCESS.2024.3380205.
  3. A.M. Ali, A. Abdelhafeez, T.H.M. Soliman, K. ELMenshawy, A Probabilistic Hesitant Fuzzy MCDM Approach to Selecting Treatment Policy For COVID-19, Decis. Mak.: Appl. Manag. Eng. 7 (2023), 131–144. https://doi.org/10.31181/dmame712024917.
  4. K.T. Atanassov, Intuitionistic Fuzzy Sets: Theory and Applications, Physica-Verlag, Heidelberg, 1999.
  5. F. Ate¸s, D. Akay, Some Picture Fuzzy Bonferroni Mean Operators with Their Application to Multicriteria Decision Making, Int. J. Intell. Syst. 35 (2020), 625–649. https://doi.org/10.1002/int.22220.
  6. C. Bonferroni, Sulle Medie Multiple di Potenze, Boll. Unione Mat. Ital. 5 (1950), 267–270.
  7. G. Büyüközkan, Y. Karabulut, F. Göçer, Spherical Fuzzy Sets Based Integrated DEMATEL, ANP, VIKOR Approach and Its Application for Renewable Energy Selection in Turkey, Appl. Soft Comput. 158 (2024), 111465. https://doi.org/10.1016/j.asoc.2024.111465.
  8. S. Chakraborty, R.D. Raut, T.M. Rofin, S. Chakraborty, On Solving a Healthcare Supplier Selection Problem Using MCDM Methods in Intuitionistic Fuzzy Environment, OPSEARCH 61 (2024), 680–708. https://doi.org/10.1007/s12597-023-00733-1.
  9. B.C. Cuong, V. Kreinovich, Picture Fuzzy Sets - A New Concept for Computational Intelligence Problems, in: 2013 Third World Congress on Information and Communication Technologies (WICT 2013), IEEE, Hanoi, Vietnam, 2013: pp. 1–6. https://doi.org/10.1109/WICT.2013.7113099.
  10. B.C. Cuong, Picture Fuzzy Sets, J. Comput. Sci. Cybern. 30 (2015), 409–420. https://doi.org/10.15625/1813-9663/30/4/5032.
  11. B.D. Da ˘gıdır, B. Özkan, A Comprehensive Evaluation of a Company Performance Using Sustainability Balanced Scorecard Based on Picture Fuzzy AHP, J. Clean. Prod. 435 (2024), 140519. https://doi.org/10.1016/j.jclepro.2023.140519.
  12. G. Kou, D. Pamucar, H. Dinçer, S. Yüksel, M. Deveci, M. Umar, An Integrated Quantum Picture Fuzzy Rough Sets with Golden Cuts for Evaluating Carbon Footprint-Based Investment Decision Policies of Sustainable Industries, Appl. Soft Comput. 155 (2024), 111428. https://doi.org/10.1016/j.asoc.2024.111428.
  13. M.S. García-Cascales, A. Molina-García, J.M. Sánchez-Lozano, A. Mateo-Aroca, N. Munier, Multi-Criteria Analysis Techniques to Enhance Sustainability of Water Pumping Irrigation, Energy Rep. 7 (2021), 4623–4632. https://doi.org/10.1016/j.egyr.2021.07.026.
  14. F. Kutlu Gündo ˘gdu, S. Duleba, S. Moslem, S. Aydın, Evaluating Public Transport Service Quality Using Picture Fuzzy Analytic Hierarchy Process and Linear Assignment Model, Appl. Soft Comput. 100 (2021), 106920. https://doi.org/10.1016/j.asoc.2020.106920.
  15. S. Gül, Fermatean Fuzzy Set Extensions of SAW , ARAS , and VIKOR with Applications in COVID -19 Testing Laboratory Selection Problem, Expert Syst. 38 (2021), e12769. https://doi.org/10.1111/exsy.12769.
  16. A. Hussain, X. Zhu, K. Ullah, Tehreem, D. Pamucar, M. Rashid, S. Yin, Recycling of Waste Materials Based on Decision Support System Using Picture Fuzzy Dombi Bonferroni Means, Soft Comput. 28 (2024), 2771–2797. https://doi.org/10.1007/s00500-023-09328-w.
  17. Hussain, Abrar, et al. "Decision algorithm for picture fuzzy sets and Aczel Alsina aggregation operators based on unknown degree of wights." Heliyon 10.6 (2024).
  18. A. Hussain, Y. Liu, K. Ullah, M. Rashid, T. Senapati, S. Moslem, Decision Algorithm for Picture Fuzzy Sets and Aczel Alsina Aggregation Operators Based on Unknown Degree of Wights, Heliyon 10 (2024), e27548. https://doi.org/10.1016/j.heliyon.2024.e27548.
  19. J. Jin, P. Zhao, T. You, Picture Fuzzy TOPSIS Method Based on CPFRS Model: An Application to Risk Management Problems, Sci. Program. 2021 (2021), 6628745. https://doi.org/10.1155/2021/6628745.
  20. S. Jovˇci´c, V. Simi´c, P. Pr ˚uša, M. Dobrodolac, Picture Fuzzy ARAS Method for Freight Distribution Concept Selection, Symmetry 12 (2020), 1062. https://doi.org/10.3390/sym12071062.
  21. E. Kamber, U. Aydo ˘gmu¸s, H. Yumurtacı Aydo ˘gmu¸s, M. Gümü¸s, C. Kahraman, Prioritization of Drip-Irrigation Pump Alternatives in Agricultural Applications: An Integrated Picture Fuzzy BWM&CODAS Methodology, Appl. Soft Comput. 154 (2024), 111308. https://doi.org/10.1016/j.asoc.2024.111308.
  22. C. Kahraman, Proportional Picture Fuzzy Sets and Their AHP Extension: Application to Waste Disposal Site Selection, Expert Syst. Appl. 238 (2024), 122354. https://doi.org/10.1016/j.eswa.2023.122354.
  23. G. Kou, D. Pamucar, H. Dinçer, S. Yüksel, M. Deveci, M. Umar, An Integrated Quantum Picture Fuzzy Rough Sets with Golden Cuts for Evaluating Carbon Footprint-Based Investment Decision Policies of Sustainable Industries, Appl. Soft Comput. 155 (2024), 111428. https://doi.org/10.1016/j.asoc.2024.111428.
  24. W.Z. Liang, G.Y. Zhao, S.Z. Luo, An Integrated EDAS-ELECTRE Method With Picture Fuzzy Information for Cleaner Production Evaluation in Gold Mines, IEEE Access 6 (2018), 65747–65759. https://doi.org/10.1109/ACCESS.2018.2878747.
  25. X. Li, Y. Ju, D. Ju, W. Zhang, P. Dong, A. Wang, Multi-Attribute Group Decision Making Method Based on EDAS Under Picture Fuzzy Environment, IEEE Access 7 (2019), 141179–141192. https://doi.org/10.1109/ACCESS.2019.2943348.
  26. L. Liu, X. Wu, G. Chen, Picture Fuzzy Interactional Bonferroni Mean Operators via Strict Triangular Norms and Applications to Multicriteria Decision Making, IEEE Trans. Fuzzy Syst. 31 (2023), 2632–2644. https://doi.org/10.1109/TFUZZ.2023.3234589.
  27. S. Mandal, K.H. Gazi, S. Salahshour, S.P. Mondal, P. Bhattacharya, A.K. Saha, Application of Interval Valued Intuitionistic Fuzzy Uncertain MCDM Methodology for Ph.D Supervisor Selection Problem, Results Control Optim. 15 (2024), 100411. https://doi.org/10.1016/j.rico.2024.100411.
  28. P. Mandal, S. Samanta, M. Pal, Large-Scale Group Decision-Making Based on Pythagorean Linguistic Preference Relations Using Experts Clustering and Consensus Measure with Non-Cooperative Behavior Analysis of Clusters, Complex Intell. Syst. 8 (2022), 819–833. https://doi.org/10.1007/s40747-021-00369-y.
  29. L. Ma, K. Jabeen, W. Karamti, K. Ullah, Q. Khan, H. Garg, S. Yin, Aczel-Alsina Power Bonferroni Aggregation Operators for Picture Fuzzy Information and Decision Analysis, Complex Intell. Syst. 10 (2024), 3329–3352. https://doi.org/10.1007/s40747-023-01287-x.
  30. P.-H. Nguyen, A Data-Driven MCDM Approach-Based Spherical Fuzzy Sets for Evaluating Global Augmented Reality Providers in Education, IEEE Access 13 (2025), 6102–6119. https://doi.org/10.1109/ACCESS.2024.3361320.
  31. J.J. Peng, X.G. Chen, A Large-Scale Group Decision-Making Approach Based on Hesitancy Degrees and NonCooperative Behaviors with Picture Fuzzy Information, Appl. Soft Comput. 154 (2024), 111360. https://doi.org/10.1016/j.asoc.2024.111360.
  32. F.B. M., S. Petchimuthu, H. Kamacı, T. Senapati, Evaluation of Artificial Intelligence-Based Solid Waste Segregation Technologies through Multi-Criteria Decision-Making and Complex q-Rung Picture Fuzzy Frank Aggregation Operators, Eng. Appl. Artif. Intell. 133 (2024), 108154. https://doi.org/10.1016/j.engappai.2024.108154.
  33. V. Rani, S. Kumar, An Innovative Distance Measure for Quantifying the Dissimilarity between Q-Rung Orthopair Fuzzy Sets, Decis. Anal. J. 11 (2024), 100440. https://doi.org/10.1016/j.dajour.2024.100440.
  34. P. Rani, S.M. Chen, A.R. Mishra, Multi-Attribute Decision-Making Based on Similarity Measure between Picture Fuzzy Sets and the MARCOS Method, Inf. Sci. 658 (2024), 119990. https://doi.org/10.1016/j.ins.2023.119990.
  35. S. Sampathkumar, F. Augustin, S. Narayanamoorthy, A. Ahmadian, M. Ferrara, D. Kang, Centroid and Graded Mean Ranking Methods for Intuitionistic Trapezoidal Dense Fuzzy Set to Solve MCDM Problems of Robot Selection, Int. J. Fuzzy Syst. 26 (2024), 1958–1981. https://doi.org/10.1007/s40815-023-01647-2.
  36. T. Senapati, G. Chen, Picture Fuzzy WASPAS Technique and Its Application in Multi-Criteria Decision-Making, Soft Comput. 26 (2022), 4413–4421. https://doi.org/10.1007/s00500-022-06835-0.
  37. D. Sivakumar, S. Sangeetha, A MCDM Method Based on Aggregation Operators Using under the Complex Cubic Root Fuzzy Sets, in: 2024 Fourth International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT), IEEE, Bhilai, India, 2024: pp. 1–9. https://doi.org/10.1109/ICAECT60202.2024.10469268.
  38. L. Svadlenka, V. Simic, M. Dobrodolac, D. Lazarevic, G. Todorovic, Picture Fuzzy Decision-Making Approach for Sustainable Last-Mile Delivery, IEEE Access 8 (2020), 209393–209414. https://doi.org/10.1109/ACCESS.2020.3039010.
  39. C. Tian, J. Peng, W. Zhang, S. Zhang, J. Wang, Tourism Environmental Impact Assessment Based on Improved AHP and Picture Fuzzy Promethee II Methods, Technol. Econ. Dev. Econ. 26 (2019), 355–378. https://doi.org/10.3846/tede.2019.11413.
  40. Y. Wang, X. Ma, H. Qin, H. Sun, W. Wei, Hesitant Fermatean Fuzzy Bonferroni Mean Operators for Multi-Attribute Decision-Making, Complex Intell. Syst. 10 (2024), 1425–1457. https://doi.org/10.1007/s40747-023-01203-3.
  41. J. Wang, W. Wang, F. Meng, P. Wang, X. Wang, S. Wei, T. Liu, S. Yang, A Novel Incomplete Hesitant Fuzzy Information Supplement and Clustering Method for Large-Scale Group Decision-Making, PeerJ Comput. Sci. 10 (2024), e1803. https://doi.org/10.7717/peerj-cs.1803.
  42. X. Li, Y. Ju, D. Ju, W. Zhang, P. Dong, A. Wang, Multi-Attribute Group Decision Making Method Based on EDAS Under Picture Fuzzy Environment, IEEE Access 7 (2019), 141179–141192. https://doi.org/10.1109/ACCESS.2019.2943348.
  43. Y. Liu, R.M. Rodríguez, L. Martínez, Interval Type-2 Fuzzy Envelope of Proportional Hesitant Fuzzy Linguistic Term Set: Application to Large-Scale Group Decision Making, Mathematics 10 (2022), 2368. https://doi.org/10.3390/math10142368.
  44. L.A. Zadeh, Fuzzy Sets, Inf. Control 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X.
  45. Z. Chen, X. Ming, A Rough–Fuzzy Approach Integrating Best–Worst Method and Data Envelopment Analysis to Multi-Criteria Selection of Smart Product Service Module, Appl. Soft Comput. 94 (2020), 106479. https://doi.org/10.1016/j.asoc.2020.106479.