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Abstract. This work establishes the existence of weak solutions for p-Laplacian-like equations in weighted Sobolev

spaces under Dirichlet boundary conditions, assuming the data is in the weighted Lebesgue space.

1. INTRODUCTION

In this paper we study the existence and uniquness of solutions the following nonlinear problem

arising from capillarity phenomena

A\
[Vul Vu + wq|ulP~u = f inQ

VI [Vur (1.1)

Alwa|Aulf~?Au] — div w1 | [VulP =2 +

ulga =0,
where () is an open bounded subset of RV, (N=2),T>0,p>1, Vuis the gradient of u, w1 and
@y are weight functions (i.e., a locally integrable functions on RY, such that 0 < w; (x) < 00,0 <
wy (x) < oo, a.e. x € RN), satisfied suitable assumptions (see Section 2 for more details).

The rise in capillaries in a thin vertical tube is a significant physical phenomenon seen in
several everyday contexts. A prevalent natural illustration of capillary action is the movement of
water in soil or vegetation. To succinctly describe capillarity, consider the effects of two opposing
forces: adhesion, which pulls or repels molecules from the liquid and the container, and cohesion,
which is the attractive force between molecules in the liquid. The study of capillary phenomena
has recently received more attention. Capillary phenomena are gaining popularity because of a
variety of factors, including a fascination with natural phenomena such as drop, bubble, and wave
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motion, as well as their importance in applied fields ranging from industrial, biomedical, and
pharmaceutical to microfluidic systems.

Given the applicability of capillary flow in industrial contexts, the development of suitable
mathematical models to describe its behavior is crucial. The known equation that models the
kinetics of capillary rise was proposed by Washburn in 1921. The Washburn equation is a valu-
able simplification of liquid ascent in a capillary tube. Alongside theoretical modeling, numerous
experiments have revealed that for specific fluids, their free boundary oscillates around the equi-
librium rather than approaching it consistently. In 1985, Ni and Serrin launched their investigation
of fundamental states for equations of the specified form [7,8]

iv—vu
1+ |Vul?

= f(u) in RNV,

After that, an extensive research has been conducted to investigate capillary action. In [9], Ro-
drigues employed the Mountain Pass Lemma and the Fountain Theorem to examine the existence
of nontrivial solutions to the subsequent problem.

2p(x)-2
[V Vit =Af(x,u) inQ

1+ [Vur®) (1.2)

—div | [Vuf®-2vy +

ulpn =0,

where Q ¢ RN(N > 2) is a bounded regular domain, A is a positive parameter, and f is a
Carathéodory function.
Moreover, Shokoo, Afrouzi and Heidarkhani addressed the existence of three weak solutions to

the subsequent problem in [10]

|Vu|2p(x)—2

V1 + [Vuf?r)

;_v - O|a &

—div (1 + ]Vu + a()ulP™ 2y = Af(x,u) + ug(x,u) in Q)

(1.3)

where Q ¢ RN with N > 2 be a bounded domain, a C! -class boundary,v be the outer unit normal
t0d0),A >0, u>0,anda € L*(Q)) ,a > 0a.e. in Q.

Note that the functions f,g: QO x R — R are L'-Carathéodory functions, and p € C(Q) satisfies
the condition

N <p-:=infp(x) < p; :=supp(x) < +oo.
x€Q) xeQ)

This paper demonstrates the existence and uniqueness of weak solutions to problems (1.1), utilizing
the theory of weighted Sobolev spaces and the theory of monotone type operators in reflexive
Banach spaces. The subsequent sections of this work are organized as follows. Section 2 presents
definitions and essential properties of weighted Sobolev spaces. Furthermore, we reference several
established lemmas to be utilized in the proof of the principal results. In Section 3, we demonstrate

the existence and uniqueness of weak solutions for (1.1).
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2. PRELIMINARIES AND NOTATIONS

This section provides notations, definitions, and outcomes that will be utilized in this work. Let
Q) denote a smooth bounded domain in RY. A weight refers to a locally integrable function  on
RN satisfying 0 < w < oo for almost every x € RN. We will designate by L7 (Q, w) the collection of

all measurable functions u on () with a finite norm.

1
p
el (0,0) = (f w (x) Iul’”dx) ,1<p<oco.
0

The weighted Sobolev space W7 (Q), w) is defined as the set of all functions u € L? (Q0).Having
the derivatives Vu € L7 (), w) with a finite norm.
el o, 7= Nl ) + V2l gy -

The space of all functions with continuous derivatives of arbitrary order and compact support in
Q) is denoted by C7° (Q2), and the space W(l)’p (0, w) denotes the closure C3* (Q)) in W7 (Q, w). In
this study, we presuppose that w meets the following criteria:

e (H)well (Q) 0 eLl (Q),

o (Hy) w™ e L' (Q) wheres € (%j,oo) N [p%l, oo).
For additional information regarding weighted Sobolev spaces, we direct the reader to [1,5,11].

Proposition 2.1. [3] Assume that the hypothesis (H) holds, then for
s+1<ps <N(s+1) we have the continuous embedding

WP (Q,@) = W™ (Q) < L1(Q), 2.1)

= I\]]\]_p;l = N(Slﬁj_ps, and for ps > N(s + 1) the embedding (2.1) holds with

arbitrary 1 < q < oo. Moreover, the compact embedding
Wé’p(ﬂ,a)) < [1(Q)

where p; = 1<g=

holds provided 1 <r < q.

Proposition 2.2. [3] (Hardy-type inequality) There exist a weight function w on Q) and a parameter
9,1 < g < oo such that the inequality

( f a)lu(x)lqu)a < c( f a)|Vu|”dx)p 2.2)
Q Q

holds for every u € W(l)’p(Q, w) with a constant C > 0 independent of u and, moreover the embedding
WP (O, w) < LI(Q, w)

determined by the inequality (2.2) is compact.

Theorem 2.1. [6] Let Y be a reflexive real Banach space and A : Y — Y’ be a bounded operator, hemi-
continuous, coercive and monotone on space Y . Then the equation Au = v has at least one solution u € Y
foreachv e Y’.
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Lemma 2.1. [2] Let 1 < p < oco. There exist two positive constants ay and f, such that for every
(&,neRN)withN > 1,

ap(I€]+ INDP2E = > < JEP2E=InP~2n, & = n) < Bp(IE] + Inl)P21E = 1.

Lemma 2.2. For &, n € RN and 1 < p < oo, we have

( [ ;
VITRF TP

Proof. Consider the function G : RN x RN — RN defined by

Gl )_[ P2, 22 )(5 )
e e )

By Cauchy-Schwarz inequality, we can write

)-(5—17)20.

2p 2p 2p—2 2p-2
G(&n) = Il _- <] L i 2
VI+EP  TEm® i+ Ep T
|EI%P Inf? ~ |E2P-2 P2 .
VITEE  Ttm® I AP
2p I |2P 2p-1 | |2P—1
s Il . _—( <l o+ 1 )
VIHER VI VIR VTP
2p—-1 | |2]ﬂ—1
2( = - (1€l =1n1) -
VIHER TP
vince the function 4= \/)% is nondecreasing for all A in R, then
gt ! B
(\/1+|5|2p \/1+|n|2p)(|£| |17|)20,
which implies that
G(&n) &2 : =2 ) .
M) = _ nl so
TN

3. ExisTENCE REsuLT

This section investigates the existence and uniqueness of the weak solution to (1.1). The concept

of a weak solution to problem (1.1) can now be introduced.

Definition 3.1. A measurable function u : 3 — R is called a weak solution ofthe Problem (1.1) if
e W, (Q, 1) N W (Q, w,) and

|Vu|2p—2

a)zlAu|P—2AuA(pdx + f w1 [|Vu|p_2 4L
fo Q 1+ [Vul?

— | roax

)Vu-qudx+fa)1|u|p_2u¢dx
Q
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forall g € Wy (Q, 1) NWP (Q, w2).
The part that follows presents the principal result of this work along with its proof.

Theorem 3.1. Let f/w; € LF' (Q, w1), and assume that hypothesis (Hy) and (Hy) holds. Then problem
(1.1) has a unique weak solution.

Proof. Existence of the weak solutions
Let

E:= W' (Q,a1) NWP(Q,a2),

which is a Banach space equipped with the following norm

1/p
Il == (nun” e+ ”A””’mez)) .

V\/v0 (Q,(L)])
We consider the operator A : E — E’ such that

A=A+ A2 L A3+ AT - A5,
where for Yu,v € E
<Alu,v>= f w1|VulP~?Vu.Vodx,
Q

. |Vu|2p—2
| —
O A1+ |Vul?

<Adu,v>= f w1|ulP~2uvdx,
0

< AZM,U > = Vu - Vvdx,

<Atu,v>= f wa|AulP2AuAvdx,
0

<A5u,v>:ffvdx.
Q

e Assertion 1. The operator A is monotone.

We have by Lemma (2.1) and (2.2)

(A — Ao, u—0) >0, (3.1)
(A%u — A%v,u—0) > 0. (3.2)
On the other hand, as the monotony of A — [AIP21, we obtain
(A3 — A0, u—v) = f w1 (Iul”'zu - Ivlp'zv) (u—0)dx >0, (3.3)
0

and

(A*u - A*v,u—v) = f > (IAuV’_ZAu - |AZJ|p_2AU) (Au—Av)dx > 0. (3.4)
Q
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Then, we deduce from (3.1), (3.2), (3.3) and (3.4) that
(Au—Av,u—10v) > 0.

Hence, the operator A is monotone.
e Assertion 2. The operator A is coercive.

Using Holder’s inequality, and Proposition 2.1, we obtain

< Au,u >:ffu:fa)i/p ia)}/pudx
0 0

w1
p/ 1/}’)/ 1/p
< fa)l (f a)llulpdx)
QO (@)

f
f
”u”W(]]’p(Q,a)])

w1
w1

f

w1

-

LY (Q,w1)

[ (3.5)

<
Y (Qw1)

On the other hand, it is obvious that

Vul?
Vil dx+ | wiluldx >0,

V14 |Vu% Q

<Auu>+<Atuu>= f w1
Q

which implies

<Auu>=<Auu>+<Auu>+<Auu>+<Auu>-<Auu>

> |AullP P _ ‘L
2 180 g + W0, =€ T
zwﬁ—dﬁ—, lull
w1l (Qwr)
Therefore
< Au,u >
—Tﬁ#—e+m as  |lulle — +oo. (3.6)
E

Thus, the operator A is coercive.
Assertion 3. The operator A is bounded

Applying Holder’s inequality once more, we find

| < Alu, o> =] f w1|VulP~2Vu.Vodx|
Q

< f a)i/p,Wulp_la)i/valdx
Q

1/p’ 1/p
< (f wﬂVuI”dx) (f a)1|Vv|pdx)
0 Q

p/p’
< IVl o ot

p/p’
<Vulf)le,,  Iolle, (3.7)
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Vul|?r—2
| < A%u,v > | =| f wlLVu.Vvdxl
Q

1+ [Vul?

VulP
< [ o= vy Vol

V1 + |Vul?

f [VulP
< W ——
Q 14 |Vul?

< f 1|Vl Voldx
O

IVulP~YVoldx

v/
< ”VMHU’(Q,O)l) ”U”Wé'p(ﬂ,w])
/ ’
S\ (3.8)
and

| < A*u,0>| =] f wa|AuP~2AuAvdx|
Q

< f wo|AuP~HAv|dx
o)

p/p’
< AUl o 1801 (00
p/p
<laullyfe, , Ile. (3.9)

Similarly, by applying Holder’s inequality once again, together with proposition 2.1, we have

|< A3u,v >—< A5u,v >|

:‘f a)1|u|"‘2uvdx—ffvdx
o) 0

sfdmwﬂﬂ%m+flwﬁmWWM
Q Q

1/ 1/p f o 17y 1/p
< (f a)llulpdx) (f a)llvlpdx) -I—(f w1|=—V dx) (f wllvlpdx)
Q Q o w1 Q

< Cllally ey W0l ) +C |12

Il Wi
Y (Qw) (Q01)

oIl - (3.10)

s eyt |5
LP w1

Combining of (3.7), (3.8), (3.9) and (3.10), we derive
|<Au,o>|<|<Alu,o>|+|<A%u,0>|+|<A%u,v>|+|<Au,v>—- < Adu,v>|

/p’ /
<2Vall),  lelle + I1AulF olls

p/p f
+awbmmmm+cu

01l
Q (4)1)

< Crlollg, (3.11)
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where Cy 1= 2(Vull}yfy, |+ llaulf) !
Therefore, A is bounded.

P(Q,wr

f

p/v’ |
I CYS I ) FPYRE

P le)

Furthermore, the operator A exhibits hemi-continuity. By Theorem 2.1, we conclude that the

problem (1.1) has weak solutions.

Uniqueness of a weak solutions

We shall now demonstrate that the problem (1.1) possesses a unique weak solution. We assume

the existence of two weak solutions, 11 and uy, for problem (1.1). Consequently, we possess

f ws (|Au1|f’—2Au1 - |Au2|P-2Au2) Adx
@)

+fa)1 (lVM1|p_2VM1—IVMQIP_ZVLLZ)-qudx
o

V|22 Vi, |22
N f o [Lvm_sz Vo
O

V14 |Vu1|27" Vv1+ |Vu2|27”
+ f w1 (julP~2uy = lualP~%up ) pdx
o)

=0.

By substituting ¢ = u; — uy into (1.1), we obtain

f w7 (|AM1|P_2AM1 - |Au2|P_2Au2) A(u1 - uz)dx
Q

+fa)1 (qullp‘ZVul —IVuzl”_ZVuz)-V(ul —up)dx
0
Vi |2P—2 Vo |?P—2
+fa)1 (LV NV V(uq —up)dx
0} VI + Vi [ V1+ |Vu2|2p

+ | w1 (lualPuq = lualPu2) (ug — up)dx

I
o
e

Following that, by utilizing Lemmas 2.1 and 2.2, we derive

f w1 (1l 2uy — lualP~2uz) (ug — up)dx
o)

= —f (IVu1|p_2Vu1 - |Vu2|p_2Vu2) -V (uy —up)dx

[V [2P~2 [ Vup?
V M1 - uz)d
\/1 + [Vuy |2 \/1 + |Vu2|2P

- f |Au1|P 2Auq — |AuplP™ ZAuz) A(uq — up)dx

<0.
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Employing Lemma 2.1, we infer the existence of a, > 0 such that

Ofpf 1 ([ur] + [u2)P2Juy — upPdx < f w1 ([u1lP~?ur = |ualP ~2u2) (u1 — up)dx < 0.
0 0

Therefore, |u; — us|? = 0,

ieu; = up. a.ein ). O

4. EXAMPLE

Let Q = {(x,y) € R? : x> + y?> < 1}, and define the functions w1 (x,y), w2(x,y) and f(x,y) as
follows:

01(xy) = (P + 1)V @x(xy) = (P + )V p =4, (0 y) = .
Then by applying Theorem 3.1, we can deduce that that the problem

VultV
Vul"Vu +aoufPu=f inQ

VI +|Vul* (4.1)

Alwa|Aul*Au) — div wq | [VulVu +
ulpn =0,

has a unique solution in Wé’4(Q, w1) N W§’4(Q, 7).

5. CoNCLUSION

Capillary action, a physical phenomenon that involves the movement of water in a thin vertical
tube, is gaining popularity because of its relevance in various fields such as industrial, biomedical,
pharmaceutical, and microfluidic systems. The study of capillary phenomena has gained atten-
tion due to its fascination with natural phenomena and its importance in applied fields. Many
researchers have proposed well-known equations to model the kinetics of capillary rise, which
is crucial for understanding its application in industrial contexts, and several investigations have
been carried out to identify a weak solution to these problems and to establish the uniqueness and
existence of such solutions. This paper explores the existence and uniqueness of weak solutions to
problems (1.1) using weighted Sobolev spaces and monotone-type operators in reflexive Banach

spaces. It provides definitions, properties,lemmas, and their proof.
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