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ABSTRACT. Network performance is the evaluation and assessment of collective network statistics, to define the 

quality of services offered by the computer network. It is a qualitative and quantitative technique that measures and 

defines the performance level for a network. Networking provides a link between different factors (bandwidth, 

number of devices, network traffic and latency) for performing multiple tasks. These factors affect the network speed 

and quality. Some errors occur due to network traffic and latency can produce uncertain results. These results 

provide low quality and speed in the network that caused time wasting with no required results. In this regard, the 

notion of interval valued complex neutrosophic relation (IVCNR) is developed to handle this situation. Modeling 

problems by using the idea of interval valued complex neutrosophic sets (IVCNSs) and interval valued complex 

neutrosophic relations (IVCNRs) will not only formulate the effects of one factor to other but also defines the grades 

of membership, abstains and non-membership. The cartesian product among two IVCNSs and the types of IVCNRs 

is discussed. By applying the methods of IVCNRs on the factors of network performance that can produce better 

network speed and improved quality in the network. In continuation this study introduced and investigates the 

structure of complex neutrosophic soft topological spaces. The foundational definitions of complex neutrosophic soft 

topology, open and closed sets, interior, closure, and boundary are formally established. The study also explores the 

concept of complex neutrosophic soft bases and subspace topologies, along with criteria for basis generation and 

https://doi.org/10.28924/2291-8639-23-2025-132


2 Int. J. Anal. Appl. (2025), 23:132 

 

topological refinement. Several theorems elucidate the relationships among topological constructs and operations 

such as union, intersection, and complementation under complex neutrosophic soft conditions. We apply pervious 

methods on these problems and collect some results. But through this method, the required results achieved more 

reliable than the previous methods. So, the proposed method is the best method for modeling uncertain complexities 

in the required results. Some applications are also given that can be applied in our day to day life.  

 

1. Introduction 

Uncertainty refers to the cognitive conditions involving unknown information. The term 

uncertainty defines lack of exact information that helps to find correct and clear results. Before 

1965, it was dreadful to deal with uncertainty for different real-life problems. In 1965, Zadeh [1] 

introduced the conception of fuzzy set theory for solving these ambiguities. Fuzzy set (FS) used 

to assign membership grades in the partition from of the unit interval. Atanassov [2] gave the 

idea of intuitionistic fuzzy set (IFS). IFS deal with both membership and non-membership 

grades and their sum must be in the interval [0,1]. F Samarandache [3] introduced the 

generalization of IFS, known as Neutrosophic set (NS). NS provides three possibilities of 

membership, abstinence, and non-membership grades and the sum of these three grades must 

be in the interval ranging in [0,3]. NS is the generalization of IFS. NS provides the membership, 

non-membership values as well as neutral values rather than IFS. Rough Neutrosophic sets 

(RNS) introduced by Broumi et al. [4]. The notion of using complex numbers in FSs is known as 

complex fuzzy sets (CFSs). Ramot et al. [5] developed the idea of CFS. CFSs are used for 

modeling multi-dimensional problems. CFSs describes the membership degrees in the complex 

valued mappings. Alkouri et al. [6] introduce the concept of complex intuitionistic fuzzy set 

(CIFS). CIFS uses complex valued mappings and their sum also in the unit interval. Complex 

neutrosophic set (CNS) proposed by Ali and Smarandache [7]. A CNS is characterized by three 

complex valued mapping i.e., membership grade, abstinence and non-membership grades and 

their sum is in the interval [0,3]. Complex valued mappings have two terms these are phase 

term and amplitude term. These terms represent two different entities. Broumi et al [8] 

described the Bipolar complex neutrosophic set (BCNS). 

FS in the form of intervals known as interval valued fuzzy set (IVFS). IVFS is developed by 

zedah [9] in 1975. IVFS represents the membership degrees in the form of interval values that 

reflect uncertainty by assigning membership degrees. In 1999, Atanassov [10] introduce Interval 

valued intuitionistic fuzzy sets (IVIFSs). IVIFS is an improved from rather than IVFS. IVIFS 

describes the intervals of membership as well as non-membership degrees. Modeling real life 

problems with the help of using IVIFS is very useful and interesting. C Cornelis et al. [11] 

develop the implication in IFS and IVFS. H Zhang et al. [12] Introduced the interval valued 

neutrosophic set (IVNS) in decision-making problems. S Broumi and F Smarandache [13] 

develop the idea of similarity measure of IVNS. The conception of using complex numbers in 



Int. J. Anal. Appl. (2025), 23:132 3 

 

the intervals is called interval valued complex fuzzy set (IVCFS). IVCFS introduced by S 

Greenfield et al. [14]. IVCFS defines the intervals of complex valued mapping that discuss only 

the membership. H Grag and D Rani [15] develop the idea of interval valued complex 

intuitionistic fuzzy set (IVCIFS). IVCIFS discuss the membership as well as non-membership 

grades and the sum of both complex values is ranging from zero to one. Ali et al. [16] introduce 

the interval valued complex neutrosophic set (IVCNS) 

Mandel [17] gave the idea of fuzzy relations (FRs). FRs are the extension of crisp relations (CR). 

FRs indicates the strength of relationships by the degree of membership. If the value of 

membership degree near to 1 present the strong relationship, and if the membership degree 

nearer to 0 then it indicates the weaker relationship. A Nasir et al. [18] discussed the medical 

diagnosis and life span of sufferer by using IVCFRs. Burillo and Bustince [19] develop the idea 

of intuitionistic fuzzy relation (IFR). IFR discuss the membership and non-membership degrees, 

respectively. A Nasir et al. [20] gave the idea of IVIFRs in cybersecurity against loopholes in 

industrial control. Neutrosophic relation (NR) developed by Yang et al. [21]. NRs used to deal 

with intermediate and inconsistent information. Ramot et al. [22] gave the idea of complex 

fuzzy relation (CFR). CFR provides the complex valued mappings in the membership degrees. 

Complex intuitionistic fuzzy relation (CIFR) developed by N Jan et al. [23]. Complex 

neutrosophic relation (CNR) introduced by Nasir et al. [24]. AL-Quran and Alkhazaleh [25] 

introduced the relations between complex neutrosophic sets with decision making application. 

Broumi et al [26] defined the Bipolar complex neutrosophic sets on the decision-making 

problem. Interval valued fuzzy relation (IVFR) defines the fuzzy relations in the intervals. IVFR 

introduced by Bustince and Burillo [27]. Interval valued complex fuzzy relations (IVCFRs) 

developed by Nasir et al. [28]. IVCFRs provides the complex valued mappings in the intervals. 

The improved form f IVFR is interval valued intuitionistic fuzzy relation (IVIFR) introduced by 

Wu et al. [29]. IVIFR discuss both membership and non-membership for any query. Interval 

valued complex intuitionistic fuzzy relation (IVCIFR) provides the complex values in the form 

of intervals Zhang et al. [30] gave the idea of interval valued neutrosophic relation (IVNR). 

IVNRs discussed the three possibilities like: membership, abstinence, and non-membership 

degrees of different problems.  

The purpose of this paper is to define the conception of interval valued complex neutrosophic 

relations (IVCNRs) and its different types such as IVCN-inverse relation, IVCN-reflexive 

relation, IVCN-irreflexive relation, IVCN-symmetric relation, IVCN-asymmetric relation, IVCN-

antisymmetric relation, IVCN-transitive relation, IVCN-order relation, IVCN-composite relation 

and IVCN-equivalence relation. Different properties and important results also proved for 

solving different queries. IVCNRs carry three degrees, these degrees show the qualities of 

different relations. The membership degree shows better performance, the abstinence shows no 
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effect on the performance and the non-membership degree provides low performance on the 

proposed application. The limitations of the Networks are dynamic, intricate systems made up 

of many interconnected parts. The intricacy and dynamic nature of networks make it difficult to 

study and comprehend every facet of their behavior. Also, certain network components may 

occasionally be hidden from researchers' view, particularly in distributed or cloud-based 

environments. This lack of visibility may make it more difficult to comprehend network 

performance in its entirety. More advanced techniques may make data gathering and analysis 

more efficient and give researchers a deeper understanding of network behavior. This might 

entail data analytics, machine learning algorithms, or sophisticated monitoring tools. 

This paper arranged as the section 2 discusses some basic notions. Section 3 defines the main 

results and theorems proved. Section 4 introduces the concept of complex neutrosophic soft 

topological spaces and their properties. It also discusses some important results. Section 5 

discusses some more results on complex neutrosophic soft topological spaces. 

Section 6 propose the application of IVCNRs and IVCNSs that investigate the performance of 

networking in a network using different factors that affect the network for bad or a good quality 

and speed. Section 7 compares the proposed method with existing methods. The paper ends 

with a conclusion. Section 8 discusses the conclusion and future direction. 

 

2. Preliminaries 

Definition 2.1. [1] A fuzzy set  𝔄 on a universe 𝒰 is of the form  𝔄 = {𝜈, 𝛼(𝜈): 𝜈𝜖𝒰} 

Where 𝛼(𝜈) is a membership degree of fuzzy set defined as  𝛼: 𝒰 → [0,1]. 

Definition 2.2. [5] A complex fuzzy set  𝔄 on a universe 𝒰 is of the form  𝔄 = {𝜈, 𝛼𝑐(𝜈): 𝜈𝜖𝒰}, 

where 𝛼𝑐(𝜈) is a membership degree of CFS defined as 𝛼𝑐: 𝒰 → {𝒵|𝒵𝜖ℂ, |𝒵| ≤ 1}. Moreover, 

𝒵(𝜈) = 𝜇𝑐(𝜈)𝑒
𝜌𝑐
(𝜈)2𝜋𝑖

 and 0 ≤ 𝜇𝑐 , 𝜌𝑐 ≤ 1 are known as amplitude and phase terms, respectively. 

Definition 2.3. [5] Cartesian Product (CP) is the set of all possible 

ordered combinations consisting of one member from each of those sets. The CP of two CFSs 

𝔄 = {𝜈𝑖, 𝜇𝑐(𝜈𝑖)𝑒
𝜌𝑐
(𝜈𝑖)2𝜋𝑖 : 𝜈𝑖𝜖𝒰} and  𝔅 = {𝜈𝑗, 𝜇𝑐(𝜈𝑗)𝑒

𝜌𝑐
(𝜈𝑗)2𝜋𝑖

: 𝜈𝑗𝜖𝒰}, 𝑖, 𝑗𝜖ℕ is given by 

𝔄 ×𝔅 = {(𝜈𝑖, 𝜈𝑗), 𝜇𝑐(𝜈𝑖, 𝜈𝑗)𝑒
𝜌𝑐(𝜈𝑖,𝜈𝑗)2𝜋𝑖: 𝜈𝑖𝜖𝒰, 𝜈𝑗𝜖𝒰} 

The degree of membership of CP 𝔄 ×𝔅 is defined as 

𝓩𝔄×𝔅(𝜈𝑖, 𝜈𝑗) = 𝜇(𝔄×𝔅)(𝜈𝑖, 𝜈𝑗)𝑒
𝜌
(𝔄×𝔅)

(𝜈𝑖,𝜈𝑗)2𝜋𝑖 = 𝛼𝑖𝛾{𝜇𝔄(𝜈𝑖), 𝜇𝔅(𝜈𝑗)}𝑒
{𝜌𝔄(𝜈𝑖),𝜌𝔅(𝜈𝑗)}2𝜋𝑖  

and 𝜇(𝔄×𝔅)(𝜈𝑖, 𝜈𝑗), 𝜌(𝔄×𝔅)(𝜈𝑖, 𝜈𝑗)𝜖[0,1]. 

Definition 2.4. [2] An intuitionistic fuzzy set  𝔄 on a universe 𝒰 is of the form  

𝔄 = {𝜈, 𝛼(𝜈), 𝛽(𝜈): 𝜈𝜖𝒰} 

where 𝛼(𝜈) and 𝛾(𝜈)  are the membership and non-membership degree of IFS defined as 

𝛼, 𝛾: 𝒰 → [0,1] and 0 ≤ 𝛼(𝜈) + 𝛾(𝜈) ≤ 1. 
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Definition 2.5. [6] A CIFS 𝔄 on a universe 𝒰 is of the form 𝔄 = {𝜈, 𝛼(𝜈), 𝛾(𝜈): 𝜈𝜖𝒰} Where 

𝛼(𝜈) and 𝛾(𝜈) are the membership and non-membership degree of CIFS defined as 𝛼:𝒰 →

{𝒵𝛼|𝒵𝛼𝜖ℂ, |𝒵𝛼| ≤ 1} and 𝛾:𝒰 → {𝒵𝛾|𝒵𝛾𝜖ℂ, |𝒵𝛾| ≤ 1} where 𝒵𝛼(𝜈) = 𝜇𝛼(𝜈)𝑒
𝜌𝛼(𝜈)2𝜋𝑖and 𝒵𝛾(𝜈) =

𝜇𝛾(𝜈)𝑒
𝜌𝛾(𝜈)2𝜋𝑖 CIFS has the conditions 

0 ≤ 𝜇𝛼(𝜈) + 𝜇𝛾(𝜈) ≤ 1  and 0 ≤ 𝜌𝛼(𝜈) + 𝜌𝛾(𝜈) ≤ 1  are known as amplitude terms and phase 

terms, respectively. 

Definition 2.6. [3] An NS 𝔄 on a universe 𝒰 is in the form of real valued function 

𝛼(𝜈), 𝛽(𝜈), 𝛾(𝜈): 𝒰 → [0,1] 

Where 𝛼(𝜈), 𝛽(𝜈), 𝛾(𝜈) known as the degree of membership, abstinence, and non-membership, 

respectively. NS has the condition  0 ≤ 𝛼(𝜈) + 𝛽(𝜈) + 𝛾(𝜈) ≤ 3 

Definition 2.7. [7] A CNS 𝔄 on a universe 𝒰 is in the form of real valued function : 𝒰 →

{𝒵𝛼|𝒵𝛼𝜖ℂ, |𝒵𝛼| ≤ 1} , 𝛽:𝒰 → {𝒵𝛽|𝒵𝛽𝜖ℂ, |𝒵𝛽| ≤ 1}, and 𝛾:𝒰 → {𝒵𝛾|𝒵𝛾𝜖ℂ, |𝒵𝛾| ≤ 1} are known as 

membership, abstinence, and non-membership, respectively. Where 𝒵𝛼(𝜈) = 𝜇𝛼(𝜈)𝑒
𝜌𝛼(𝜈)2𝜋𝑖, 

𝒵𝛽(𝜈) = 𝜇𝛽(𝜈)𝑒
𝜌𝛽(𝜈)2𝜋𝑖  and 𝒵𝛾(𝜈) = 𝜇𝛾(𝜈)𝑒

𝜌𝛾(𝜈)2𝜋𝑖.The conditions of CNFS are 0 ≤ 𝜇𝛼(𝜈) +

𝜇𝛽(𝜈) + 𝜇𝛾(𝜈) ≤ 3  and 0 ≤ 𝜌𝛼(𝜈) + 𝜌𝛽(𝜈) + 𝜌𝛾(𝜈) ≤ 3. Where n is natural number. 𝜇𝛼(𝜈), 𝜇𝛽(𝜈), 

and 𝜇𝛾(𝜈) are called amplitude terms and 𝜌𝛼(𝜈), 𝜌𝛽(𝜈), and 𝜌𝛾(𝜈) are known as phase terms. 

Definition 2.8. [9] An IVFS 𝔄 on a universe 𝒰 is of the form  𝔄 = {𝜈, 𝛼(𝜈)−, 𝛼(𝜈)+: 𝜈𝜖𝒰} 

Where 𝛼(𝜈)−: 𝔄 → [0,1] and 𝛼(𝜈)+: 𝔄 → [0,1] are called the lower and upper degrees of 

membership respectively. 

Definition 2.9. [14] An IVCFS 𝔄 on a universe 𝒰 is of the form 𝔄 =

{𝜈, [𝜇𝑐(𝜈)
−, 𝜇𝑐(𝜈)

+]𝑒[𝜌𝑐(𝜈)
−,𝜌𝑐(𝜈)

+]2𝜋𝑖: 𝜈𝜖𝒰} 

Where 𝜇𝑐
−: 𝔄 → [0,1], 𝜇𝑐

+: 𝔄 → [0,1], 𝜌𝑐
−: 𝔄 → [0,1] and 𝜌𝑐

+: 𝔄 → [0,1] are the mappings called 

the lower amplitude term, upper amplitude term, lower phase term and upper phase term f 

degree of membership and 𝑖 = √−1. 

Definition 2.10. [10] An IVIFS 𝔄 on a universe 𝒰 is of the form  𝔄 =

{𝜈, [𝛼(𝜈)−, 𝛼(𝜈)+], [𝛾(𝜈)−, 𝛾(𝜈)+]: 𝜈𝜖𝒰} 

Where 𝛼(𝜈)−: 𝔄 → [0,1] and 𝛼(𝜈)+: 𝔄 → [0,1] are called the lower and upper degrees of 

membership and 𝛾(𝜈)−: 𝔄 → [0,1] and 𝛾(𝜈)+: 𝔄 → [0,1] are called the lower and upper degrees 

of non-membership degrees, respectively. 

Definition 2.11. [15] An IVCIFS 𝔄 on a universe 𝒰 is of the form 𝔄 =

{𝜈, [𝜇𝛼(𝜈)
−, 𝜇𝛼(𝜈)

+]𝑒[𝜌𝛼(𝜈)
−,𝜌𝛼(𝜈)

+]2𝜋𝑖, [𝜇𝛾(𝜈)
−, 𝜇𝛾(𝜈)

+]𝑒[𝜌𝛾(𝜈)
−,𝜌𝛾(𝜈)

+]2𝜋𝑖: 𝜈𝜖𝒰} 

 𝜇𝛼(𝜈)
−: 𝔄 → [0,1], 𝜇𝛾(𝜈)

−: 𝔄 → [0,1], 𝜌𝛼(𝜈)
−: 𝔄 → [0,1] and 𝜌𝛾(𝜈)

−: 𝔄 → [0,1]  are mappings 

called the lower and upper amplitude term and lower and upper phase term of membership 

and non-membership degrees, respectively. And 𝑖 = √−1. An IVCIFS have the conditions 0 ≤

𝜇𝛼
+𝜇𝛾

+ ≤ 1 and 0 ≤ 𝜌𝛼
+𝜌𝛾

+ ≤ 1. 
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Definition 2.12. [12] An IVNS 𝔄 on a universe 𝒰 is in the form of real valued function 

 𝛼(𝜈)−, 𝛽(𝜈)−, 𝛾(𝜈)−: 𝒰 → [0,1] and 𝛼(𝜈)+, 𝛽(𝜈)+, 𝛾(𝜈)+: 𝒰 → [0,1. Where 𝛼(𝜈), 𝛽(𝜈), 𝛾(𝜈) known 

as the degree of membership, abstinence, and non-membership, respectively. NS have the 

conditions 0 ≤ 𝛼(𝜈)− + 𝛽(𝜈)− + 𝛾(𝜈)− ≤ 3, 0 ≤ 𝛼(𝜈)+ + 𝛽(𝜈)+ + 𝛾(𝜈)+ ≤ 3 

Definition 2.13. [17] An IVCNS 𝔄 on a universe 𝒰 is in the form of real valued 

function 𝛼(𝜈)−, 𝛼(𝜈)+:𝒰 → {𝒵𝛼|𝒵𝛼𝜖ℂ, |𝒵𝛼| ≤ 1} , 𝛽(𝜈)−, 𝛽(𝜈)+: 𝒰 → {𝒵𝛽|𝒵𝛽𝜖ℂ, |𝒵𝛽| ≤ 1}, and 

𝛾(𝜈)−, 𝛾(𝜈)+:𝒰 → {𝒵𝛾|𝒵𝛾𝜖ℂ, |𝒵𝛾| ≤ 1} are known as membership, abstinence, and non-

membership, respectively. Where 𝒵𝛼(𝜈) = 𝜇𝛼(𝜈)𝑒
𝜌𝛼(𝜈)2𝜋𝑖, 𝒵𝛽(𝜈) = 𝜇𝛽(𝜈)𝑒

𝜌𝛽(𝜈)2𝜋𝑖  and 𝒵𝛾(𝜈) =

𝜇𝛾(𝜈)𝑒
𝜌𝛾(𝜈)2𝜋𝑖 . The conditions of CNFS are 0 ≤ 𝜇𝛼(𝜈)

− + 𝜇𝛽(𝜈)
− + 𝜇𝛾(𝜈)

− ≤ 3  and 0 ≤

𝜌𝛼(𝜈)
− + 𝜌𝛽(𝜈)

− + 𝜌𝛾(𝜈)
− ≤ 3. Where n is natural number. 𝜇𝛼(𝜈), 𝜇𝛽(𝜈), and 𝜇𝛾(𝜈) are called 

amplitude terms and 𝜌𝛼(𝜈), 𝜌𝛽(𝜈), and 𝜌𝛾(𝜈) are known as phase terms. 

Definition 2.14. [22] A CFR 𝛺 is a non-empty subset of 𝔄 ×𝔅, where 𝔄 and 𝔅 are CFSs.  

Example 1. For a CFS, 𝔄 = {(𝜈1, 0.6𝑒
(0.3)2𝜋𝑖), (𝜈2, 0.3𝑒

(0.5)2𝜋𝑖), (𝜈3, 0.8𝑒
(0.7)2𝜋𝑖)} 

𝔄 × 𝔄 = {

((𝜈1, 𝜈1),0.6𝑒
(0.3)2𝜋𝑖), ((𝜈1, 𝜈2),0.3𝑒

(0.3)2𝜋𝑖), ((𝜈1, 𝜈3),0.6𝑒
(0.3)2𝜋𝑖),

((𝜈2, 𝜈1),0.3𝑒
(0.3)2𝜋𝑖), ((𝜈2, 𝜈2),0.3𝑒

(0.5)2𝜋𝑖), ((𝜈2, 𝜈3),0.3𝑒
(0.5)2𝜋𝑖),

((𝜈3, 𝜈1),0.6𝑒
(0.3)2𝜋𝑖), ((𝜈3, 𝜈2),0.3𝑒

(0.5)2𝜋𝑖), ((𝜈3, 𝜈3),0.8𝑒
(0.7)2𝜋𝑖)

} 

The CFR is 𝛺 =

{((𝜈1, 𝜈2),0.3𝑒
(0.3)2𝜋𝑖), ((𝜈1, 𝜈3),0.6𝑒

(0.3)2𝜋𝑖), ((𝜈2, 𝜈3),0.3𝑒
(0.5)2𝜋𝑖), ((𝜈3, 𝜈1),0.6𝑒

(0.3)2𝜋𝑖), } 

Definition 2.15. [28] An IVCFR 𝛺 is a non-empty subset of 𝔄 ×𝔅, where 𝔄 and 𝔅 are CFSs, i.e., 

Ω ⊆ 𝔄 ×𝔅. 

Definition 2.16. [24] A CNR 𝛺 is a non-empty subset of 𝔄 ×𝔅, where 𝔄 and 𝔅 are CFSs. where 

𝛺 ⊆ 𝔄 ×𝔅. 

Example 2.17. [24]  For a given CNS,  𝔄 = {

(𝜈1, 0.6𝑒
(0.3)2𝜋𝑖, 1𝑒(0,7)2𝜋𝑖, 2𝑒(0.6)2𝜋𝑖),

(𝜈2, 0.3𝑒
(0.5)2𝜋𝑖, 0.9𝑒(0.7)2𝜋𝑖, 0𝑒(0.2)2𝜋𝑖),

(𝜈3, 0.8𝑒
(0.7)2𝜋𝑖, 1𝑒(0.5)2𝜋𝑖, 1𝑒(0.7)2𝜋𝑖)

} 

𝔄 ×  𝔄 =

{
 
 
 

 
 
 
((𝜈1, 𝜈1),0.6𝑒

(0.3)2𝜋𝑖, 1𝑒(0,7)2𝜋𝑖, 2𝑒(0.6)2𝜋𝑖), ((𝜈1, 𝜈2),0.3𝑒
(0.5)2𝜋𝑖, 0.9𝑒(0.7)2𝜋𝑖, 2𝑒(0.6)2𝜋𝑖),

((𝜈1, 𝜈3),0.6𝑒
(0.3)2𝜋𝑖, 1𝑒(0.5)2𝜋𝑖, 2𝑒(0.7)2𝜋𝑖),

((𝜈2, 𝜈1),0.3𝑒
(0.5)2𝜋𝑖, 0.9𝑒(0,7)2𝜋𝑖, 2𝑒(0.6)2𝜋𝑖), ((𝜈2, 𝜈2),0.3𝑒

(0.5)2𝜋𝑖, 0.9𝑒(0.7)2𝜋𝑖, 0𝑒(0.2)2𝜋𝑖),

((𝜈2, 𝜈3),0.6𝑒
(0.3)2𝜋𝑖, 1𝑒(0.5)2𝜋𝑖, 2𝑒(0.7)2𝜋𝑖),

((𝜈3, 𝜈1),0.6𝑒
(0.3)2𝜋𝑖, 1𝑒(0.5)2𝜋𝑖, 2𝑒(0.7)2𝜋𝑖), ((𝜈3, 𝜈2),0.6𝑒

(0.3)2𝜋𝑖1𝑒(0.5)2𝜋𝑖, 2𝑒(0.7)2𝜋𝑖),

((𝜈3, 𝜈3),0.8𝑒
(0.7)2𝜋𝑖, 1𝑒(0.5)2𝜋𝑖, 1𝑒(0.7)2𝜋𝑖) }

 
 
 

 
 
 

 

The CNR  𝛺 is 𝛺 = {

((𝜈1, 𝜈3),0.6𝑒
(0.3)2𝜋𝑖, 1𝑒(0.5)2𝜋𝑖, 2𝑒(0.7)2𝜋𝑖),

((𝜈2, 𝜈2),0.3𝑒
(0.5)2𝜋𝑖, 0.9𝑒(0.7)2𝜋𝑖, 0𝑒(0.2)2𝜋𝑖),

((𝜈3, 𝜈2),0.6𝑒
(0.3)2𝜋𝑖1𝑒(0.5)2𝜋𝑖, 2𝑒(0.7)2𝜋𝑖)

} 
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3. Some results on Interval-Valued Complex Neutrosophic Relation (IVCNR) 

In this section some results related to interval valued complex neutrosophic relations are given. 

Examples are given for better understanding. 

Definition 3.1. An IVCNR 𝛺 is a non-empty subset of 𝔄 ×𝔅, where 𝔄 and 𝔅 are IVCNSs. where 

𝛺 ⊆ 𝔄 ×𝔅. 

Example 3.2. For a given IVCNS 

𝔄 = {

(𝜈1, [0.6,0.9]𝑒
[0.3,0.6]2𝜋𝑖, [1,2]𝑒[0,5,0.9]2𝜋𝑖, [0,0.8]𝑒[0.9,1]2𝜋𝑖),

(𝜈2, [0.3,1]𝑒
[0,0.5]2𝜋𝑖, [0.9,2]𝑒[0.2,0.9]2𝜋𝑖, [0,0.5]𝑒[0,0.3]2𝜋𝑖),

(𝜈3, [0.8, 1]𝑒
[0.8,2]2𝜋𝑖, [0.7,1]𝑒[0,1]2𝜋𝑖, [1,2]𝑒[0.1,0.6]2𝜋𝑖)

} 

The CP of 𝔄 to itself 

𝔄 × 𝔄 =

{
 
 
 
 
 
 

 
 
 
 
 
 ((𝜈1, 𝜈1), [0.6,0.9]𝑒

[0.3,0.6]2𝜋𝑖, [1,2]𝑒[0,5,0.9]2𝜋𝑖, [0,0.8]𝑒[0.9,1]2𝜋𝑖) ,

((𝜈1, 𝜈2), [0.3,0.9]𝑒
[0,0.5]2𝜋𝑖, [0.9,2]𝑒[0.2,0.9]2𝜋𝑖, [0,0.8]𝑒[0.9,1]2𝜋𝑖),

((𝜈1, 𝜈3), [0.6, 0.9]𝑒
[0.3,0.6]2𝜋𝑖, [0.7,1]𝑒[0,0.9]2𝜋𝑖, [1,2]𝑒[0.9,1]2𝜋𝑖),

((𝜈2, 𝜈1), [0.3,0.9]𝑒
[0,0.5]2𝜋𝑖, [0.9,2]𝑒[0.2,0.9]2𝜋𝑖, [0,0.8]𝑒[0.9,1]2𝜋𝑖) ,

((𝜈2, 𝜈2), [0.3,1]𝑒
[0,0.5]2𝜋𝑖, [0.9,2]𝑒[0.2,0.9]2𝜋𝑖, [0,0.5]𝑒[0,0.3]2𝜋𝑖),

((𝜈2, 𝜈3), [0.3, 1]𝑒
[0,0.5]2𝜋𝑖, [0.7,1]𝑒[0,0.9]2𝜋𝑖, [1,2]𝑒[0.1,0.6]2𝜋𝑖),

((𝜈3, 𝜈1), [0.6, 0.9]𝑒
[0.3,0.6]2𝜋𝑖, [0.7,1]𝑒[0,0.9]2𝜋𝑖, [1,2]𝑒[0.9,1]2𝜋𝑖) ,

((𝜈3, 𝜈2), [0.3, 1]𝑒
[0,0.5]2𝜋𝑖, [0.7,1]𝑒[0,0.9]2𝜋𝑖, [1,2]𝑒[0.1,0.6]2𝜋𝑖),

((𝜈3, 𝜈3), [0.8, 1]𝑒
[0.8,2]2𝜋𝑖, [0.7,1]𝑒[0,1]2𝜋𝑖, [1,2]𝑒[0.1,0.6]2𝜋𝑖) }

 
 
 
 
 
 

 
 
 
 
 
 

 

The IVCNR  𝛺 is  𝛺 = {

((𝜈1, 𝜈3), [0.6, 0.9]𝑒
[0.3,0.6]2𝜋𝑖, [0.7,1]𝑒[0,0.9]2𝜋𝑖, [1,2]𝑒[0.9,1]2𝜋𝑖),

((𝜈2, 𝜈2), [0.3,1]𝑒
[0,0.5]2𝜋𝑖, [0.9,2]𝑒[0.2,0.9]2𝜋𝑖, [0,0.5]𝑒[0,0.3]2𝜋𝑖),

((𝜈3, 𝜈2), [0.3, 1]𝑒
[0,0.5]2𝜋𝑖, [0.7,1]𝑒[0,0.9]2𝜋𝑖, [1,2]𝑒[0.1,0.6]2𝜋𝑖)

} 

Definition 3.3. Let 𝔄 be an IVCNS on a universe 𝒰 and 𝛺 be an IVCNR on 𝔄. Then, 

i.An IVCN-inverse relation 𝛺−1 of an IVCNR on 𝔄 

𝛺 =

{
 
 

 
 

(𝜈𝑖, 𝜈𝑗),

(

 
 

[𝜇−𝛼(𝜈𝑖, 𝜈𝑗), 𝜇
+
𝛼(𝜈𝑖, 𝜈𝑗)]𝑒

[𝜌−𝛼(𝜈𝑖,𝜈𝑗),𝜌
+
𝛼(𝜈𝑖,𝜈𝑗)]2𝜋𝑖,

[𝜇−𝛽(𝜈𝑖, 𝜈𝑗), 𝜇
+
𝛽(𝜈𝑖, 𝜈𝑗)] 𝑒

[𝜌−𝛽(𝜈𝑖,𝜈𝑗),𝜌
+
𝛽(𝜈𝑖,𝜈𝑗)]2𝜋𝑖,

[𝜇−𝛾(𝜈𝑖, 𝜈𝑗), 𝜇
+
𝛾(𝜈𝑖, 𝜈𝑗)] 𝑒

[𝜌−𝛾(𝜈𝑖,𝜈𝑗),𝜌
+
𝛾(𝜈𝑖,𝜈𝑗)]2𝜋𝑖

)

 
 
: (𝜈𝑖, 𝜈𝑗)𝜖 𝛺

}
 
 

 
 

, 

is defined as 

𝛺−1 =

{
 
 

 
 

(𝜈𝑗, 𝜈𝑖),

(

 
 

[𝜇−𝛼(𝜈𝑗, 𝜈𝑖), 𝜇
+
𝛼(𝜈𝑗, 𝜈𝑖)]𝑒

[𝜌−𝛼(𝜈𝑗,𝜈𝑖),𝜌
+
𝛼(𝜈𝑗,𝜈𝑖)]2𝜋𝑖,

[𝜇−𝛽(𝜈𝑗, 𝜈𝑖), 𝜇
+
𝛽(𝜈𝑗, 𝜈𝑖)] 𝑒

[𝜌−𝛽(𝜈𝑗,𝜈𝑖),𝜌
+
𝛽(𝜈𝑗,𝜈𝑖)]2𝜋𝑖,

[𝜇−𝛾(𝜈𝑗, 𝜈𝑖), 𝜇
+
𝛾(𝜈𝑗, 𝜈𝑖)] 𝑒

[𝜌−𝛾(𝜈𝑗,𝜈𝑖),𝜌
+
𝛾(𝜈𝑗,𝜈𝑖)]2𝜋𝑖

)

 
 
: (𝜈𝑗, 𝜈𝑖)𝜖 𝛺

}
 
 

 
 

 

ii.An IVCNR 𝛺 is an IVCN-reflexive relation on 𝔄 if 
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∀

{
 
 

 
 

𝜈,

(

 
 

 [𝜇−𝛼(𝜈), 𝜇
+
𝛼
(𝜈)]𝑒[𝜌

−
𝛼(𝜈),𝜌

+
𝛼(𝜈)]2𝜋𝑖,

[𝜇−𝛽(𝜈), 𝜇
+
𝛽
(𝜈)] 𝑒

[𝜌−𝛽(𝜈),𝜌
+
𝛽(𝜈)]2𝜋𝑖,

[𝜇−𝛾(𝜈), 𝜇
+
𝛾
(𝜈)] 𝑒

[𝜌−𝛾(𝜈),𝜌
+
𝛾(𝜈)]2𝜋𝑖

)

 
 

}
 
 

 
 

𝜖 𝔄

⟹

{
 
 

 
 

(𝜈, 𝜈),

(

 
 

 [𝜇−𝛼(𝜈, 𝜈), 𝜇
+
𝛼
(𝜈, 𝜈)]𝑒[𝜌

−
𝛼(𝜈,𝜈),𝜌

+
𝛼(𝜈,𝜈)]2𝜋𝑖,

[𝜇−𝛽(𝜈, 𝜈), 𝜇
+
𝛽
(𝜈, 𝜈)] 𝑒

[𝜌−𝛽(𝜈,𝜈),𝜌
+
𝛽(𝜈,𝜈)]2𝜋𝑖,

[𝜇−𝛾(𝜈, 𝜈), 𝜇
+
𝛾
(𝜈, 𝜈)] 𝑒

[𝜌−𝛾(𝜈,𝜈),𝜌
+
𝛾
(𝜈,𝜈)]2𝜋𝑖

)

 
 

}
 
 

 
 

𝜖𝛺 

iii.An IVCNR 𝛺 is an IVCN-irreflexive relation on 𝔄 if 

∀

{
 
 

 
 

𝜈,

(

 
 

 [𝜇−𝛼(𝜈), 𝜇
+
𝛼
(𝜈)]𝑒[𝜌

−
𝛼(𝜈),𝜌

+
𝛼(𝜈)]2𝜋𝑖,

[𝜇−𝛽(𝜈), 𝜇
+
𝛽
(𝜈)] 𝑒

[𝜌−𝛽(𝜈),𝜌
+
𝛽(𝜈)]2𝜋𝑖,

[𝜇−𝛾(𝜈), 𝜇
+
𝛾
(𝜈)] 𝑒

[𝜌−𝛾(𝜈),𝜌
+
𝛾
(𝜈)]2𝜋𝑖

)

 
 

}
 
 

 
 

𝜖 𝔄

⟹

{
 
 

 
 

(𝜈, 𝜈),

(

 
 

 [𝜇−𝛼(𝜈, 𝜈), 𝜇
+
𝛼
(𝜈, 𝜈)]𝑒[𝜌

−
𝛼(𝜈,𝜈),𝜌

+
𝛼(𝜈,𝜈)]2𝜋𝑖,

[𝜇−𝛽(𝜈, 𝜈), 𝜇
+
𝛽
(𝜈, 𝜈)] 𝑒

[𝜌−𝛽(𝜈,𝜈),𝜌
+
𝛽
(𝜈,𝜈)]2𝜋𝑖

,

[𝜇−𝛾(𝜈, 𝜈), 𝜇
+
𝛾
(𝜈, 𝜈)] 𝑒

[𝜌−𝛾(𝜈,𝜈),𝜌
+
𝛾(𝜈,𝜈)]2𝜋𝑖

)

 
 

}
 
 

 
 

∉ 𝛺 

iv.An IVCNR 𝛺 is an IVCN-symmetric relation on 𝔄 if 

∀

{
 
 

 
 

(𝜈𝑖, 𝜈𝑗),

(

 
 

[𝜇−𝛼(𝜈𝑖, 𝜈𝑗), 𝜇
+
𝛼(𝜈𝑖, 𝜈𝑗)]𝑒

[𝜌−𝛼(𝜈𝑖,𝜈𝑗),𝜌
+
𝛼(𝜈𝑖,𝜈𝑗)]2𝜋𝑖,

[𝜇−𝛽(𝜈𝑖, 𝜈𝑗), 𝜇
+
𝛽(𝜈𝑖, 𝜈𝑗)] 𝑒

[𝜌−𝛽(𝜈𝑖,𝜈𝑗),𝜌
+
𝛽(𝜈𝑖,𝜈𝑗)]2𝜋𝑖,

[𝜇−𝛾(𝜈𝑖, 𝜈𝑗), 𝜇
+
𝛾(𝜈𝑖, 𝜈𝑗)] 𝑒

[𝜌−𝛾(𝜈𝑖,𝜈𝑗),𝜌
+
𝛾(𝜈𝑖,𝜈𝑗)]2𝜋𝑖

)

 
 

}
 
 

 
 

𝜖 𝔄

⟹

{
 
 

 
 

(𝜈𝑖, 𝜈𝑗),

(

 
 

[𝜇−𝛼(𝜈𝑖, 𝜈𝑗), 𝜇
+
𝛼(𝜈𝑖, 𝜈𝑗)]𝑒

[𝜌−𝛼(𝜈𝑖,𝜈𝑗),𝜌
+
𝛼(𝜈𝑖,𝜈𝑗)]2𝜋𝑖,

[𝜇−𝛽(𝜈𝑖, 𝜈𝑗), 𝜇
+
𝛽(𝜈𝑖, 𝜈𝑗)] 𝑒

[𝜌−𝛽(𝜈𝑖,𝜈𝑗),𝜌
+
𝛽(𝜈𝑖,𝜈𝑗)]2𝜋𝑖,

[𝜇−𝛾(𝜈𝑖, 𝜈𝑗), 𝜇
+
𝛾(𝜈𝑖, 𝜈𝑗)] 𝑒

[𝜌−𝛾(𝜈𝑖,𝜈𝑗),𝜌
+
𝛾(𝜈𝑖,𝜈𝑗)]2𝜋𝑖

)

 
 

}
 
 

 
 

𝜖𝛺 

v.An IVCNR 𝛺 is an IVCN-antisymmetric relation on 𝔄 if 

{
 
 

 
 

(𝜈𝑖, 𝜈𝑗),

(

 
 

[𝜇−𝛼(𝜈𝑖, 𝜈𝑗), 𝜇
+
𝛼(𝜈𝑖, 𝜈𝑗)]𝑒

[𝜌−𝛼(𝜈𝑖,𝜈𝑗),𝜌
+
𝛼(𝜈𝑖,𝜈𝑗)]2𝜋𝑖,

[𝜇−𝛽(𝜈𝑖, 𝜈𝑗), 𝜇
+
𝛽(𝜈𝑖, 𝜈𝑗)] 𝑒

[𝜌−𝛽(𝜈𝑖,𝜈𝑗),𝜌
+
𝛽(𝜈𝑖,𝜈𝑗)]2𝜋𝑖,

[𝜇−𝛾(𝜈𝑖, 𝜈𝑗), 𝜇
+
𝛾(𝜈𝑖, 𝜈𝑗)] 𝑒

[𝜌−𝛾(𝜈𝑖,𝜈𝑗),𝜌
+
𝛾(𝜈𝑖,𝜈𝑗)]2𝜋𝑖

)

 
 

}
 
 

 
 

: (𝜈𝑖 , 𝜈𝑗)𝜖 𝛺 

{
 
 

 
 

(𝜈𝑗, 𝜈𝑖),

(

 
 

[𝜇−𝛼(𝜈𝑗, 𝜈𝑖), 𝜇
+
𝛼(𝜈𝑗, 𝜈𝑖)]𝑒

[𝜌−𝛼(𝜈𝑗,𝜈𝑖),𝜌
+
𝛼(𝜈𝑗,𝜈𝑖)]2𝜋𝑖,

[𝜇−𝛽(𝜈𝑗, 𝜈𝑖), 𝜇
+
𝛽(𝜈𝑗, 𝜈𝑖)] 𝑒

[𝜌−𝛽(𝜈𝑗,𝜈𝑖),𝜌
+
𝛽(𝜈𝑗,𝜈𝑖)]2𝜋𝑖,

[𝜇−𝛾(𝜈𝑗, 𝜈𝑖), 𝜇
+
𝛾(𝜈𝑗, 𝜈𝑖)] 𝑒

[𝜌−𝛾(𝜈𝑗,𝜈𝑖),𝜌
+
𝛾(𝜈𝑗,𝜈𝑖)]2𝜋𝑖

)

 
 

}
 
 

 
 

(𝜈𝑗, 𝜈𝑖)𝜖 𝛺 
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⟹

{
 
 

 
 

(𝜈𝑖),

(

 
 

 [𝜇−𝛼(𝜈𝑖), 𝜇
+
𝛼(𝜈𝑖)]𝑒

[𝜌−𝛼(𝜈𝑖),𝜌
+
𝛼(𝜈𝑖)]2𝜋𝑖,

[𝜇−𝛽(𝜈𝑖), 𝜇
+
𝛽(𝜈𝑖)] 𝑒

[𝜌−𝛽(𝜈𝑖),𝜌
+
𝛽(𝜈𝑖)]2𝜋𝑖,

[𝜇−𝛾(𝜈𝑖), 𝜇
+
𝛾(𝜈𝑖)] 𝑒

[𝜌−𝛾(𝜈𝑖),𝜌
+
𝛾(𝜈𝑖)]2𝜋𝑖

)

 
 

}
 
 

 
 

: (𝜈𝑖)𝜖 𝛺 

⟹

{
 
 

 
 

(𝜈𝑗),

(

 
 

 [𝜇−𝛼(𝜈𝑗), 𝜇
+
𝛼(𝜈𝑗)]𝑒

[𝜌−𝛼(𝜈𝑗),𝜌
+
𝛼(𝜈𝑗)]2𝜋𝑖,

[𝜇−𝛽(𝜈𝑗), 𝜇
+
𝛽(𝜈𝑗)] 𝑒

[𝜌−𝛽(𝜈𝑗),𝜌
+
𝛽(𝜈𝑗)]2𝜋𝑖,

[𝜇−𝛾(𝜈𝑗), 𝜇
+
𝛾(𝜈𝑗)] 𝑒

[𝜌−𝛾(𝜈𝑗),𝜌
+
𝛾(𝜈𝑗)]2𝜋𝑖

)

 
 

}
 
 

 
 

: (𝜈𝑗)𝜖 𝛺 

vi.An IVCNR 𝛺 is an IVCN-asymmetric relation on 𝔄 if 

∀

{
 
 

 
 

(𝜈𝑗, 𝜈𝑖),

(

 
 

[𝜇−𝛼(𝜈𝑗, 𝜈𝑖), 𝜇
+
𝛼(𝜈𝑗, 𝜈𝑖)]𝑒

[𝜌−𝛼(𝜈𝑗,𝜈𝑖),𝜌
+
𝛼(𝜈𝑗,𝜈𝑖)]2𝜋𝑖,

[𝜇−𝛽(𝜈𝑗, 𝜈𝑖), 𝜇
+
𝛽(𝜈𝑗, 𝜈𝑖)] 𝑒

[𝜌−𝛽(𝜈𝑗,𝜈𝑖),𝜌
+
𝛽(𝜈𝑗,𝜈𝑖)]2𝜋𝑖,

[𝜇−𝛾(𝜈𝑗, 𝜈𝑖), 𝜇
+
𝛾(𝜈𝑗, 𝜈𝑖)] 𝑒

[𝜌−𝛾(𝜈𝑗,𝜈𝑖),𝜌
+
𝛾(𝜈𝑗,𝜈𝑖)]2𝜋𝑖

)

 
 

}
 
 

 
 

(𝜈𝑗, 𝜈𝑖)𝜖 𝛺 

{
 
 

 
 

(𝜈𝑖, 𝜈𝑗),

(

 
 

[𝜇−𝛼(𝜈𝑖, 𝜈𝑗), 𝜇
+
𝛼(𝜈𝑖, 𝜈𝑗)]𝑒

[𝜌−𝛼(𝜈𝑖,𝜈𝑗),𝜌
+
𝛼(𝜈𝑖,𝜈𝑗)]2𝜋𝑖,

[𝜇−𝛽(𝜈𝑖, 𝜈𝑗), 𝜇
+
𝛽(𝜈𝑖, 𝜈𝑗)] 𝑒

[𝜌−𝛽(𝜈𝑖,𝜈𝑗),𝜌
+
𝛽(𝜈𝑖,𝜈𝑗)]2𝜋𝑖,

[𝜇−𝛾(𝜈𝑖, 𝜈𝑗), 𝜇
+
𝛾(𝜈𝑖, 𝜈𝑗)] 𝑒

[𝜌−𝛾(𝜈𝑖,𝜈𝑗),𝜌
+
𝛾(𝜈𝑖,𝜈𝑗)]2𝜋𝑖

)

 
 

}
 
 

 
 

: (𝜈𝑖 , 𝜈𝑗) ∉  𝛺 

vii.An IVCNR 𝛺 is an IVCN-transitive relation on 𝔄 if 

{
 
 

 
 

(𝜈𝑖, 𝜈𝑗),

(

 
 

[𝜇−𝛼(𝜈𝑖, 𝜈𝑗), 𝜇
+
𝛼(𝜈𝑖, 𝜈𝑗)]𝑒

[𝜌−𝛼(𝜈𝑖,𝜈𝑗),𝜌
+
𝛼(𝜈𝑖,𝜈𝑗)]2𝜋𝑖,

[𝜇−𝛽(𝜈𝑖, 𝜈𝑗), 𝜇
+
𝛽(𝜈𝑖, 𝜈𝑗)] 𝑒

[𝜌−𝛽(𝜈𝑖,𝜈𝑗),𝜌
+
𝛽(𝜈𝑖,𝜈𝑗)]2𝜋𝑖,

[𝜇−𝛾(𝜈𝑖, 𝜈𝑗), 𝜇
+
𝛾(𝜈𝑖, 𝜈𝑗)] 𝑒

[𝜌−𝛾(𝜈𝑖,𝜈𝑗),𝜌
+
𝛾(𝜈𝑖,𝜈𝑗)]2𝜋𝑖

)

 
 

}
 
 

 
 

: (𝜈𝑖 , 𝜈𝑗)𝜖 𝛺 

{
 
 

 
 

(𝜈𝑗, 𝜈𝑘),

(

 
 

 [𝜇−𝛼(𝜈𝑗, 𝜈𝑘), 𝜇
+
𝛼(𝜈𝑗, 𝜈𝑘)]𝑒

[𝜌−𝛼(𝜈𝑗,𝜈𝑘),𝜌
+
𝛼(𝜈𝑗,𝜈𝑘)]2𝜋𝑖,

[𝜇−𝛽(𝜈𝑗, 𝜈𝑘), 𝜇
+
𝛽(𝜈𝑗, 𝜈𝑘)] 𝑒

[𝜌−𝛽(𝜈𝑗,𝜈𝑘),𝜌
+
𝛽(𝜈𝑗,𝜈𝑘)]2𝜋𝑖,

[𝜇−𝛾(𝜈𝑗, 𝜈𝑘), 𝜇
+
𝛾(𝜈𝑗, 𝜈𝑘)] 𝑒

[𝜌−𝛾(𝜈𝑗,𝜈𝑘)𝜌
+
𝛾(𝜈𝑗,𝜈𝑘)]2𝜋𝑖

)

 
 

}
 
 

 
 

: (𝜈𝑗, 𝜈𝑘)𝜖 𝛺 

{
 
 

 
 

(𝜈𝑘, 𝜈𝑖),

(

 
 

 [𝜇−𝛼(𝜈𝑘 , 𝜈𝑖), 𝜇
+
𝛼
(𝜈𝑘, 𝜈𝑖)]𝑒

[𝜌−𝛼(𝜈𝑘,𝜈𝑖),𝜌
+
𝛼(𝜈𝑘,𝜈𝑖)]2𝜋𝑖,

[𝜇−𝛽(𝜈𝑘, 𝜈𝑖), 𝜇
+
𝛽
(𝜈𝑘 , 𝜈𝑖)] 𝑒

[𝜌−𝛽(𝜈𝑘,𝜈𝑖),𝜌
+
𝛽(𝜈𝑘,𝜈𝑖)]2𝜋𝑖,

[𝜇−𝛾(𝜈𝑘, 𝜈𝑖), 𝜇
+
𝛾
(𝜈𝑘, 𝜈𝑖)] 𝑒

[𝜌−𝛾(𝜈𝑘,𝜈𝑖),𝜌
+
𝛾(𝜈𝑘,𝜈𝑖)]2𝜋𝑖

)

 
 

}
 
 

 
 

: (𝜈𝑘, 𝜈𝑖)𝜖 𝛺 

viii.An IVCNR 𝛺 is an IVCN- composite relation on 𝔄 if 

{
 
 

 
 

(𝜈𝑖, 𝜈𝑗),

(

 
 

[𝜇−𝛼(𝜈𝑖, 𝜈𝑗), 𝜇
+
𝛼(𝜈𝑖, 𝜈𝑗)]𝑒

[𝜌−𝛼(𝜈𝑖,𝜈𝑗),𝜌
+
𝛼(𝜈𝑖,𝜈𝑗)]2𝜋𝑖,

[𝜇−𝛽(𝜈𝑖, 𝜈𝑗), 𝜇
+
𝛽(𝜈𝑖, 𝜈𝑗)] 𝑒

[𝜌−𝛽(𝜈𝑖,𝜈𝑗),𝜌
+
𝛽(𝜈𝑖,𝜈𝑗)]2𝜋𝑖,

[𝜇−𝛾(𝜈𝑖, 𝜈𝑗), 𝜇
+
𝛾(𝜈𝑖, 𝜈𝑗)] 𝑒

[𝜌−𝛾(𝜈𝑖,𝜈𝑗),𝜌
+
𝛾(𝜈𝑖,𝜈𝑗)]2𝜋𝑖

)

 
 

}
 
 

 
 

: (𝜈𝑖, 𝜈𝑗)𝜖 𝛺1 

and 



10 Int. J. Anal. Appl. (2025), 23:132 

 

{
 
 

 
 

(𝜈𝑗, 𝜈𝑘),

(

 
 

 [𝜇−𝛼(𝜈𝑗, 𝜈𝑘), 𝜇
+
𝛼(𝜈𝑗, 𝜈𝑘)]𝑒

[𝜌−𝛼(𝜈𝑗,𝜈𝑘),𝜌
+
𝛼(𝜈𝑗,𝜈𝑘)]2𝜋𝑖,

[𝜇−𝛽(𝜈𝑗, 𝜈𝑘), 𝜇
+
𝛽(𝜈𝑗, 𝜈𝑘)] 𝑒

[𝜌−𝛽(𝜈𝑗,𝜈𝑘),𝜌
+
𝛽(𝜈𝑗,𝜈𝑘)]2𝜋𝑖,

[𝜇−𝛾(𝜈𝑗, 𝜈𝑘), 𝜇
+
𝛾(𝜈𝑗, 𝜈𝑘)] 𝑒

[𝜌−𝛾(𝜈𝑗,𝜈𝑘)𝜌
+
𝛾(𝜈𝑗,𝜈𝑘)]2𝜋𝑖

)

 
 

}
 
 

 
 

: (𝜈𝑗, 𝜈𝑘)𝜖 𝛺2 

Then  

{
 
 

 
 

(𝜈𝑖, 𝜈𝑘),

(

 
 

 [𝜇−𝛼(𝜈𝑖, 𝜈𝑘), 𝜇
+
𝛼
(𝜈𝑖, 𝜈𝑘)]𝑒

[𝜌−𝛼(𝜈𝑖,𝜈𝑘),𝜌
+
𝛼(𝜈𝑖,𝜈𝑘)]2𝜋𝑖,

[𝜇−𝛽(𝜈𝑖, 𝜈𝑘), 𝜇
+
𝛽
(𝜈𝑖, 𝜈𝑘)] 𝑒

[𝜌−𝛽(𝜈𝑖,𝜈𝑘),𝜌
+
𝛽
(𝜈𝑖,𝜈𝑘)]2𝜋𝑖,

[𝜇−𝛾(𝜈𝑖, 𝜈𝑘), 𝜇
+
𝛾
(𝜈𝑖, 𝜈𝑘)] 𝑒

[𝜌−𝛾(𝜈𝑖,𝜈𝑘),𝜌
+
𝛾(𝜈𝑖,𝜈𝑘)]2𝜋𝑖

)

 
 

}
 
 

 
 

: (𝜈𝑖, 𝜈𝑘)ϵ𝛺1 ∘ 𝛺2 

ix.An IVCNR 𝛺 is an IVCN-order relation on 𝔄 if 𝛺 is IVCN-transitive relation, IVCN-

antisymmetric relation, and IVCN-reflexive relation.  

x.An IVCNR 𝛺 is an IVCN-equivalence relation on 𝔄 if 𝛺 is IVCN-transitive relation, IVCN-

symmetric relation, and IVCN-reflexive relation.  

Example 3.4. Let an IVCNS 

𝔄 = {

(𝜈1, [0.6,0.9]𝑒
[0.3,0.6]2𝜋𝑖, [1,2]𝑒[0,5,0.9]2𝜋𝑖, [0,0.8]𝑒[0.9,1]2𝜋𝑖),

(𝜈2, [0.3,1]𝑒
[0,0.5]2𝜋𝑖, [0.9,2]𝑒[0.2,0.9]2𝜋𝑖, [0,0.5]𝑒[0,0.3]2𝜋𝑖),

(𝜈3, [0.8, 1]𝑒
[0.8,2]2𝜋𝑖, [0.7,1]𝑒[0,1]2𝜋𝑖, [1,2]𝑒[0.1,0.6]2𝜋𝑖)

} 

The CP of 𝔄 to itself 

𝔄 × 𝔄 =

{
 
 
 
 
 
 

 
 
 
 
 
 ((𝜈1, 𝜈1), [0.6,0.9]𝑒

[0.3,0.6]2𝜋𝑖, [1,2]𝑒[0,5,0.9]2𝜋𝑖, [0,0.8]𝑒[0.9,1]2𝜋𝑖) ,

((𝜈1, 𝜈2), [0.3,0.9]𝑒
[0,0.5]2𝜋𝑖, [0.9,2]𝑒[0.2,0.9]2𝜋𝑖, [0,0.8]𝑒[0.9,1]2𝜋𝑖),

((𝜈1, 𝜈3), [0.6, 0.9]𝑒
[0.3,0.6]2𝜋𝑖, [0.7,1]𝑒[0,0.9]2𝜋𝑖, [1,2]𝑒[0.9,1]2𝜋𝑖),

((𝜈2, 𝜈1), [0.3,0.9]𝑒
[0,0.5]2𝜋𝑖, [0.9,2]𝑒[0.2,0.9]2𝜋𝑖, [0,0.8]𝑒[0.9,1]2𝜋𝑖) ,

((𝜈2, 𝜈2), [0.3,1]𝑒
[0,0.5]2𝜋𝑖, [0.9,2]𝑒[0.2,0.9]2𝜋𝑖, [0,0.5]𝑒[0,0.3]2𝜋𝑖),

((𝜈2, 𝜈3), [0.3, 1]𝑒
[0,0.5]2𝜋𝑖, [0.7,1]𝑒[0,0.9]2𝜋𝑖, [1,2]𝑒[0.1,0.6]2𝜋𝑖),

((𝜈3, 𝜈1), [0.6, 0.9]𝑒
[0.3,0.6]2𝜋𝑖, [0.7,1]𝑒[0,0.9]2𝜋𝑖, [1,2]𝑒[0.9,1]2𝜋𝑖) ,

((𝜈3, 𝜈2), [0.3, 1]𝑒
[0,0.5]2𝜋𝑖, [0.7,1]𝑒[0,0.9]2𝜋𝑖, [1,2]𝑒[0.1,0.6]2𝜋𝑖),

((𝜈3, 𝜈3), [0.8, 1]𝑒
[0.8,2]2𝜋𝑖, [0.7,1]𝑒[0,1]2𝜋𝑖, [1,2]𝑒[0.1,0.6]2𝜋𝑖) }

 
 
 
 
 
 

 
 
 
 
 
 

 

o The IVCNR  𝛺1 is IVCN-equivalence relation on 𝔄 

𝛺1 =

{
  
 

  
 ((𝜈1, 𝜈1), [0.6,0.9]𝑒

[0.3,0.6]2𝜋𝑖, [1,2]𝑒[0,5,0.9]2𝜋𝑖, [0,0.8]𝑒[0.9,1]2𝜋𝑖) ,

((𝜈1, 𝜈3), [0.6, 0.9]𝑒
[0.3,0.6]2𝜋𝑖, [0.7,1]𝑒[0,0.9]2𝜋𝑖, [1,2]𝑒[0.9,1]2𝜋𝑖),

((𝜈3, 𝜈1), [0.6, 0.9]𝑒
[0.3,0.6]2𝜋𝑖, [0.7,1]𝑒[0,0.9]2𝜋𝑖, [1,2]𝑒[0.9,1]2𝜋𝑖) ,

((𝜈3, 𝜈3), [0.8, 1]𝑒
[0.8,2]2𝜋𝑖, [0.7,1]𝑒[0,1]2𝜋𝑖, [1,2]𝑒[0.1,0.6]2𝜋𝑖),

((𝜈2, 𝜈2), [0.3,1]𝑒
[0,0.5]2𝜋𝑖, [0.9,2]𝑒[0.2,0.9]2𝜋𝑖, [0,0.5]𝑒[0,0.3]2𝜋𝑖) }

  
 

  
 

 

o The IVCNR  𝛺1 is IVCN-order relation on 𝔄 
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𝛺2 =

{
 
 

 
 
((𝜈2, 𝜈2), [0.3,1]𝑒

[0,0.5]2𝜋𝑖, [0.9,2]𝑒[0.2,0.9]2𝜋𝑖, [0,0.5]𝑒[0,0.3]2𝜋𝑖),

((𝜈1, 𝜈2), [0.3,0.9]𝑒
[0,0.5]2𝜋𝑖, [0.9,2]𝑒[0.2,0.9]2𝜋𝑖, [0,0.8]𝑒[0.9,1]2𝜋𝑖),

((𝜈2, 𝜈3), [0.3, 1]𝑒
[0,0.5]2𝜋𝑖, [0.7,1]𝑒[0,0.9]2𝜋𝑖, [1,2]𝑒[0.1,0.6]2𝜋𝑖),

((𝜈3, 𝜈1), [0.6, 0.9]𝑒
[0.3,0.6]2𝜋𝑖, [0.7,1]𝑒[0,0.9]2𝜋𝑖, [1,2]𝑒[0.9,1]2𝜋𝑖) , }

 
 

 
 

, 

o The IVCNR  𝛺3 is IVCN-composite relation on 𝔄 

𝛺3 = {

((𝜈1, 𝜈2), [0.3,0.9]𝑒
[0,0.5]2𝜋𝑖, [0.9,2]𝑒[0.2,0.9]2𝜋𝑖, [0,0.8]𝑒[0.9,1]2𝜋𝑖),

((𝜈2, 𝜈3), [0.3, 1]𝑒
[0,0.5]2𝜋𝑖, [0.7,1]𝑒[0,0.9]2𝜋𝑖, [1,2]𝑒[0.1,0.6]2𝜋𝑖),

((𝜈1, 𝜈3), [0.6, 0.9]𝑒
[0.3,0.6]2𝜋𝑖, [0.7,1]𝑒[0,0.9]2𝜋𝑖, [1,2]𝑒[0.9,1]2𝜋𝑖)

}, 

o The IVCNR  𝛺4 is IVCN-transitive relation on 𝔄 

𝛺4 =

{
 
 

 
 ((𝜈1, 𝜈1), [0.6,0.9]𝑒

[0.3,0.6]2𝜋𝑖, [1,2]𝑒[0,5,0.9]2𝜋𝑖, [0,0.8]𝑒[0.9,1]2𝜋𝑖) ,

((𝜈1, 𝜈3), [0.6, 0.9]𝑒
[0.3,0.6]2𝜋𝑖, [0.7,1]𝑒[0,0.9]2𝜋𝑖, [1,2]𝑒[0.9,1]2𝜋𝑖),

((𝜈3, 𝜈1), [0.6, 0.9]𝑒
[0.3,0.6]2𝜋𝑖, [0.7,1]𝑒[0,0.9]2𝜋𝑖, [1,2]𝑒[0.9,1]2𝜋𝑖)

}
 
 

 
 

 

Theorem 3.5. An IVCNR Ω is an IVCN-symmetric relation if and only if Ω = Ω−1. 

Proof. Consider Ω = Ω−1, then 

{
 
 

 
 

(𝜈𝑖, 𝜈𝑗),

(

 
 

 [𝜇−𝛼(𝜈𝑖, 𝜈𝑗), 𝜇
+
𝛼(𝜈𝑖, 𝜈𝑗)]𝑒

[𝜌−𝛼(𝜈𝑖,𝜈𝑗),𝜌
+
𝛼(𝜈𝑖,𝜈𝑗)]2𝜋𝑖,

[𝜇−𝛽(𝜈𝑖, 𝜈𝑗), 𝜇
+
𝛽(𝜈𝑖, 𝜈𝑗)] 𝑒

[𝜌−𝛽(𝜈𝑖,𝜈𝑗),𝜌
+
𝛽(𝜈𝑖,𝜈𝑗)]2𝜋𝑖,

[𝜇−𝛾(𝜈𝑖, 𝜈𝑗), 𝜇
+
𝛾(𝜈𝑖, 𝜈𝑗)] 𝑒

[𝜌−𝛾(𝜈𝑖,𝜈𝑗),𝜌
+
𝛾(𝜈𝑖,𝜈𝑗)]2𝜋𝑖

)

 
 

}
 
 

 
 

: (𝜈𝑖 , 𝜈𝑗)𝜖 𝛺 

Implies 

{
 
 

 
 

(𝜈𝑗, 𝜈𝑖),

(

 
 

 [𝜇−𝛼(𝜈𝑗, 𝜈𝑖), 𝜇
+
𝛼(𝜈𝑗, 𝜈𝑖)]𝑒

[𝜌−𝛼(𝜈𝑗,𝜈𝑖),𝜌
+
𝛼(𝜈𝑗,𝜈𝑖)]2𝜋𝑖,

[𝜇−𝛽(𝜈𝑗, 𝜈𝑖), 𝜇
+
𝛽(𝜈𝑗, 𝜈𝑖)] 𝑒

[𝜌−𝛽(𝜈𝑗,𝜈𝑖),𝜌
+
𝛽(𝜈𝑗,𝜈𝑖)]2𝜋𝑖,

[𝜇−𝛾(𝜈𝑗, 𝜈𝑖), 𝜇
+
𝛾(𝜈𝑗, 𝜈𝑖)] 𝑒

[𝜌−𝛾(𝜈𝑗,𝜈𝑖),𝜌
+
𝛾(𝜈𝑗,𝜈𝑖)]2𝜋𝑖

)

 
 

}
 
 

 
 

: (𝜈𝑗, 𝜈𝑖)𝜖 𝛺
−1 

But Ω = Ω−1, Therefore  

{
 
 

 
 

(𝜈𝑗, 𝜈𝑖),

(

 
 

 [𝜇−𝛼(𝜈𝑗, 𝜈𝑖), 𝜇
+
𝛼(𝜈𝑗, 𝜈𝑖)]𝑒

[𝜌−𝛼(𝜈𝑗,𝜈𝑖),𝜌
+
𝛼(𝜈𝑗,𝜈𝑖)]2𝜋𝑖,

[𝜇−𝛽(𝜈𝑗, 𝜈𝑖), 𝜇
+
𝛽(𝜈𝑗, 𝜈𝑖)] 𝑒

[𝜌−𝛽(𝜈𝑗,𝜈𝑖),𝜌
+
𝛽(𝜈𝑗,𝜈𝑖)]2𝜋𝑖,

[𝜇−𝛾(𝜈𝑗, 𝜈𝑖), 𝜇
+
𝛾(𝜈𝑗, 𝜈𝑖)] 𝑒

[𝜌−𝛾(𝜈𝑗,𝜈𝑖),𝜌
+
𝛾(𝜈𝑗,𝜈𝑖)]2𝜋𝑖

)

 
 

}
 
 

 
 

: (𝜈𝑗, 𝜈𝑖)𝜖𝛺 

So, 𝛺 is an IVCN-symmetric relation. 

Again, suppose that 𝛺 is an IVCN-symmetric relation, then 

{
 
 

 
 

(𝜈𝑖, 𝜈𝑗),

(

 
 

 [𝜇−𝛼(𝜈𝑖, 𝜈𝑗), 𝜇
+
𝛼(𝜈𝑖, 𝜈𝑗)]𝑒

[𝜌−𝛼(𝜈𝑖,𝜈𝑗),𝜌
+
𝛼(𝜈𝑖,𝜈𝑗)]2𝜋𝑖,

[𝜇−𝛽(𝜈𝑖, 𝜈𝑗), 𝜇
+
𝛽(𝜈𝑖, 𝜈𝑗)] 𝑒

[𝜌−𝛽(𝜈𝑖,𝜈𝑗),𝜌
+
𝛽(𝜈𝑖,𝜈𝑗)]2𝜋𝑖,

[𝜇−𝛾(𝜈𝑖, 𝜈𝑗), 𝜇
+
𝛾(𝜈𝑖, 𝜈𝑗)] 𝑒

[𝜌−𝛾(𝜈𝑖,𝜈𝑗),𝜌
+
𝛾(𝜈𝑖,𝜈𝑗)]2𝜋𝑖

)

 
 

}
 
 

 
 

: (𝜈𝑖 , 𝜈𝑗)𝜖 𝛺 

Implies 
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{
 
 

 
 

(𝜈𝑗, 𝜈𝑖),

(

 
 

 [𝜇−𝛼(𝜈𝑗, 𝜈𝑖), 𝜇
+
𝛼(𝜈𝑗, 𝜈𝑖)]𝑒

[𝜌−𝛼(𝜈𝑗,𝜈𝑖),𝜌
+
𝛼(𝜈𝑗,𝜈𝑖)]2𝜋𝑖,

[𝜇−𝛽(𝜈𝑗, 𝜈𝑖), 𝜇
+
𝛽(𝜈𝑗, 𝜈𝑖)] 𝑒

[𝜌−𝛽(𝜈𝑗,𝜈𝑖),𝜌
+
𝛽(𝜈𝑗,𝜈𝑖)]2𝜋𝑖,

[𝜇−𝛾(𝜈𝑗, 𝜈𝑖), 𝜇
+
𝛾(𝜈𝑗, 𝜈𝑖)] 𝑒

[𝜌−𝛾(𝜈𝑗,𝜈𝑖)𝜌
+
𝛾(𝜈𝑗,𝜈𝑖)]2𝜋𝑖

)

 
 

}
 
 

 
 

: (𝜈𝑗, 𝜈𝑖)𝜖 𝛺 

But 

{
 
 

 
 

(𝜈𝑖, 𝜈𝑗),

(

 
 

 [𝜇−𝛼(𝜈𝑖, 𝜈𝑗), 𝜇
+
𝛼(𝜈𝑖, 𝜈𝑗)]𝑒

[𝜌−𝛼(𝜈𝑖,𝜈𝑗),𝜌
+
𝛼(𝜈𝑖,𝜈𝑗)]2𝜋𝑖,

[𝜇−𝛽(𝜈𝑖, 𝜈𝑗), 𝜇
+
𝛽(𝜈𝑖, 𝜈𝑗)] 𝑒

[𝜌−𝛽(𝜈𝑖,𝜈𝑗),𝜌
+
𝛽(𝜈𝑖,𝜈𝑗)]2𝜋𝑖,

[𝜇−𝛾(𝜈𝑖, 𝜈𝑗), 𝜇
+
𝛾(𝜈𝑖, 𝜈𝑗)] 𝑒

[𝜌−𝛾(𝜈𝑖,𝜈𝑗),𝜌
+
𝛾(𝜈𝑖,𝜈𝑗)]2𝜋𝑖

)

 
 

}
 
 

 
 

: (𝜈𝑖 , 𝜈𝑗)𝜖 𝛺 

Implies 

{
 
 

 
 

(𝜈𝑗, 𝜈𝑖),

(

 
 

 [𝜇−𝛼(𝜈𝑗, 𝜈𝑖), 𝜇
+
𝛼(𝜈𝑗, 𝜈𝑖)]𝑒

[𝜌−𝛼(𝜈𝑗,𝜈𝑖),𝜌
+
𝛼(𝜈𝑗,𝜈𝑖)]2𝜋𝑖,

[𝜇−𝛽(𝜈𝑗, 𝜈𝑖), 𝜇
+
𝛽(𝜈𝑗, 𝜈𝑖)] 𝑒

[𝜌−𝛽(𝜈𝑗,𝜈𝑖),𝜌
+
𝛽(𝜈𝑗,𝜈𝑖)]2𝜋𝑖,

[𝜇−𝛾(𝜈𝑗, 𝜈𝑖), 𝜇
+
𝛾(𝜈𝑗, 𝜈𝑖)] 𝑒

[𝜌−𝛾(𝜈𝑗,𝜈𝑖)𝜌
+
𝛾(𝜈𝑗,𝜈𝑖)]2𝜋𝑖

)

 
 

}
 
 

 
 

: (𝜈𝑗, 𝜈𝑖)𝜖 𝛺
−1 

This Implies that 𝛺=𝛺−1. □ 

Theorem 3.6. For IVCN symmetric relation 𝛺1and 𝛺2, the intersection 𝛺1⋂𝛺2 is also an IVCN 

symmetric relation.  

Proof. Consider 𝛺1and 𝛺2 are two IVCN symmetric relations on an IVCNS 𝔄. Using the 

definition of IVCNR, 𝛺1 ⊆ 𝔄 × 𝔄  and 𝛺2 ⊆ 𝔄 ×𝔄  implies 𝛺1⋂𝛺2 ⊆ 𝔄 × 𝔄. 

This implies that 𝛺1⋂𝛺2 is IVCNR on 𝔄. 

Now, again if 

{
 
 

 
 

(𝜈𝑖, 𝜈𝑗),

(

 
 

 [𝜇−𝛼(𝜈𝑖, 𝜈𝑗), 𝜇
+
𝛼(𝜈𝑖, 𝜈𝑗)]𝑒

[𝜌−𝛼(𝜈𝑖,𝜈𝑗),𝜌
+
𝛼(𝜈𝑖,𝜈𝑗)]2𝜋𝑖,

[𝜇−𝛽(𝜈𝑖, 𝜈𝑗), 𝜇
+
𝛽(𝜈𝑖, 𝜈𝑗)] 𝑒

[𝜌−𝛽(𝜈𝑖,𝜈𝑗),𝜌
+
𝛽(𝜈𝑖,𝜈𝑗)]2𝜋𝑖,

[𝜇−𝛾(𝜈𝑖, 𝜈𝑗), 𝜇
+
𝛾(𝜈𝑖, 𝜈𝑗)] 𝑒

[𝜌−𝛾(𝜈𝑖,𝜈𝑗),𝜌
+
𝛾(𝜈𝑖,𝜈𝑗)]2𝜋𝑖

)

 
 

}
 
 

 
 

𝜖𝛺1⋂𝛺2 

implies  

{
 
 

 
 

(𝜈𝑖, 𝜈𝑗),

(

 
 

 [𝜇−𝛼(𝜈𝑖, 𝜈𝑗), 𝜇
+
𝛼(𝜈𝑖, 𝜈𝑗)]𝑒

[𝜌−𝛼(𝜈𝑖,𝜈𝑗),𝜌
+
𝛼(𝜈𝑖,𝜈𝑗)]2𝜋𝑖,

[𝜇−𝛽(𝜈𝑖, 𝜈𝑗), 𝜇
+
𝛽(𝜈𝑖, 𝜈𝑗)] 𝑒

[𝜌−𝛽(𝜈𝑖,𝜈𝑗),𝜌
+
𝛽(𝜈𝑖,𝜈𝑗)]2𝜋𝑖,

[𝜇−𝛾(𝜈𝑖, 𝜈𝑗), 𝜇
+
𝛾(𝜈𝑖, 𝜈𝑗)] 𝑒

[𝜌−𝛾(𝜈𝑖,𝜈𝑗),𝜌
+
𝛾(𝜈𝑖,𝜈𝑗)]2𝜋𝑖

)

 
 

}
 
 

 
 

𝜖𝛺1, 

{
 
 

 
 

(𝜈𝑖, 𝜈𝑗),

(

 
 

 [𝜇−𝛼(𝜈𝑖, 𝜈𝑗), 𝜇
+
𝛼(𝜈𝑖, 𝜈𝑗)]𝑒

[𝜌−𝛼(𝜈𝑖,𝜈𝑗),𝜌
+
𝛼(𝜈𝑖,𝜈𝑗)]2𝜋𝑖,

[𝜇−𝛽(𝜈𝑖, 𝜈𝑗), 𝜇
+
𝛽(𝜈𝑖, 𝜈𝑗)] 𝑒

[𝜌−𝛽(𝜈𝑖,𝜈𝑗),𝜌
+
𝛽(𝜈𝑖,𝜈𝑗)]2𝜋𝑖,

[𝜇−𝛾(𝜈𝑖, 𝜈𝑗), 𝜇
+
𝛾(𝜈𝑖, 𝜈𝑗)] 𝑒

[𝜌−𝛾(𝜈𝑖,𝜈𝑗),𝜌
+
𝛾(𝜈𝑖,𝜈𝑗)]2𝜋𝑖

)

 
 

}
 
 

 
 

 𝜖𝛺2. 

As 𝛺1 and 𝛺2 are IVCN symmetric relations, 
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{
 
 

 
 

(𝜈𝑗, 𝜈𝑖),

(

 
 

 [𝜇−𝛼(𝜈𝑗, 𝜈𝑖), 𝜇
+
𝛼(𝜈𝑗, 𝜈𝑖)]𝑒

[𝜌−𝛼(𝜈𝑗,𝜈𝑖),𝜌
+
𝛼(𝜈𝑗,𝜈𝑖)]2𝜋𝑖,

[𝜇−𝛽(𝜈𝑗, 𝜈𝑖), 𝜇
+
𝛽(𝜈𝑗, 𝜈𝑖)] 𝑒

[𝜌−𝛽(𝜈𝑗,𝜈𝑖),𝜌
+
𝛽(𝜈𝑗,𝜈𝑖)]2𝜋𝑖,

[𝜇−𝛾(𝜈𝑗, 𝜈𝑖), 𝜇
+
𝛾(𝜈𝑗, 𝜈𝑖)] 𝑒

[𝜌−𝛾(𝜈𝑗,𝜈𝑖)𝜌
+
𝛾(𝜈𝑗,𝜈𝑖)]2𝜋𝑖

)

 
 

}
 
 

 
 

: 𝜖𝛺1, 

{
 
 

 
 

(𝜈𝑗, 𝜈𝑖),

(

 
 

 [𝜇−𝛼(𝜈𝑗, 𝜈𝑖), 𝜇
+
𝛼(𝜈𝑗, 𝜈𝑖)]𝑒

[𝜌−𝛼(𝜈𝑗,𝜈𝑖),𝜌
+
𝛼(𝜈𝑗,𝜈𝑖)]2𝜋𝑖,

[𝜇−𝛽(𝜈𝑗, 𝜈𝑖), 𝜇
+
𝛽(𝜈𝑗, 𝜈𝑖)] 𝑒

[𝜌−𝛽(𝜈𝑗,𝜈𝑖),𝜌
+
𝛽(𝜈𝑗,𝜈𝑖)]2𝜋𝑖,

[𝜇−𝛾(𝜈𝑗, 𝜈𝑖), 𝜇
+
𝛾(𝜈𝑗, 𝜈𝑖)] 𝑒

[𝜌−𝛾(𝜈𝑗,𝜈𝑖)𝜌
+
𝛾(𝜈𝑗,𝜈𝑖)]2𝜋𝑖

)

 
 

}
 
 

 
 

: 𝜖𝛺2, 

Implies 

{
 
 

 
 

(𝜈𝑗, 𝜈𝑖),

(

 
 

 [𝜇−𝛼(𝜈𝑗, 𝜈𝑖), 𝜇
+
𝛼(𝜈𝑗, 𝜈𝑖)]𝑒

[𝜌−𝛼(𝜈𝑗,𝜈𝑖),𝜌
+
𝛼(𝜈𝑗,𝜈𝑖)]2𝜋𝑖,

[𝜇−𝛽(𝜈𝑗, 𝜈𝑖), 𝜇
+
𝛽(𝜈𝑗, 𝜈𝑖)] 𝑒

[𝜌−𝛽(𝜈𝑗,𝜈𝑖),𝜌
+
𝛽(𝜈𝑗,𝜈𝑖)]2𝜋𝑖,

[𝜇−𝛾(𝜈𝑗, 𝜈𝑖), 𝜇
+
𝛾(𝜈𝑗, 𝜈𝑖)] 𝑒

[𝜌−𝛾(𝜈𝑗,𝜈𝑖)𝜌
+
𝛾(𝜈𝑗,𝜈𝑖)]2𝜋𝑖

)

 
 

}
 
 

 
 

: 𝜖𝛺1⋂𝛺2. 

Hence proved that the intersection of two IVCN symmetric relations is also IVCN symmetric 

relation. □ 

Theorem 3.7. An IVCNR Ω is an IVCN transitive relation if and only if Ω ∘ Ω ⊆ Ω. 

Proof. Consider that Ω is an IVCN transitive relation, then  

{
 
 

 
 

(𝜈𝑖, 𝜈𝑗),

(

 
 

 [𝜇−𝛼(𝜈𝑖, 𝜈𝑗), 𝜇
+
𝛼(𝜈𝑖, 𝜈𝑗)]𝑒

[𝜌−𝛼(𝜈𝑖,𝜈𝑗),𝜌
+
𝛼(𝜈𝑖,𝜈𝑗)]2𝜋𝑖,

[𝜇−𝛽(𝜈𝑖, 𝜈𝑗), 𝜇
+
𝛽(𝜈𝑖, 𝜈𝑗)] 𝑒

[𝜌−𝛽(𝜈𝑖,𝜈𝑗),𝜌
+
𝛽(𝜈𝑖,𝜈𝑗)]2𝜋𝑖,

[𝜇−𝛾(𝜈𝑖, 𝜈𝑗), 𝜇
+
𝛾(𝜈𝑖, 𝜈𝑗)] 𝑒

[𝜌−𝛾(𝜈𝑖,𝜈𝑗),𝜌
+
𝛾(𝜈𝑖,𝜈𝑗)]2𝜋𝑖

)

 
 

}
 
 

 
 

ϵ Ω 

and  

{
 
 

 
 

(𝜈𝑗, 𝜈𝑘),

(

 
 

 [𝜇−𝛼(𝜈𝑗, 𝜈𝑘), 𝜇
+
𝛼(𝜈𝑗, 𝜈𝑘)]𝑒

[𝜌−𝛼(𝜈𝑗,𝜈𝑘),𝜌
+
𝛼(𝜈𝑗,𝜈𝑘)]2𝜋𝑖,

[𝜇−𝛽(𝜈𝑗, 𝜈𝑘), 𝜇
+
𝛽(𝜈𝑗, 𝜈𝑘)] 𝑒

[𝜌−𝛽(𝜈𝑗,𝜈𝑘),𝜌
+
𝛽(𝜈𝑗,𝜈𝑘)]2𝜋𝑖,

[𝜇−𝛾(𝜈𝑗, 𝜈𝑘), 𝜇
+
𝛾(𝜈𝑗, 𝜈𝑘)] 𝑒

[𝜌−𝛾(𝜈𝑗,𝜈𝑘)𝜌
+
𝛾(𝜈𝑗,𝜈𝑘)]2𝜋𝑖

)

 
 

}
 
 

 
 

 ϵ Ω, 

implies that 

{
 
 

 
 

(𝜈𝑖, 𝜈𝑘),

(

 
 

 [𝜇−𝛼(𝜈𝑖, 𝜈𝑘), 𝜇
+
𝛼
(𝜈𝑖, 𝜈𝑘)]𝑒

[𝜌−𝛼(𝜈𝑖,𝜈𝑘),𝜌
+
𝛼(𝜈𝑖,𝜈𝑘)]2𝜋𝑖,

[𝜇−𝛽(𝜈𝑖, 𝜈𝑘), 𝜇
+
𝛽
(𝜈𝑖, 𝜈𝑘)] 𝑒

[𝜌−𝛽(𝜈𝑖,𝜈𝑘),𝜌
+
𝛽(𝜈𝑖,𝜈𝑘)]2𝜋𝑖,

[𝜇−𝛾(𝜈𝑖, 𝜈𝑘), 𝜇
+
𝛾
(𝜈𝑖, 𝜈𝑘)] 𝑒

[𝜌−𝛾(𝜈𝑖,𝜈𝑘),𝜌
+
𝛾(𝜈𝑖,𝜈𝑘)]2𝜋𝑖

)

 
 

}
 
 

 
 

ϵ Ω. 

But 

{
 
 

 
 

(𝜈𝑖 , 𝜈𝑘),

(

 
 

 [𝜇−𝛼(𝜈𝑖, 𝜈𝑘), 𝜇
+
𝛼
(𝜈𝑖, 𝜈𝑘)]𝑒

[𝜌−𝛼(𝜈𝑖,𝜈𝑘),𝜌
+
𝛼(𝜈𝑖,𝜈𝑘)]2𝜋𝑖,

[𝜇−𝛽(𝜈𝑖, 𝜈𝑘), 𝜇
+
𝛽
(𝜈𝑖, 𝜈𝑘)] 𝑒

[𝜌−𝛽(𝜈𝑖,𝜈𝑘),𝜌
+
𝛽(𝜈𝑖,𝜈𝑘)]2𝜋𝑖,

[𝜇−𝛾(𝜈𝑖, 𝜈𝑘), 𝜇
+
𝛾
(𝜈𝑖, 𝜈𝑘)] 𝑒

[𝜌−𝛾(𝜈𝑖,𝜈𝑘),𝜌
+
𝛾(𝜈𝑖,𝜈𝑘)]2𝜋𝑖

)

 
 

}
 
 

 
 

ϵ Ω°Ω. 

Hence  Ω ∘ Ω ⊆ Ω. 
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On the other hand, let Ω ∘ Ω ⊆ Ω, then  

{
 
 

 
 

(𝜈𝑖, 𝜈𝑗),

(

 
 

 [𝜇−𝛼(𝜈𝑖, 𝜈𝑗), 𝜇
+
𝛼(𝜈𝑖, 𝜈𝑗)]𝑒

[𝜌−𝛼(𝜈𝑖,𝜈𝑗),𝜌
+
𝛼(𝜈𝑖,𝜈𝑗)]2𝜋𝑖,

[𝜇−𝛽(𝜈𝑖, 𝜈𝑗), 𝜇
+
𝛽(𝜈𝑖, 𝜈𝑗)] 𝑒

[𝜌−𝛽(𝜈𝑖,𝜈𝑗),𝜌
+
𝛽(𝜈𝑖,𝜈𝑗)]2𝜋𝑖,

[𝜇−𝛾(𝜈𝑖, 𝜈𝑗), 𝜇
+
𝛾(𝜈𝑖, 𝜈𝑗)] 𝑒

[𝜌−𝛾(𝜈𝑖,𝜈𝑗),𝜌
+
𝛾(𝜈𝑖,𝜈𝑗)]2𝜋𝑖

)

 
 

}
 
 

 
 

ϵ Ω 

and  

{
 
 

 
 

(𝜈𝑗, 𝜈𝑘),

(

 
 

 [𝜇−𝛼(𝜈𝑗, 𝜈𝑘), 𝜇
+
𝛼(𝜈𝑗, 𝜈𝑘)]𝑒

[𝜌−𝛼(𝜈𝑗,𝜈𝑘),𝜌
+
𝛼(𝜈𝑗,𝜈𝑘)]2𝜋𝑖,

[𝜇−𝛽(𝜈𝑗, 𝜈𝑘), 𝜇
+
𝛽(𝜈𝑗, 𝜈𝑘)] 𝑒

[𝜌−𝛽(𝜈𝑗,𝜈𝑘),𝜌
+
𝛽(𝜈𝑗,𝜈𝑘)]2𝜋𝑖,

[𝜇−𝛾(𝜈𝑗, 𝜈𝑘), 𝜇
+
𝛾(𝜈𝑗, 𝜈𝑘)] 𝑒

[𝜌−𝛾(𝜈𝑗,𝜈𝑘)𝜌
+
𝛾(𝜈𝑗,𝜈𝑘)]2𝜋𝑖

)

 
 

}
 
 

 
 

 ϵ Ω, 

implies  

{
 
 

 
 

(𝜈𝑗, 𝜈𝑘),

(

 
 

 [𝜇−𝛼(𝜈𝑗, 𝜈𝑘), 𝜇
+
𝛼(𝜈𝑗, 𝜈𝑘)]𝑒

[𝜌−𝛼(𝜈𝑗,𝜈𝑘),𝜌
+
𝛼(𝜈𝑗,𝜈𝑘)]2𝜋𝑖,

[𝜇−𝛽(𝜈𝑗, 𝜈𝑘), 𝜇
+
𝛽(𝜈𝑗, 𝜈𝑘)] 𝑒

[𝜌−𝛽(𝜈𝑗,𝜈𝑘),𝜌
+
𝛽(𝜈𝑗,𝜈𝑘)]2𝜋𝑖,

[𝜇−𝛾(𝜈𝑗, 𝜈𝑘), 𝜇
+
𝛾(𝜈𝑗, 𝜈𝑘)] 𝑒

[𝜌−𝛾(𝜈𝑗,𝜈𝑘)𝜌
+
𝛾(𝜈𝑗,𝜈𝑘)]2𝜋𝑖

)

 
 

}
 
 

 
 

 ϵ Ω°Ω, 

But Ω°Ω ⊆ Ω implies that 

{
 
 

 
 

(𝜈𝑗, 𝜈𝑘),

(

 
 

 [𝜇−𝛼(𝜈𝑗, 𝜈𝑘), 𝜇
+
𝛼(𝜈𝑗, 𝜈𝑘)]𝑒

[𝜌−𝛼(𝜈𝑗,𝜈𝑘),𝜌
+
𝛼(𝜈𝑗,𝜈𝑘)]2𝜋𝑖,

[𝜇−𝛽(𝜈𝑗, 𝜈𝑘), 𝜇
+
𝛽(𝜈𝑗, 𝜈𝑘)] 𝑒

[𝜌−𝛽(𝜈𝑗,𝜈𝑘),𝜌
+
𝛽(𝜈𝑗,𝜈𝑘)]2𝜋𝑖,

[𝜇−𝛾(𝜈𝑗, 𝜈𝑘), 𝜇
+
𝛾(𝜈𝑗, 𝜈𝑘)] 𝑒

[𝜌−𝛾(𝜈𝑗,𝜈𝑘)𝜌
+
𝛾(𝜈𝑗,𝜈𝑘)]2𝜋𝑖

)

 
 

}
 
 

 
 

 ϵ Ω 

So Ω is an IVCN transitive relation. □ 

Theorem 3.8. An IVCN equivalence relation implies that  Ω = Ω ∘ Ω. 

Proof. Since an IVCN equivalence relation Ω is also an IVCN transitive relation, then by the 

pervious theorem, Ω ∘ Ω ⊆ Ω.  

(1) Now assume that  

{
 
 

 
 

(𝜈𝑖, 𝜈𝑗),

(

 
 

 [𝜇−𝛼(𝜈𝑖, 𝜈𝑗), 𝜇
+
𝛼(𝜈𝑖, 𝜈𝑗)]𝑒

[𝜌−𝛼(𝜈𝑖,𝜈𝑗),𝜌
+
𝛼(𝜈𝑖,𝜈𝑗)]2𝜋𝑖,

[𝜇−𝛽(𝜈𝑖, 𝜈𝑗), 𝜇
+
𝛽(𝜈𝑖, 𝜈𝑗)] 𝑒

[𝜌−𝛽(𝜈𝑖,𝜈𝑗),𝜌
+
𝛽(𝜈𝑖,𝜈𝑗)]2𝜋𝑖,

[𝜇−𝛾(𝜈𝑖, 𝜈𝑗), 𝜇
+
𝛾(𝜈𝑖, 𝜈𝑗)] 𝑒

[𝜌−𝛾(𝜈𝑖,𝜈𝑗),𝜌
+
𝛾(𝜈𝑖,𝜈𝑗)]2𝜋𝑖

)

 
 

}
 
 

 
 

ϵ Ω   (2) 

As Ω is an IVCN equivalence relation, Ω satisfies the properties of IVCN symmetric relation and 

IVCN transitive relation, implies that  

{
 
 

 
 

(𝜈𝑗, 𝜈𝑖),

(

 
 

 [𝜇−𝛼(𝜈𝑗, 𝜈𝑖), 𝜇
+
𝛼(𝜈𝑗, 𝜈𝑖)]𝑒

[𝜌−𝛼(𝜈𝑗,𝜈𝑖),𝜌
+
𝛼(𝜈𝑗,𝜈𝑖)]2𝜋𝑖,

[𝜇−𝛽(𝜈𝑗, 𝜈𝑖), 𝜇
+
𝛽(𝜈𝑗, 𝜈𝑖)] 𝑒

[𝜌−𝛽(𝜈𝑗,𝜈𝑖),𝜌
+
𝛽(𝜈𝑗,𝜈𝑖)]2𝜋𝑖,

[𝜇−𝛾(𝜈𝑗, 𝜈𝑖), 𝜇
+
𝛾(𝜈𝑗, 𝜈𝑖)] 𝑒

[𝜌−𝛾(𝜈𝑗,𝜈𝑖)𝜌
+
𝛾(𝜈𝑗,𝜈𝑖)]2𝜋𝑖

)

 
 

}
 
 

 
 

ϵ Ω   (3) 

Equation (2), (3) implies that 
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{
 
 

 
 

(𝜈, 𝜈),

(

 
 

 [𝜇−𝛼(𝜈, 𝜈), 𝜇
+
𝛼
(𝜈, 𝜈)]𝑒[𝜌

−
𝛼(𝜈,𝜈),𝜌

+
𝛼(𝜈,𝜈)]2𝜋𝑖,

[𝜇−𝛽(𝜈, 𝜈), 𝜇
+
𝛽
(𝜈, 𝜈)] 𝑒

[𝜌−𝛽(𝜈,𝜈),𝜌
+
𝛽(𝜈,𝜈)]2𝜋𝑖,

[𝜇−𝛾(𝜈, 𝜈), 𝜇
+
𝛾
(𝜈, 𝜈)] 𝑒

[𝜌−𝛾(𝜈,𝜈),𝜌
+
𝛾(𝜈,𝜈)]2𝜋𝑖

)

 
 

}
 
 

 
 

ϵ Ω    (4) 

But with IVCN composite relation, 

{
 
 

 
 

(𝜈, 𝜈),

(

 
 

 [𝜇−𝛼(𝜈, 𝜈), 𝜇
+
𝛼
(𝜈, 𝜈)]𝑒[𝜌

−
𝛼(𝜈,𝜈),𝜌

+
𝛼(𝜈,𝜈)]2𝜋𝑖,

[𝜇−𝛽(𝜈, 𝜈), 𝜇
+
𝛽
(𝜈, 𝜈)] 𝑒

[𝜌−𝛽(𝜈,𝜈),𝜌
+
𝛽(𝜈,𝜈)]2𝜋𝑖,

[𝜇−𝛾(𝜈, 𝜈), 𝜇
+
𝛾
(𝜈, 𝜈)] 𝑒

[𝜌−𝛾(𝜈,𝜈),𝜌
+
𝛾
(𝜈,𝜈)]2𝜋𝑖

)

 
 

}
 
 

 
 

ϵ Ω°Ω    (5) 

So, this implies that Ω = Ω ∘ Ω                             (6) 

From (1) and (6), we have 𝛺 = Ω ∘ Ω. □ 

Theorem 3.9. The inverse IVCNR 𝛺−1 of an IVCN order relation 𝛺 is also an IVCN order 

relation. 

Proof. The inverse IVCNR 𝛺−1 of an IVCN order relation 𝛺 is also an IVCN order relation if it 

satisfies the three properties: 

∀ 𝜈𝜖𝔄, 

{
 
 

 
 

(𝜈, 𝜈),

(

 
 

 [𝜇−𝛼(𝜈, 𝜈), 𝜇
+
𝛼
(𝜈, 𝜈)]𝑒[𝜌

−
𝛼(𝜈,𝜈),𝜌

+
𝛼(𝜈,𝜈)]2𝜋𝑖,

[𝜇−𝛽(𝜈, 𝜈), 𝜇
+
𝛽
(𝜈, 𝜈)] 𝑒

[𝜌−𝛽(𝜈,𝜈),𝜌
+
𝛽(𝜈,𝜈)]2𝜋𝑖,

[𝜇−𝛾(𝜈, 𝜈), 𝜇
+
𝛾
(𝜈, 𝜈)] 𝑒

[𝜌−𝛾(𝜈,𝜈),𝜌
+
𝛾(𝜈,𝜈)]2𝜋𝑖

)

 
 

}
 
 

 
 

ϵ Ω 

since Ω is also an IVCN reflexive relation: 

Implies 

{
 
 

 
 

(𝜈, 𝜈),

(

 
 

 [𝜇−𝛼(𝜈, 𝜈), 𝜇
+
𝛼
(𝜈, 𝜈)]𝑒[𝜌

−
𝛼(𝜈,𝜈),𝜌

+
𝛼(𝜈,𝜈)]2𝜋𝑖,

[𝜇−𝛽(𝜈, 𝜈), 𝜇
+
𝛽
(𝜈, 𝜈)] 𝑒

[𝜌−𝛽(𝜈,𝜈),𝜌
+
𝛽
(𝜈,𝜈)]2𝜋𝑖

,

[𝜇−𝛾(𝜈, 𝜈), 𝜇
+
𝛾
(𝜈, 𝜈)] 𝑒

[𝜌−𝛾(𝜈,𝜈),𝜌
+
𝛾(𝜈,𝜈)]2𝜋𝑖

)

 
 

}
 
 

 
 

ϵ 𝛺−1   (7) 

Thus, 𝛺−1 is an IVCN reflexive relation. 

▪ Consider  

{
 
 

 
 

(𝜈𝑖, 𝜈𝑗),

(

 
 

 [𝜇−𝛼(𝜈𝑖, 𝜈𝑗), 𝜇
+
𝛼(𝜈𝑖, 𝜈𝑗)]𝑒

[𝜌−𝛼(𝜈𝑖,𝜈𝑗),𝜌
+
𝛼(𝜈𝑖,𝜈𝑗)]2𝜋𝑖,

[𝜇−𝛽(𝜈𝑖, 𝜈𝑗), 𝜇
+
𝛽(𝜈𝑖, 𝜈𝑗)] 𝑒

[𝜌−𝛽(𝜈𝑖,𝜈𝑗),𝜌
+
𝛽(𝜈𝑖,𝜈𝑗)]2𝜋𝑖,

[𝜇−𝛾(𝜈𝑖, 𝜈𝑗), 𝜇
+
𝛾(𝜈𝑖, 𝜈𝑗)] 𝑒

[𝜌−𝛾(𝜈𝑖,𝜈𝑗),𝜌
+
𝛾(𝜈𝑖,𝜈𝑗)]2𝜋𝑖

)

 
 

}
 
 

 
 

ϵ Ω, 

{
 
 

 
 

(𝜈𝑗, 𝜈𝑖),

(

 
 

 [𝜇−𝛼(𝜈𝑗, 𝜈𝑖), 𝜇
+
𝛼(𝜈𝑗, 𝜈𝑖)]𝑒

[𝜌−𝛼(𝜈𝑗,𝜈𝑖),𝜌
+
𝛼(𝜈𝑗,𝜈𝑖)]2𝜋𝑖,

[𝜇−𝛽(𝜈𝑗, 𝜈𝑖), 𝜇
+
𝛽(𝜈𝑗, 𝜈𝑖)] 𝑒

[𝜌−𝛽(𝜈𝑗,𝜈𝑖),𝜌
+
𝛽(𝜈𝑗,𝜈𝑖)]2𝜋𝑖,

[𝜇−𝛾(𝜈𝑗, 𝜈𝑖), 𝜇
+
𝛾(𝜈𝑗, 𝜈𝑖)] 𝑒

[𝜌−𝛾(𝜈𝑗,𝜈𝑖)𝜌
+
𝛾(𝜈𝑗,𝜈𝑖)]2𝜋𝑖

)

 
 

}
 
 

 
 

ϵ Ω, 

Implies 
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{
 
 

 
 

(𝜈𝑗, 𝜈𝑖),

(

 
 

 [𝜇−𝛼(𝜈𝑗, 𝜈𝑖), 𝜇
+
𝛼(𝜈𝑗, 𝜈𝑖)]𝑒

[𝜌−𝛼(𝜈𝑗,𝜈𝑖),𝜌
+
𝛼(𝜈𝑗,𝜈𝑖)]2𝜋𝑖,

[𝜇−𝛽(𝜈𝑗, 𝜈𝑖), 𝜇
+
𝛽(𝜈𝑗, 𝜈𝑖)] 𝑒

[𝜌−𝛽(𝜈𝑗,𝜈𝑖),𝜌
+
𝛽(𝜈𝑗,𝜈𝑖)]2𝜋𝑖,

[𝜇−𝛾(𝜈𝑗, 𝜈𝑖), 𝜇
+
𝛾(𝜈𝑗, 𝜈𝑖)] 𝑒

[𝜌−𝛾(𝜈𝑗,𝜈𝑖)𝜌
+
𝛾(𝜈𝑗,𝜈𝑖)]2𝜋𝑖

)

 
 

}
 
 

 
 

ϵ Ω−1, 

         

{
 
 

 
 

(𝜈𝑖, 𝜈𝑗),

(

 
 

 [𝜇−𝛼(𝜈𝑖, 𝜈𝑗), 𝜇
+
𝛼(𝜈𝑖, 𝜈𝑗)]𝑒

[𝜌−𝛼(𝜈𝑖,𝜈𝑗),𝜌
+
𝛼(𝜈𝑖,𝜈𝑗)]2𝜋𝑖,

[𝜇−𝛽(𝜈𝑖, 𝜈𝑗), 𝜇
+
𝛽(𝜈𝑖, 𝜈𝑗)] 𝑒

[𝜌−𝛽(𝜈𝑖,𝜈𝑗),𝜌
+
𝛽(𝜈𝑖,𝜈𝑗)]2𝜋𝑖,

[𝜇−𝛾(𝜈𝑖, 𝜈𝑗), 𝜇
+
𝛾(𝜈𝑖, 𝜈𝑗)] 𝑒

[𝜌−𝛾(𝜈𝑖,𝜈𝑗),𝜌
+
𝛾(𝜈𝑖,𝜈𝑗)]2𝜋𝑖

)

 
 

}
 
 

 
 

ϵ Ω−1   (8) 

But Ω is also an IVCN antisymmetric relation. So  

{
 
 

 
 

(𝜈𝑖, 𝜈𝑗),

(

 
 

 [𝜇−𝛼(𝜈𝑖, 𝜈𝑗), 𝜇
+
𝛼(𝜈𝑖, 𝜈𝑗)]𝑒

[𝜌−𝛼(𝜈𝑖,𝜈𝑗),𝜌
+
𝛼(𝜈𝑖,𝜈𝑗)]2𝜋𝑖,

[𝜇−𝛽(𝜈𝑖, 𝜈𝑗), 𝜇
+
𝛽(𝜈𝑖, 𝜈𝑗)] 𝑒

[𝜌−𝛽(𝜈𝑖,𝜈𝑗),𝜌
+
𝛽(𝜈𝑖,𝜈𝑗)]2𝜋𝑖,

[𝜇−𝛾(𝜈𝑖, 𝜈𝑗), 𝜇
+
𝛾(𝜈𝑖, 𝜈𝑗)] 𝑒

[𝜌−𝛾(𝜈𝑖,𝜈𝑗),𝜌
+
𝛾(𝜈𝑖,𝜈𝑗)]2𝜋𝑖

)

 
 

}
 
 

 
 

=

{
 
 

 
 

(𝜈𝑗, 𝜈𝑖),

(

 
 

 [𝜇−𝛼(𝜈𝑗, 𝜈𝑖), 𝜇
+
𝛼(𝜈𝑗, 𝜈𝑖)]𝑒

[𝜌−𝛼(𝜈𝑗,𝜈𝑖),𝜌
+
𝛼(𝜈𝑗,𝜈𝑖)]2𝜋𝑖,

[𝜇−𝛽(𝜈𝑗, 𝜈𝑖), 𝜇
+
𝛽(𝜈𝑗, 𝜈𝑖)] 𝑒

[𝜌−𝛽(𝜈𝑗,𝜈𝑖),𝜌
+
𝛽(𝜈𝑗,𝜈𝑖)]2𝜋𝑖,

[𝜇−𝛾(𝜈𝑗, 𝜈𝑖), 𝜇
+
𝛾(𝜈𝑗, 𝜈𝑖)] 𝑒

[𝜌−𝛾(𝜈𝑗,𝜈𝑖)𝜌
+
𝛾(𝜈𝑗,𝜈𝑖)]2𝜋𝑖

)

 
 

}
 
 

 
 

          (9) 

Therefore, Ω−1 is IVCN antisymmetric relation. 

▪ Assume  

{
 
 

 
 

(𝜈𝑖, 𝜈𝑗),

(

 
 

 [𝜇−𝛼(𝜈𝑖, 𝜈𝑗), 𝜇
+
𝛼(𝜈𝑖, 𝜈𝑗)]𝑒

[𝜌−𝛼(𝜈𝑖,𝜈𝑗),𝜌
+
𝛼(𝜈𝑖,𝜈𝑗)]2𝜋𝑖,

[𝜇−𝛽(𝜈𝑖, 𝜈𝑗), 𝜇
+
𝛽(𝜈𝑖, 𝜈𝑗)] 𝑒

[𝜌−𝛽(𝜈𝑖,𝜈𝑗),𝜌
+
𝛽(𝜈𝑖,𝜈𝑗)]2𝜋𝑖,

[𝜇−𝛾(𝜈𝑖, 𝜈𝑗), 𝜇
+
𝛾(𝜈𝑖, 𝜈𝑗)] 𝑒

[𝜌−𝛾(𝜈𝑖,𝜈𝑗),𝜌
+
𝛾(𝜈𝑖,𝜈𝑗)]2𝜋𝑖

)

 
 

}
 
 

 
 

ϵ Ω, 

{
 
 

 
 

(𝜈𝑗, 𝜈𝑘),

(

 
 

 [𝜇−𝛼(𝜈𝑗, 𝜈𝑘), 𝜇
+
𝛼(𝜈𝑗, 𝜈𝑘)]𝑒

[𝜌−𝛼(𝜈𝑗,𝜈𝑘),𝜌
+
𝛼(𝜈𝑗,𝜈𝑘)]2𝜋𝑖,

[𝜇−𝛽(𝜈𝑗, 𝜈𝑘), 𝜇
+
𝛽(𝜈𝑗, 𝜈𝑘)] 𝑒

[𝜌−𝛽(𝜈𝑗,𝜈𝑘),𝜌
+
𝛽(𝜈𝑗,𝜈𝑘)]2𝜋𝑖,

[𝜇−𝛾(𝜈𝑗, 𝜈𝑘), 𝜇
+
𝛾(𝜈𝑗, 𝜈𝑘)] 𝑒

[𝜌−𝛾(𝜈𝑗,𝜈𝑘)𝜌
+
𝛾(𝜈𝑗,𝜈𝑘)]2𝜋𝑖

)

 
 

}
 
 

 
 

 ϵ Ω, 

Implies that 

{
 
 

 
 

(𝜈𝑗, 𝜈𝑖),

(

 
 

 [𝜇−𝛼(𝜈𝑗, 𝜈𝑖), 𝜇
+
𝛼(𝜈𝑗, 𝜈𝑖)]𝑒

[𝜌−𝛼(𝜈𝑗,𝜈𝑖),𝜌
+
𝛼(𝜈𝑗,𝜈𝑖)]2𝜋𝑖,

[𝜇−𝛽(𝜈𝑗, 𝜈𝑖), 𝜇
+
𝛽(𝜈𝑗, 𝜈𝑖)] 𝑒

[𝜌−𝛽(𝜈𝑗,𝜈𝑖),𝜌
+
𝛽(𝜈𝑗,𝜈𝑖)]2𝜋𝑖,

[𝜇−𝛾(𝜈𝑗, 𝜈𝑖), 𝜇
+
𝛾(𝜈𝑗, 𝜈𝑖)] 𝑒

[𝜌−𝛾(𝜈𝑗,𝜈𝑖)𝜌
+
𝛾(𝜈𝑗,𝜈𝑖)]2𝜋𝑖

)

 
 

}
 
 

 
 

 ϵ Ω−1, 

{
 
 

 
 

(𝜈𝑘 , 𝜈𝑗),

(

 
 

 [𝜇−𝛼(𝜈𝑘, 𝜈𝑗), 𝜇
+
𝛼(𝜈𝑘, 𝜈𝑗)]𝑒

[𝜌−𝛼(𝜈𝑘,𝜈𝑗),𝜌
+
𝛼(𝜈𝑘,𝜈𝑗)]2𝜋𝑖,

[𝜇−𝛽(𝜈𝑘, 𝜈𝑗), 𝜇
+
𝛽(𝜈𝑘, 𝜈𝑗)] 𝑒

[𝜌−𝛽(𝜈𝑘,𝜈𝑗),𝜌
+
𝛽(𝜈𝑘,𝜈𝑗)]2𝜋𝑖,

[𝜇−𝛾(𝜈𝑘 , 𝜈𝑗), 𝜇
+
𝛾(𝜈𝑘, 𝜈𝑗)] 𝑒

[𝜌−𝛾(𝜈𝑘,𝜈𝑗)𝜌
+
𝛾(𝜈𝑘,𝜈𝑗)]2𝜋𝑖

)

 
 

}
 
 

 
 

 ϵ Ω−1               (10) 

But Ω is also an IVCN transitive relation. Consequently, 
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{
 
 

 
 

(𝜈𝑖, 𝜈𝑘),

(

 
 

 [𝜇−𝛼(𝜈𝑖, 𝜈𝑘), 𝜇
+
𝛼
(𝜈𝑖, 𝜈𝑘)]𝑒

[𝜌−𝛼(𝜈𝑖,𝜈𝑘),𝜌
+
𝛼(𝜈𝑖,𝜈𝑘)]2𝜋𝑖,

[𝜇−𝛽(𝜈𝑖, 𝜈𝑘), 𝜇
+
𝛽
(𝜈𝑖, 𝜈𝑘)] 𝑒

[𝜌−𝛽(𝜈𝑖,𝜈𝑘),𝜌
+
𝛽(𝜈𝑖,𝜈𝑘)]2𝜋𝑖,

[𝜇−𝛾(𝜈𝑖, 𝜈𝑘), 𝜇
+
𝛾
(𝜈𝑖, 𝜈𝑘)] 𝑒

[𝜌−𝛾(𝜈𝑖,𝜈𝑘),𝜌
+
𝛾(𝜈𝑖,𝜈𝑘)]2𝜋𝑖

)

 
 

}
 
 

 
 

ϵ Ω, this implies that  

{
 
 

 
 

(𝜈𝑘 , 𝜈𝑖),

(

 
 

 [𝜇−𝛼(𝜈𝑘, 𝜈𝑖), 𝜇
+
𝛼
(𝜈𝑘 , 𝜈𝑖)]𝑒

[𝜌−𝛼(𝜈𝑘,𝜈𝑖),𝜌
+
𝛼(𝜈𝑘,𝜈𝑖)]2𝜋𝑖,

[𝜇−𝛽(𝜈𝑘, 𝜈𝑖), 𝜇
+
𝛽
(𝜈𝑘, 𝜈𝑖)] 𝑒

[𝜌−𝛽(𝜈𝑘,𝜈𝑖),𝜌
+
𝛽(𝜈𝑘,𝜈𝑖)]2𝜋𝑖,

[𝜇−𝛾(𝜈𝑘 , 𝜈𝑖), 𝜇
+
𝛾
(𝜈𝑘, 𝜈𝑖)] 𝑒

[𝜌−𝛾(𝜈𝑘,𝜈𝑖),𝜌
+
𝛾(𝜈𝑘,𝜈𝑖)]2𝜋𝑖

)

 
 

}
 
 

 
 

ϵ Ω−1  (11) 

Hence, Ω−1 is an IVCN transitive relation. Thus with (7), (9), and (11), Ω−1 is also an IVCN order 

relation. □ 

Theorem 3.10. For an IVCN equivalence relation Ω.  

{
 
 

 
 

(𝜈𝑖, 𝜈𝑗),

(

 
 

 [𝜇−𝛼(𝜈𝑖, 𝜈𝑗), 𝜇
+
𝛼(𝜈𝑖, 𝜈𝑗)]𝑒

[𝜌−𝛼(𝜈𝑖,𝜈𝑗),𝜌
+
𝛼(𝜈𝑖,𝜈𝑗)]2𝜋𝑖,

[𝜇−𝛽(𝜈𝑖, 𝜈𝑗), 𝜇
+
𝛽(𝜈𝑖, 𝜈𝑗)] 𝑒

[𝜌−𝛽(𝜈𝑖,𝜈𝑗),𝜌
+
𝛽(𝜈𝑖,𝜈𝑗)]2𝜋𝑖,

[𝜇−𝛾(𝜈𝑖, 𝜈𝑗), 𝜇
+
𝛾(𝜈𝑖, 𝜈𝑗)] 𝑒

[𝜌−𝛾(𝜈𝑖,𝜈𝑗),𝜌
+
𝛾(𝜈𝑖,𝜈𝑗)]2𝜋𝑖

)

 
 

}
 
 

 
 

ϵ Ω if and only if  Ω𝜈𝑖 = Ω𝜈𝑗. 

Proof. Consider Ω𝜈𝑖 = Ω𝜈𝑗, then 𝜈𝑘𝜖𝔄, 

{
 
 

 
 

𝜈𝑘 ,

(

 
 

 [𝜇−𝛼(𝜈𝑘), 𝜇
+
𝛼
(𝜈𝑘)]𝑒

[𝜌−𝛼(𝜈𝑘),𝜌
+
𝛼
(𝜈𝑘)]2𝜋𝑖,

[𝜇−𝛽(𝜈𝑘), 𝜇
+
𝛽
(𝜈𝑘)] 𝑒

[𝜌−𝛽(𝜈𝑘),𝜌
+
𝛽(𝜈𝑘)]2𝜋𝑖,

[𝜇−𝛾(𝜈𝑘), 𝜇
+
𝛾
(𝜈𝑘)] 𝑒

[𝜌−𝛾(𝜈𝑘),𝜌
+
𝛾
(𝜈𝑘)]2𝜋𝑖

)

 
 

}
 
 

 
 

𝜖 Ω𝜈𝑖   

Implies 

{
 
 

 
 

(𝜈𝑘 , 𝜈𝑖),

(

 
 

 [𝜇−𝛼(𝜈𝑘, 𝜈𝑖), 𝜇
+
𝛼
(𝜈𝑘 , 𝜈𝑖)]𝑒

[𝜌−𝛼(𝜈𝑘,𝜈𝑖),𝜌
+
𝛼(𝜈𝑘,𝜈𝑖)]2𝜋𝑖,

[𝜇−𝛽(𝜈𝑘 , 𝜈𝑖), 𝜇
+
𝛽
(𝜈𝑘, 𝜈𝑖)] 𝑒

[𝜌−𝛽(𝜈𝑘,𝜈𝑖),𝜌
+
𝛽(𝜈𝑘,𝜈𝑖)]2𝜋𝑖,

[𝜇−𝛾(𝜈𝑘 , 𝜈𝑖), 𝜇
+
𝛾
(𝜈𝑘, 𝜈𝑖)] 𝑒

[𝜌−𝛾(𝜈𝑘,𝜈𝑖),𝜌
+
𝛾(𝜈𝑘,𝜈𝑖)]2𝜋𝑖

)

 
 

}
 
 

 
 

𝜖𝛺 

Implies 

{
 
 

 
 

(𝜈𝑖, 𝜈𝑘),

(

 
 

 [𝜇−𝛼(𝜈𝑖, 𝜈𝑘), 𝜇
+
𝛼
(𝜈𝑖, 𝜈𝑘)]𝑒

[𝜌−𝛼(𝜈𝑖,𝜈𝑘),𝜌
+
𝛼
(𝜈𝑖,𝜈𝑘)]2𝜋𝑖,

[𝜇−𝛽(𝜈𝑖, 𝜈𝑘), 𝜇
+
𝛽
(𝜈𝑖, 𝜈𝑘)] 𝑒

[𝜌−𝛽(𝜈𝑖,𝜈𝑘),𝜌
+
𝛽(𝜈𝑖,𝜈𝑘)]2𝜋𝑖,

[𝜇−𝛾(𝜈𝑖, 𝜈𝑘), 𝜇
+
𝛾
(𝜈𝑖, 𝜈𝑘)] 𝑒

[𝜌−𝛾(𝜈𝑖,𝜈𝑘),𝜌
+
𝛾(𝜈𝑖,𝜈𝑘)]2𝜋𝑖

)

 
 

}
 
 

 
 

𝜖𝛺         (12) 

Since 𝛺 is an IVCN symmetric relation. 

In the same manner,  

{
 
 

 
 

𝜈𝑘 ,

(

 
 

 [𝜇−𝛼(𝜈𝑘), 𝜇
+
𝛼
(𝜈𝑘)]𝑒

[𝜌−𝛼(𝜈𝑘),𝜌
+
𝛼(𝜈𝑘)]2𝜋𝑖,

[𝜇−𝛽(𝜈𝑘), 𝜇
+
𝛽
(𝜈𝑘)] 𝑒

[𝜌−𝛽(𝜈𝑘),𝜌
+
𝛽
(𝜈𝑘)]2𝜋𝑖,

[𝜇−𝛾(𝜈𝑘), 𝜇
+
𝛾
(𝜈𝑘)] 𝑒

[𝜌−𝛾(𝜈𝑘),𝜌
+
𝛾(𝜈𝑘)]2𝜋𝑖

)

 
 

}
 
 

 
 

𝜖 Ω𝜈𝑗   
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Implies 

{
 
 

 
 

(𝜈𝑘 , 𝜈𝑗),

(

 
 

 [𝜇−𝛼(𝜈𝑘, 𝜈𝑗), 𝜇
+
𝛼(𝜈𝑘, 𝜈𝑗)]𝑒

[𝜌−𝛼(𝜈𝑘,𝜈𝑗),𝜌
+
𝛼(𝜈𝑘,𝜈𝑗)]2𝜋𝑖,

[𝜇−𝛽(𝜈𝑘, 𝜈𝑗), 𝜇
+
𝛽(𝜈𝑘, 𝜈𝑗)] 𝑒

[𝜌−𝛽(𝜈𝑘,𝜈𝑗),𝜌
+
𝛽(𝜈𝑘,𝜈𝑗)]2𝜋𝑖,

[𝜇−𝛾(𝜈𝑘, 𝜈𝑗), 𝜇
+
𝛾(𝜈𝑘 , 𝜈𝑗)] 𝑒

[𝜌−𝛾(𝜈𝑘,𝜈𝑗),𝜌
+
𝛾(𝜈𝑘,𝜈𝑗)]2𝜋𝑖

)

 
 

}
 
 

 
 

𝜖𝛺 

Implies 

{
 
 

 
 

(𝜈𝑖, 𝜈𝑗),

(

 
 

 [𝜇−𝛼(𝜈𝑖, 𝜈𝑗), 𝜇
+
𝛼(𝜈𝑖, 𝜈𝑗)]𝑒

[𝜌−𝛼(𝜈𝑖,𝜈𝑗),𝜌
+
𝛼(𝜈𝑖,𝜈𝑗)]2𝜋𝑖,

[𝜇−𝛽(𝜈𝑖, 𝜈𝑗), 𝜇
+
𝛽(𝜈𝑖, 𝜈𝑗)] 𝑒

[𝜌−𝛽(𝜈𝑖,𝜈𝑗),𝜌
+
𝛽(𝜈𝑖,𝜈𝑗)]2𝜋𝑖,

[𝜇−𝛾(𝜈𝑖, 𝜈𝑗), 𝜇
+
𝛾(𝜈𝑖, 𝜈𝑗)] 𝑒

[𝜌−𝛾(𝜈𝑖,𝜈𝑗),𝜌
+
𝛾(𝜈𝑖,𝜈𝑗)]2𝜋𝑖

)

 
 

}
 
 

 
 

𝜖𝛺 

Because 𝛺 is an IVCN transitive relation. 

Conversely, assume  

{
 
 

 
 

(𝜈𝑖, 𝜈𝑗),

(

 
 

 [𝜇−𝛼(𝜈𝑖, 𝜈𝑗), 𝜇
+
𝛼(𝜈𝑖, 𝜈𝑗)]𝑒

[𝜌−𝛼(𝜈𝑖,𝜈𝑗),𝜌
+
𝛼(𝜈𝑖,𝜈𝑗)]2𝜋𝑖,

[𝜇−𝛽(𝜈𝑖, 𝜈𝑗), 𝜇
+
𝛽(𝜈𝑖, 𝜈𝑗)] 𝑒

[𝜌−𝛽(𝜈𝑖,𝜈𝑗),𝜌
+
𝛽(𝜈𝑖,𝜈𝑗)]2𝜋𝑖,

[𝜇−𝛾(𝜈𝑖, 𝜈𝑗), 𝜇
+
𝛾(𝜈𝑖, 𝜈𝑗)] 𝑒

[𝜌−𝛾(𝜈𝑖,𝜈𝑗),𝜌
+
𝛾(𝜈𝑖,𝜈𝑗)]2𝜋𝑖

)

 
 

}
 
 

 
 

𝜖𝛺, 

{
 
 

 
 

𝜈𝑘 ,

(

 
 

 [𝜇−𝛼(𝜈𝑘), 𝜇
+
𝛼
(𝜈𝑘)]𝑒

[𝜌−𝛼(𝜈𝑘),𝜌
+
𝛼(𝜈𝑘)]2𝜋𝑖,

[𝜇−𝛽(𝜈𝑘), 𝜇
+
𝛽
(𝜈𝑘)] 𝑒

[𝜌−𝛽(𝜈𝑘),𝜌
+
𝛽(𝜈𝑘)]2𝜋𝑖,

[𝜇−𝛾(𝜈𝑘), 𝜇
+
𝛾
(𝜈𝑘)] 𝑒

[𝜌−𝛾(𝜈𝑘),𝜌
+
𝛾(𝜈𝑘)]2𝜋𝑖

)

 
 

}
 
 

 
 

𝜖 Ω𝜈𝑖, implies  

{
 
 

 
 

(𝜈𝑘 , 𝜈𝑖),

(

 
 

 [𝜇−𝛼(𝜈𝑘, 𝜈𝑖), 𝜇
+
𝛼
(𝜈𝑘 , 𝜈𝑖)]𝑒

[𝜌−𝛼(𝜈𝑘,𝜈𝑖),𝜌
+
𝛼
(𝜈𝑘,𝜈𝑖)]2𝜋𝑖,

[𝜇−𝛽(𝜈𝑘, 𝜈𝑖), 𝜇
+
𝛽
(𝜈𝑘, 𝜈𝑖)] 𝑒

[𝜌−𝛽(𝜈𝑘,𝜈𝑖),𝜌
+
𝛽
(𝜈𝑘,𝜈𝑖)]2𝜋𝑖,

[𝜇−𝛾(𝜈𝑘 , 𝜈𝑖), 𝜇
+
𝛾
(𝜈𝑘, 𝜈𝑖)] 𝑒

[𝜌−𝛾(𝜈𝑘,𝜈𝑖),𝜌
+
𝛾(𝜈𝑘,𝜈𝑖)]2𝜋𝑖

)

 
 

}
 
 

 
 

𝜖𝛺.                (13) 

Then  

{
 
 

 
 

(𝜈𝑘 , 𝜈𝑖),

(

 
 

 [𝜇−𝛼(𝜈𝑘, 𝜈𝑖), 𝜇
+
𝛼
(𝜈𝑘 , 𝜈𝑖)]𝑒

[𝜌−𝛼(𝜈𝑘,𝜈𝑖),𝜌
+
𝛼(𝜈𝑘,𝜈𝑖)]2𝜋𝑖,

[𝜇−𝛽(𝜈𝑘, 𝜈𝑖), 𝜇
+
𝛽
(𝜈𝑘, 𝜈𝑖)] 𝑒

[𝜌−𝛽(𝜈𝑘,𝜈𝑖),𝜌
+
𝛽(𝜈𝑘,𝜈𝑖)]2𝜋𝑖,

[𝜇−𝛾(𝜈𝑘 , 𝜈𝑖), 𝜇
+
𝛾
(𝜈𝑘, 𝜈𝑖)] 𝑒

[𝜌−𝛾(𝜈𝑘,𝜈𝑖),𝜌
+
𝛾(𝜈𝑘,𝜈𝑖)]2𝜋𝑖

)

 
 

}
 
 

 
 

𝜖𝛺, 

{
 
 

 
 

(𝜈𝑖, 𝜈𝑗),

(

 
 

 [𝜇−𝛼(𝜈𝑖, 𝜈𝑗), 𝜇
+
𝛼(𝜈𝑖, 𝜈𝑗)]𝑒

[𝜌−𝛼(𝜈𝑖,𝜈𝑗),𝜌
+
𝛼(𝜈𝑖,𝜈𝑗)]2𝜋𝑖,

[𝜇−𝛽(𝜈𝑖, 𝜈𝑗), 𝜇
+
𝛽(𝜈𝑖, 𝜈𝑗)] 𝑒

[𝜌−𝛽(𝜈𝑖,𝜈𝑗),𝜌
+
𝛽(𝜈𝑖,𝜈𝑗)]2𝜋𝑖,

[𝜇−𝛾(𝜈𝑖, 𝜈𝑗), 𝜇
+
𝛾(𝜈𝑖, 𝜈𝑗)] 𝑒

[𝜌−𝛾(𝜈𝑖,𝜈𝑗),𝜌
+
𝛾(𝜈𝑖,𝜈𝑗)]2𝜋𝑖

)

 
 

}
 
 

 
 

𝜖𝛺, implies  

{
 
 

 
 

(𝜈𝑘 , 𝜈𝑗),

(

 
 

 [𝜇−𝛼(𝜈𝑘, 𝜈𝑗), 𝜇
+
𝛼(𝜈𝑘, 𝜈𝑗)]𝑒

[𝜌−𝛼(𝜈𝑘,𝜈𝑗),𝜌
+
𝛼(𝜈𝑘,𝜈𝑗)]2𝜋𝑖,

[𝜇−𝛽(𝜈𝑘, 𝜈𝑗), 𝜇
+
𝛽(𝜈𝑘, 𝜈𝑗)] 𝑒

[𝜌−𝛽(𝜈𝑘,𝜈𝑗),𝜌
+
𝛽(𝜈𝑘,𝜈𝑗)]2𝜋𝑖,

[𝜇−𝛾(𝜈𝑘, 𝜈𝑗), 𝜇
+
𝛾(𝜈𝑘 , 𝜈𝑗)] 𝑒

[𝜌−𝛾(𝜈𝑘,𝜈𝑗),𝜌
+
𝛾(𝜈𝑘,𝜈𝑗)]2𝜋𝑖

)

 
 

}
 
 

 
 

𝜖𝛺, 
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Because 𝛺 is an IVCN transitive relation 

{
 
 

 
 

𝜈𝑘 ,

(

 
 

 [𝜇−𝛼(𝜈𝑘), 𝜇
+
𝛼
(𝜈𝑘)]𝑒

[𝜌−𝛼(𝜈𝑘),𝜌
+
𝛼(𝜈𝑘)]2𝜋𝑖,

[𝜇−𝛽(𝜈𝑘), 𝜇
+
𝛽
(𝜈𝑘)] 𝑒

[𝜌−𝛽(𝜈𝑘),𝜌
+
𝛽(𝜈𝑘)]2𝜋𝑖,

[𝜇−𝛾(𝜈𝑘), 𝜇
+
𝛾
(𝜈𝑘)] 𝑒

[𝜌−𝛾(𝜈𝑘),𝜌
+
𝛾(𝜈𝑘)]2𝜋𝑖

)

 
 

}
 
 

 
 

𝜖 Ω𝜈𝑗     (14) 

Ω𝜈𝑖 ⊆ Ω𝜈𝑗            (15) 

Similarly, suppose  

{
 
 

 
 

(𝜈𝑖, 𝜈𝑗),

(

 
 

 [𝜇−𝛼(𝜈𝑖, 𝜈𝑗), 𝜇
+
𝛼(𝜈𝑖, 𝜈𝑗)]𝑒

[𝜌−𝛼(𝜈𝑖,𝜈𝑗),𝜌
+
𝛼(𝜈𝑖,𝜈𝑗)]2𝜋𝑖,

[𝜇−𝛽(𝜈𝑖, 𝜈𝑗), 𝜇
+
𝛽(𝜈𝑖, 𝜈𝑗)] 𝑒

[𝜌−𝛽(𝜈𝑖,𝜈𝑗),𝜌
+
𝛽(𝜈𝑖,𝜈𝑗)]2𝜋𝑖,

[𝜇−𝛾(𝜈𝑖, 𝜈𝑗), 𝜇
+
𝛾(𝜈𝑖, 𝜈𝑗)] 𝑒

[𝜌−𝛾(𝜈𝑖,𝜈𝑗),𝜌
+
𝛾(𝜈𝑖,𝜈𝑗)]2𝜋𝑖

)

 
 

}
 
 

 
 

𝜖𝛺, 

{
 
 

 
 

𝜈𝑘 ,

(

 
 

 [𝜇−𝛼(𝜈𝑘), 𝜇
+
𝛼
(𝜈𝑘)]𝑒

[𝜌−𝛼(𝜈𝑘),𝜌
+
𝛼(𝜈𝑘)]2𝜋𝑖,

[𝜇−𝛽(𝜈𝑘), 𝜇
+
𝛽
(𝜈𝑘)] 𝑒

[𝜌−𝛽(𝜈𝑘),𝜌
+
𝛽
(𝜈𝑘)]2𝜋𝑖,

[𝜇−𝛾(𝜈𝑘), 𝜇
+
𝛾
(𝜈𝑘)] 𝑒

[𝜌−𝛾(𝜈𝑘),𝜌
+
𝛾(𝜈𝑘)]2𝜋𝑖

)

 
 

}
 
 

 
 

𝜖 Ω𝜈𝑗, implies 

{
 
 

 
 

(𝜈𝑘 , 𝜈𝑗),

(

 
 

 [𝜇−𝛼(𝜈𝑘, 𝜈𝑗), 𝜇
+
𝛼(𝜈𝑘, 𝜈𝑗)]𝑒

[𝜌−𝛼(𝜈𝑘,𝜈𝑗),𝜌
+
𝛼(𝜈𝑘,𝜈𝑗)]2𝜋𝑖,

[𝜇−𝛽(𝜈𝑘, 𝜈𝑗), 𝜇
+
𝛽(𝜈𝑘, 𝜈𝑗)] 𝑒

[𝜌−𝛽(𝜈𝑘,𝜈𝑗),𝜌
+
𝛽(𝜈𝑘,𝜈𝑗)]2𝜋𝑖,

[𝜇−𝛾(𝜈𝑘, 𝜈𝑗), 𝜇
+
𝛾(𝜈𝑘 , 𝜈𝑗)] 𝑒

[𝜌−𝛾(𝜈𝑘,𝜈𝑗),𝜌
+
𝛾(𝜈𝑘,𝜈𝑗)]2𝜋𝑖

)

 
 

}
 
 

 
 

𝜖𝛺.    (16) 

As, 

{
 
 

 
 

(𝜈𝑖, 𝜈𝑗),

(

 
 

 [𝜇−𝛼(𝜈𝑖, 𝜈𝑗), 𝜇
+
𝛼(𝜈𝑖, 𝜈𝑗)]𝑒

[𝜌−𝛼(𝜈𝑖,𝜈𝑗),𝜌
+
𝛼(𝜈𝑖,𝜈𝑗)]2𝜋𝑖,

[𝜇−𝛽(𝜈𝑖, 𝜈𝑗), 𝜇
+
𝛽(𝜈𝑖, 𝜈𝑗)] 𝑒

[𝜌−𝛽(𝜈𝑖,𝜈𝑗),𝜌
+
𝛽(𝜈𝑖,𝜈𝑗)]2𝜋𝑖,

[𝜇−𝛾(𝜈𝑖, 𝜈𝑗), 𝜇
+
𝛾(𝜈𝑖, 𝜈𝑗)] 𝑒

[𝜌−𝛾(𝜈𝑖,𝜈𝑗),𝜌
+
𝛾(𝜈𝑖,𝜈𝑗)]2𝜋𝑖

)

 
 

}
 
 

 
 

𝜖𝛺, implies 

{
 
 

 
 

(𝜈𝑗, 𝜈𝑖),

(

 
 

 [𝜇−𝛼(𝜈𝑗, 𝜈𝑖), 𝜇
+
𝛼(𝜈𝑗, 𝜈𝑖)]𝑒

[𝜌−𝛼(𝜈𝑗,𝜈𝑖),𝜌
+
𝛼(𝜈𝑗,𝜈𝑖)]2𝜋𝑖,

[𝜇−𝛽(𝜈𝑗, 𝜈𝑖), 𝜇
+
𝛽(𝜈𝑗, 𝜈𝑖)] 𝑒

[𝜌−𝛽(𝜈𝑗,𝜈𝑖),𝜌
+
𝛽(𝜈𝑗,𝜈𝑖)]2𝜋𝑖,

[𝜇−𝛾(𝜈𝑗, 𝜈𝑖), 𝜇
+
𝛾(𝜈𝑗, 𝜈𝑖)] 𝑒

[𝜌−𝛾(𝜈𝑗,𝜈𝑖)𝜌
+
𝛾(𝜈𝑗,𝜈𝑖)]2𝜋𝑖

)

 
 

}
 
 

 
 

 𝜖𝛺,    (17) 

Because 𝛺 is IVCN symmetric relation. 

Now,  

{
 
 

 
 

(𝜈𝑘 , 𝜈𝑗),

(

 
 

 [𝜇−𝛼(𝜈𝑘, 𝜈𝑗), 𝜇
+
𝛼(𝜈𝑘, 𝜈𝑗)]𝑒

[𝜌−𝛼(𝜈𝑘,𝜈𝑗),𝜌
+
𝛼(𝜈𝑘,𝜈𝑗)]2𝜋𝑖,

[𝜇−𝛽(𝜈𝑘, 𝜈𝑗), 𝜇
+
𝛽(𝜈𝑘, 𝜈𝑗)] 𝑒

[𝜌−𝛽(𝜈𝑘,𝜈𝑗),𝜌
+
𝛽(𝜈𝑘,𝜈𝑗)]2𝜋𝑖,

[𝜇−𝛾(𝜈𝑘, 𝜈𝑗), 𝜇
+
𝛾(𝜈𝑘 , 𝜈𝑗)] 𝑒

[𝜌−𝛾(𝜈𝑘,𝜈𝑗),𝜌
+
𝛾(𝜈𝑘,𝜈𝑗)]2𝜋𝑖

)

 
 

}
 
 

 
 

𝜖𝛺, 
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{
 
 

 
 

(𝜈𝑗, 𝜈𝑖),

(

 
 

 [𝜇−𝛼(𝜈𝑗, 𝜈𝑖), 𝜇
+
𝛼(𝜈𝑗, 𝜈𝑖)]𝑒

[𝜌−𝛼(𝜈𝑗,𝜈𝑖),𝜌
+
𝛼(𝜈𝑗,𝜈𝑖)]2𝜋𝑖,

[𝜇−𝛽(𝜈𝑗, 𝜈𝑖), 𝜇
+
𝛽(𝜈𝑗, 𝜈𝑖)] 𝑒

[𝜌−𝛽(𝜈𝑗,𝜈𝑖),𝜌
+
𝛽(𝜈𝑗,𝜈𝑖)]2𝜋𝑖,

[𝜇−𝛾(𝜈𝑗, 𝜈𝑖), 𝜇
+
𝛾(𝜈𝑗, 𝜈𝑖)] 𝑒

[𝜌−𝛾(𝜈𝑗,𝜈𝑖)𝜌
+
𝛾(𝜈𝑗,𝜈𝑖)]2𝜋𝑖

)

 
 

}
 
 

 
 

 𝜖𝛺, implies 

{
 
 

 
 

(𝜈𝑘 , 𝜈𝑖),

(

 
 

 [𝜇−𝛼(𝜈𝑘, 𝜈𝑖), 𝜇
+
𝛼
(𝜈𝑘 , 𝜈𝑖)]𝑒

[𝜌−𝛼(𝜈𝑘,𝜈𝑖),𝜌
+
𝛼(𝜈𝑘,𝜈𝑖)]2𝜋𝑖,

[𝜇−𝛽(𝜈𝑘, 𝜈𝑖), 𝜇
+
𝛽
(𝜈𝑘, 𝜈𝑖)] 𝑒

[𝜌−𝛽(𝜈𝑘,𝜈𝑖),𝜌
+
𝛽(𝜈𝑘,𝜈𝑖)]2𝜋𝑖,

[𝜇−𝛾(𝜈𝑘 , 𝜈𝑖), 𝜇
+
𝛾
(𝜈𝑘, 𝜈𝑖)] 𝑒

[𝜌−𝛾(𝜈𝑘,𝜈𝑖),𝜌
+
𝛾(𝜈𝑘,𝜈𝑖)]2𝜋𝑖

)

 
 

}
 
 

 
 

𝜖𝛺,    (18) 

Because 𝛺 is an IVCN transitive relation 

{
 
 

 
 

𝜈𝑘 ,

(

 
 

 [𝜇−𝛼(𝜈𝑘), 𝜇
+
𝛼
(𝜈𝑘)]𝑒

[𝜌−𝛼(𝜈𝑘),𝜌
+
𝛼(𝜈𝑘)]2𝜋𝑖,

[𝜇−𝛽(𝜈𝑘), 𝜇
+
𝛽
(𝜈𝑘)] 𝑒

[𝜌−𝛽(𝜈𝑘),𝜌
+
𝛽(𝜈𝑘)]2𝜋𝑖,

[𝜇−𝛾(𝜈𝑘), 𝜇
+
𝛾
(𝜈𝑘)] 𝑒

[𝜌−𝛾(𝜈𝑘),𝜌
+
𝛾(𝜈𝑘)]2𝜋𝑖

)

 
 

}
 
 

 
 

𝜖 Ω𝜈𝑖. 

Therefore,  

Ω𝜈𝑗 ⊆ Ω𝜈𝑖           (19) 

By equation (15), (19) we have Ω𝜈𝑖 = Ω𝜈𝑗. □ 

 

4. Complex Neutrosophic Soft Topological Space and their Properties 

Definition 4.1. Let X be an initial universe and E be a set of parameters. Let P(X) denote the set 

of all complex neutrosophic sets of X. A neutrosophic soft set �̃�E over X is a set defined by a set 

valued function �̃� representing a mapping �̃� : E → P (X) where �̃� is called approximate 

function of �̃�E. In other words, �̃�E is a parameterized family of some elements of the set P (X) 

and therefore it can be written as a set of ordered pairs, 

                      �̃�E ={(𝑒, 〈𝑥, 𝑇�̃�(𝑒)(𝑥), 𝐼�̃�(𝑒)(𝑥), 𝐹�̃�(𝑒)(𝑥)〉 ∶ 𝑥 ∈ 𝑋) ∶ 𝑒 ∈ 𝐸} 

where 𝑇�̃�(𝑒)(𝑥), 𝐼�̃�(𝑒)(𝑥), 𝐹�̃�(𝑒)(𝑥)  ∈[0,1] called the truth-membership, indeterminacy-

membership, falsity-membership function of �̃�(e), respectively. Since supremum of each T, 

I, F is 1 so the inequality 0 ≤  𝑇�̃�(𝑒)(𝑥) + 𝐼�̃�(𝑒)(𝑥) + 𝐹�̃�(𝑒)(𝑥)  ≤ 3 is obvious. Throughout this 

work, NSS(XE) refers to the class of all neutrosophic soft sets over X. 

Definition 4.2.  Let �̃�E ∈ CNSS(XE). The complement of �̃�E is denoted by �̃�𝐸
𝑐 and is defined by: 

�̃�𝐸
𝑐 = {(𝑒, 〈𝑥, 𝐹�̃�(𝑒)(𝑥), 1 − 𝐼�̃�(𝑒)(𝑥), 𝑇�̃�(𝑒)(𝑥)〉 ∶ 𝑥 ∈ 𝑋) ∶ 𝑒 ∈ 𝐸} 

Obvious that, (�̃�𝐸
𝑐)𝑐 = �̃�𝐸. 

Definition 4.3.  Let �̃�E, �̃�E ∈ CNSS(XE). Then �̃�E is a subset of �̃�E, denoted by �̃�E ∁ �̃�E. If for ∀𝑒 ∈

𝐸, ∀𝑥 ∈ 𝑋; 

1. 𝑇�̃�(𝑒)(𝑥)  ≤  𝑇�̃�(𝑒)(𝑥) 

2. 𝐼�̃�(𝑒)(𝑥)  ≤  𝐼�̃�(𝑒)(𝑥) 

3. 𝐹�̃�(𝑒)(𝑥) ≥  𝐹�̃�(𝑒)(𝑥). 
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�̃�𝐸  equals to �̃�𝐸 if �̃�𝐸 ∁ �̃�𝐸 and �̃�𝐸 ∁ �̃�𝐸. It is denoted by �̃�𝐸 = �̃�𝐸. 

Definition 4.4.  Let �̃�𝐸 , �̃�𝐸 ∈ CNSS(XE). Then, their union is denoted by �̃�𝐸 ∪ �̃�𝐸 = �̃�𝐸 and is 

defined by: 

�̃�𝐸 = {(𝑒, 〈𝑥, 𝑇�̃�(𝑒)(𝑥), 𝐼�̃�(𝑒)(𝑥), 𝐹�̃�(𝑒)(𝑥)〉 ∶ 𝑥 ∈ 𝑋) ∶ 𝑒 ∈ 𝐸} 

𝑤𝑒𝑟𝑒, 𝑇�̃�(𝑒)(𝑥) = max{𝑇�̃�(𝑒)(𝑥), 𝑇�̃�(𝑒)(𝑥)} , 𝐼�̃�(𝑒)(𝑥) = max {𝐼�̃�(𝑒)(𝑥), 𝐼�̃�(𝑒)(𝑥)},𝐹�̃�(𝑒)(𝑥) =

                                  min {𝐹�̃�(𝑒)(𝑥), 𝐹�̃�(𝑒)(𝑥)} 

Definition 4.5. Let �̃�𝐸, �̃�𝐸  ∈ CNSS(XE). Then, their intersection is denoted by �̃�𝐸 ∩ �̃�𝐸 = �̃�𝐸 and 

is defined by: 

�̃�𝐸 = {(𝑒, 〈𝑥, 𝑇�̃�(𝑒)(𝑥), 𝐼�̃�(𝑒)(𝑥), 𝐹�̃�(𝑒)(𝑥)〉 ∶ 𝑥 ∈ 𝑋) ∶ 𝑒 ∈ 𝐸} 

 𝑤ℎ𝑒𝑟𝑒, 𝑇�̃�(𝑒)(𝑥) = min{𝑇�̃�(𝑒)(𝑥), 𝑇�̃�(𝑒)(𝑥)} , 𝐼�̃�(𝑒)(𝑥) = min {𝐼�̃�(𝑒)(𝑥), 𝐼�̃�(𝑒)(𝑥)},𝐹�̃�(𝑒)(𝑥) =

max {𝐹�̃�(𝑒)(𝑥), 𝐹�̃�(𝑒)(𝑥)} 

Definition 4.6.  Let �̃�𝐸, �̃�𝐸 ∈ CNSS(XE). Then, �̃�𝐸 difference �̃�𝐸 operation on them is denoted by, 

�̃�𝐸\�̃�𝐸 = �̃�𝐸 

and is defined by �̃�𝐸 = �̃�𝐸 ∩ �̃�𝐸
𝑐 as follows: 

�̃�𝐸 = {(𝑒, 〈𝑥, 𝑇�̃�(𝑒)(𝑥), 𝐼�̃�(𝑒)(𝑥), 𝐹�̃�(𝑒)(𝑥)〉 ∶ 𝑥 ∈ 𝑋) ∶ 𝑒 ∈ 𝐸} 

 𝑤ℎ𝑒𝑟𝑒, 𝑇�̃�(𝑒)(𝑥) = min{𝑇�̃�(𝑒)(𝑥), 𝑇�̃�(𝑒)(𝑥)} , 𝐼�̃�(𝑒)(𝑥) = min {𝐼�̃�(𝑒)(𝑥),1 − 𝐼�̃�(𝑒)(𝑥)},𝐹�̃�(𝑒)(𝑥) =

max {𝐹�̃�(𝑒)(𝑥), 𝐹�̃�(𝑒)(𝑥)} 

Definition 4.7.  �̃�𝐸  ∈ CNSS(XE). Then, �̃�𝐸 is said to be, 

I. a null neutrosophic soft set if 𝑇�̃�(𝑒)(𝑥) = 0, 𝐼�̃�(𝑒)(𝑥) = 0, 𝐹�̃�(𝑒)(𝑥) =

1: ∀𝑒 ∈ 𝐸.∀𝑥 ∈ 𝑋. It is denoted           by 0𝑋𝐸. 

2. an absolute complex neutrosophic soft set if 𝑇�̃�(𝑒)(𝑥) = 1, 𝐼�̃�(𝑒)(𝑥) = 1, 𝐹�̃�(𝑒)(𝑥) = 0: ∀𝑒 ∈

𝐸.∀𝑥 ∈ 𝑋. It is denoted by 1𝑋𝐸. 

Clearly,0𝑋𝐸
𝑐 = 1𝑋𝐸  𝑎𝑛𝑑 1𝑋𝐸

𝑐 . 

Definition 4.8. Let CNSS(X,E) be the family of all complex neutrosophic soft sets over the 

universe set 𝑋 and 𝜏𝐶𝑁𝑆𝑆   ∈ 𝐶𝑁𝑆𝑆(𝑋, 𝐸). Then 𝜏𝐶𝐶𝑁𝑆𝑆 is said to be complex  neutrosophic soft 

topology on 𝑋 if 

  1.    0(𝑋,𝐸) and 1(𝑋,𝐸) belongs to 𝜏𝐶𝐶𝑁𝑆𝑆 

   2.   the union of any number of complex neutrosophic soft sets in 𝜏𝐶𝑁𝑆𝑆 belongs to 𝜏𝐶𝑁𝑆𝑆 

   3.   the intersection of finite number of complex neutrosophic soft sets in 𝜏𝐶𝑁𝑆𝑆 belongs to 

𝜏𝐶𝑁𝑆𝑆.     

Then (X, 𝜏𝐶𝑁𝑆𝑆, E) is said to be a complex neutrosophic soft topological space over 𝑋. Each 

members of 𝜏𝐶𝑁𝑆𝑆 is said to be complex neutrosophic soft open set. 

Definition 4.9.  Let (X, 𝜏𝐶𝑁𝑆𝑆, E) be a complex neutrosophic soft topological space over 𝑋 and 

(�̃�, 𝐸) be a complex neutrosophic soft set over 𝑋. Then (�̃�, 𝐸) is said to be complex neutrosophic 

soft closed set iff its complement is a complex neutrosophic soft open set. 
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Definition 4.10.  Let (X, 𝜏𝐶𝑁𝑆𝑆,E) be a complex neutrosophic soft topological space over 𝑋 and 

(�̃�, 𝐸)  ∈ 𝐶𝑁𝑆𝑆 (𝑋, 𝐸) be a complex neutrosophic soft set. Then, the complex neutrosophic soft 

interior of (�̃�, 𝐸), denoted (�̃�, 𝐸) , is defined as the complex neutrosophic soft union of all 

complex neutrosophic soft open subsets of (�̃�, 𝐸). 

Clearly, (�̃�, 𝐸)o is the biggest complex neutrosophic soft open set that is contained by (�̃�, 𝐸). 

Definition 4.11.  Let (X, 𝜏𝐶𝑁𝑆𝑆,E) be a complex neutrosophic soft topological space over X and 

(�̃�, 𝐸)  ∈ 𝐶𝑁𝑆𝑆 (𝑋, 𝐸) 

be a complex neutrosophic soft set. Then, the complex neutrosophic soft closure of (�̃�, 𝐸) , 

denoted (�̃�, 𝐸) , is defined as the complex neutrosophic soft intersection of all complex 

neutrosophic soft closed supersets of (�̃�, 𝐸). 

Clearly, (�̃�, 𝐸) is the smallest complex neutrosophic soft closed set that containing (�̃�, 𝐸). 

 

5.  Topological Properties in Complex Neutrosophic Soft Frameworks  

Definition 5.1. Let (X, 𝜏𝐶𝑁𝑆𝑆,𝐸) be a complex neutrosophic soft topological space over X and 

(�̃�, 𝐸)  ∈ 𝐶𝑁SS(X,E) be a complex neutrosophic soft set over X. If   (�̃�, 𝐸) = (�̃�, 𝐸) ∩ ((�̃�, 𝐸)𝑐), 

then Fr (�̃�, 𝐸) is said to be boundary of the complex neutrosophic soft set (�̃�, 𝐸). 

Theorem 5.2. Let (X, 𝜏𝐶𝑁𝑆𝑆,𝐸) be a complex neutrosophic soft topological space over 𝑋 and 

(𝐹1̃, 𝐸), (𝐹2̃, 𝐸) ∈ CNSS(X,E). 

Then, 

1. (𝐹1̃, 𝐸)0 =(𝐹1̃, 𝐸)\𝐹𝑟(𝐹1̃, 𝐸),                   

2. (𝐹1̃, 𝐸) = (𝐹1̃, 𝐸) ∪ 𝐹𝑟(𝐹1̃, 𝐸), 

3. Fr((𝐹1̃, 𝐸) ∪ (𝐹2̃, 𝐸)) ∁ 𝐹𝑟(𝐹1̃, 𝐸) ∪ 𝐹𝑟(𝐹2̃, 𝐸), 

4. Fr((�̃�1, 𝐸)
𝑐) = 𝐹𝑟(𝐹1̃, 𝐸), 

5. 1(X,E) =(𝐹1̃, 𝐸)0∪ 𝐹𝑟 (𝐹1̃, 𝐸) ∪ (1(𝑋,𝐸)(𝐹1̃, 𝐸))0, 

6. Fr ((𝐹1̃, 𝐸))  ⊆ 𝐹𝑟(𝐹1̃, 𝐸), 

7. Fr ((𝐹1̃, 𝐸)o) ⊆  𝐹𝑟(𝐹1̃, 𝐸), 

8. (𝐹1̃, 𝐸) is a complex neutrosophic soft open set ↔ Fr(𝐹1̃, 𝐸) = (𝐹1̃, 𝐸)\(𝐹1̃, 𝐸), 

9. (𝐹1̃, 𝐸) is a complex neutrosophic soft open set ↔ Fr(𝐹1̃, 𝐸) =  (𝐹1̃, 𝐸)\(𝐹1̃, 𝐸)o. 

Proof. 1. (𝐹1̃, 𝐸)\𝐹𝑟(𝐹1̃, 𝐸) = (𝐹1̃, 𝐸)\ ((𝐹1̃, 𝐸) ∩ (1(𝑋,𝐸)\(𝐹1̃, 𝐸))) = (𝐹1̃, 𝐸) ∩ ((𝐹1̃, 𝐸) ∩

(1(𝑋,𝐸)(�̃�1, 𝐸)))c = (𝐹1̃, 𝐸) ∩ ((𝐹1̃, 𝐸))c ∪  (𝐹1̃, 𝐸) ∩ (1(𝑋,𝐸)\(𝐹1̃, 𝐸))c = ((𝐹1̃, 𝐸)\(𝐹1̃, 𝐸)) ∪
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((𝐹1̃, 𝐸)\ ((1(𝑋,𝐸)\(𝐹1̃, 𝐸)))) = (𝐹1̃, 𝐸)\ (1(𝑋,𝐸)\(𝐹1̃, 𝐸)) =  (𝐹1̃, 𝐸) ∩ ((1(𝑋,𝐸)\(�̃�1, 𝐸)))
𝑐 = (𝐹1̃, 𝐸) ∩

(𝐹1̃, 𝐸)o = (𝐹1̃, 𝐸)o.  

2. It is clear. 

3. Fr ((𝐹1̃, 𝐸) ∪ (𝐹2̃, 𝐸)) = ((𝐹1̃, 𝐸) ∪ (𝐹2̃, 𝐸)) ∩ (1(𝑋,𝐸)\(𝐹1̃, 𝐸) ∪ (𝐹2̃, 𝐸)) = ((𝐹1̃, 𝐸) ∩ (𝐹1̃, 𝐸)) ∩

((1(𝑋,𝐸)\(𝐹1̃, 𝐸)) ∩ (1(𝑋,𝐸)\(𝐹2̃, 𝐸))) ⊆ ((𝐹1̃, 𝐸) ∩ (𝐹1̃, 𝐸)) ∩ (1(𝑋,𝐸)\(𝐹1̃, 𝐸)) ∩ (1(𝑋,𝐸)\(𝐹1̃, 𝐸)) ⊆

 ((𝐹1̃, 𝐸) ∩ (1(𝑋,𝐸)\(𝐹1̃, 𝐸))) ∪ ((𝐹2̃, 𝐸) ∩ (1(𝑋,𝐸)\(𝐹2̃, 𝐸))) = 𝐹𝑟(𝐹1̃, 𝐸) ∪ 𝐹𝑟(𝐹2̃, 𝐸) 

4. Fr ((𝐹1̃, 𝐸)
𝑐) = ((𝐹1̃, 𝐸)

𝑐) ∩ ((𝐹1̃, 𝐸)
𝑐)𝑐 = ((𝐹1̃, 𝐸)

𝑐) ∩ (𝐹1̃, 𝐸) =  𝐹𝑟(𝐹1̃, 𝐸) 

5. It is clear. 

6. Fr((𝐹1̃, 𝐸)) = ((𝐹1̃, 𝐸)) ∩ ((𝐹1̃, 𝐸)
𝑐)  ⊆ (𝐹1̃, 𝐸) ∩ ((𝐹1̃, 𝐸)

𝑐) = Fr(𝐹1̃, 𝐸) 

7. It is clear. 

8. Suppose that (𝐹1̃, 𝐸) is a complex neutrosophic soft open Then (𝐹1̃, 𝐸)c is a complex 

neutrosophic soft closed set and ((𝐹1̃, 𝐸)
𝑐) =  (𝐹1̃, 𝐸)c .In here, 

Fr(𝐹1̃, 𝐸) = (𝐹1̃, 𝐸) ∩ ((𝐹1̃, 𝐸)
𝑐) = (𝐹1̃, 𝐸) ∩ (𝐹1̃, 𝐸)c = (𝐹1̃, 𝐸)\(𝐹1̃, 𝐸). 

From the condition -1, 

(𝐹1̃, 𝐸)o = (𝐹1̃, 𝐸)\𝐹𝑟(𝐹1̃, 𝐸) = (𝐹1̃, 𝐸)\ ((𝐹1̃, 𝐸)\(𝐹1̃, 𝐸)) = (𝐹1̃, 𝐸) ∩ ((𝐹1̃, 𝐸) ∩ (�̃�1, 𝐸)
𝑐)𝑐 =

(𝐹1̃, 𝐸) ∩ ((�̃�1, 𝐸))
𝑐 ∪ ((�̃�1, 𝐸)

𝑐)𝑐) = (�̃�1, 𝐸) ∩ ((�̃�1, 𝐸)
𝑐)  ∪ ((𝐹1̃, 𝐸) ∩ (𝐹1̃, 𝐸)) = ((𝐹1̃, 𝐸) ∩

((𝐹1̃, 𝐸))
𝑐)  ∪ (𝐹1̃, 𝐸) = (𝐹1̃, 𝐸) 

That is (𝐹1̃, 𝐸) is a complex neutrosophic soft open set.                                                                                                      

Definition 5.3. Let (X, 𝜏𝐶𝑁𝑆𝑆, 𝐸) be a complex neutrosophic soft topological space over 𝑋 and 

 (�̃�, 𝐸) ∈ 𝐶𝑁𝑆𝑆(𝑋, 𝐸). 

A) (�̃�, 𝐸) is a said to be complex neutrosophic soft dense set in (X, 𝜏𝐶𝑁𝑆𝑆,E) if (�̃�, 𝐸) =  1(𝑋,𝐸). 

𝒃) (�̃�, 𝐸) is a said to be a complex neutrosophic soft co-dense set in (X, 𝜏𝐶𝑁𝑆𝑆,E) if (1(𝑋,𝐸)\(𝐹 ,̃ 𝐸)) 

= 1(X,E). 

 𝒄) (�̃�, 𝐸) is a said to be a complex neutrosophic soft not-dense set in (X, 𝜏𝐶𝑁𝑆𝑆,E) if (�̃�, 𝐸) is a 

complex neutrosophic soft dense set over (X, 𝜏𝐶𝑁𝑆𝑆,E). 

Theorem 5.4. Let (X, 𝜏𝐶𝑁𝑆𝑆, 𝐸) be a complex neutrosophic soft topological space over X and 

(�̃�, 𝐸) ∈ NSS(X,E). Then, 

1. (�̃�, 𝐸) is a complex neutrosophic soft dense set in (X, 𝜏𝐶𝑁𝑆𝑆,E) iff (�̃�, 𝐸) ∩ (�̃�, 𝐸) ≠ 0(𝑋,𝐸) for 

each 0(𝑋,𝐸) ≠ (�̃�, 𝐸) ∈ 𝜏𝐶𝑁𝑆𝑆,  
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2. (�̃�, 𝐸) is a complex neutrosophic soft co-dense set in (X, 𝜏𝐶𝑁𝑆𝑆,E) iff (1(X,E)\ (�̃�, 𝐸)) ∩

(�̃�, 𝐸) ≠ 0(𝑋,𝐸) for each 0(𝑋,𝐸) ≠ (�̃�, 𝐸) ∈ 𝜏𝐶𝑁𝑆𝑆, 

3. (�̃�, 𝐸) is a complex neutrosophic soft not-dense set in any part of (X, 𝜏𝐶𝑁𝑆𝑆,E) iff there is a 

complex neutrosophic soft open (�̃�, 𝐸) ∈ 𝜏𝐶𝑁𝑆𝑆 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 (�̃�, 𝐸) ∩ (�̃�, 𝐸) = 0(𝑋,𝐸) 𝑎𝑛𝑑 0(𝑋,𝐸) ≠

(�̃�, 𝐸) ∁ (�̃�, 𝐸) 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 0(𝑋,𝐸) ≠ (�̃�, 𝐸) ∈ 𝜏𝐶𝑁𝑆𝑆. 

Proof. Trivial. 

Definition 5.5.  Let (X, 𝜏𝐶𝑁𝑆𝑆,E) be a complex neutrosophic soft topological space over X and 

𝐵𝐶𝑁𝑆𝑆 be a sub-family of 𝜏𝐶𝑁𝑆𝑆. 𝐵𝐶𝑁𝑆𝑆 is said to be a complex neutrosophic soft basis for the 

complex neutrosophic  soft topology 𝜏𝐶𝑁𝑆𝑆 if every element of 𝜏𝐶𝑁𝑆𝑆 can be written as the 

complex neutrosophic soft union of elements of 𝐵𝐶𝑁𝑆𝑆. 

Theorem 5.6.  Let (X, 𝜏𝐶𝑁𝑆𝑆,E) be a complex neutrosophic soft topological space over X and 

𝐵𝐶𝑁𝑆𝑆 be a complex neutrosophic soft  basis for 𝜏𝐶𝑁𝑆𝑆 . Then, 𝜏𝐶𝑁𝑆𝑆 equals to the collection of all 

complex neutrosophic soft unions of elements of 𝐵𝐶𝑁𝑆𝑆. 

Proof. This is easily seen from the definition of complex neutrosophic soft basis.                                                       

Theorem 5.7.  Let (X, 𝜏𝐶𝑁𝑆𝑆,E) be a complex neutrosophic soft topological space over X and 

𝐵𝐶𝑁𝑆𝑆 be a sub-family of 𝜏𝐶𝑁𝑆𝑆. 

1. The family 𝐵𝐶𝑁𝑆𝑆 is a complex neutrosophic soft basis of the complex neutrosophic soft 

topology 𝜏𝐶𝑁𝑆𝑆 iff there exist a complex neutrosophic soft set (�̃�, 𝐸)  ∈  𝐵𝐶𝑁𝑆𝑆  such that 𝑥(ϻ,ᶊ,ϗ)
𝑒 ∈ 

(�̃�, E) ∁ (�̃�, 𝐸) 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ  (�̃�, E) ∈  𝜏𝐶𝑁𝑆𝑆𝑎𝑛𝑑 𝑥(ϻ,ᶊ,ϗ)
𝑒  ∈ (�̃�, E). 

2. If  the family 𝐵𝐶𝑁𝑆𝑆 = {(𝐹1̃, 𝐸)}𝑖∈𝐼 is a complex neutrosophic soft basis for 𝜏𝐶𝑁𝑆𝑆 , then there 

exist a complex neutrosophic soft set 

(𝐹1̃, 𝐸) ∈  𝐵
𝐶𝑁𝑆𝑆 such that 𝑥(ϻ,ᶊ,ϗ)

𝑒  ∈ (𝐵𝑖3̃, 𝐸) ∁ (�̃�𝑖1, 𝐸) ∩ (�̃�𝑖2, 𝐸) 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ (�̃�𝑖1, 𝐸), (�̃�𝑖2, 𝐸) ∈

 𝐵𝐶𝑁𝑆𝑆 and each 𝑥(ϻ,ᶊ,ϗ)
𝑒  ∈  (�̃�𝑖1, 𝐸) ∩ (�̃�𝑖2, 𝐸). 

Proof. 1 → Suppose that 𝐵𝐶𝑁𝑆𝑆 is a complex neutrosophic soft basis the complex neutrosophic 

soft topology 𝜏𝐶𝑁𝑆𝑆 ∁ (�̃�, E) ∈  𝜏𝐶𝑁𝑆𝑆 𝑎𝑛𝑑 (�̃�, E) 𝑓𝑜𝑟 𝑥(ϻ,ᶊ,ϗ)
𝑒  ∈  (�̃�, E). Then (�̃�, E) = ∪ (�̃�, E). 

Therefore 𝑥(ϻ,ᶊ,ϗ)
𝑒  ∈  (�̃�, E) ∁ (�̃�, E) 𝑓𝑟𝑜𝑚 𝑥(ϻ,ᶊ,ϗ)

𝑒  ∈  (�̃�, E) = (�̃�, E) ∈  𝐵𝐶𝑁𝑆𝑆 

⋃(�̃�, E) 𝑓𝑜𝑟  𝑥(ϻ,ᶊ,ϗ)
𝑒  ∈  (�̃�, E) ∁ (�̃�, E). 

(�̃�, E) ∈  𝐵𝐶𝑁𝑆𝑆 

Suppose that the condition of theorem to be provided Then, 

(�̃�, E) = ⋃ {𝑥(ϻ,ᶊ,ϗ)
𝑒 } ∁  

𝑥(ϻ,ᶊ,ϗ)
𝑒  ∈ (�̃�,E)

⋃ {𝑥(ϻ,ᶊ,ϗ)
𝑒 } ∁ (�̃�, E) →  (�̃�, E) =  ⋃ (�̃�, E).

𝑥(ϻ,ᶊ,ϗ)
𝑒  ∈ (�̃�,E)𝑥(ϻ,ᶊ,ϗ)

𝑒  ∈ (�̃�,E)

 

That is 𝐵𝐶𝑁𝑆𝑆 is a complex neutrosophic soft basis for 𝜏𝐶𝑁𝑆𝑆. 
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2. Let (�̃�𝑖1, 𝐸), (�̃�𝑖2, 𝐸)  ∈ 𝐵𝐶𝑁𝑆𝑆 𝑎𝑛𝑑 𝑥(ϻ,ᶊ,ϗ)
𝑒  ∈  (�̃�𝑖1, 𝐸) ∩ (�̃�𝑖2, 𝐸). 𝑆𝑖𝑛𝑐𝑒 (�̃�𝑖1, 𝐸) ∩ (�̃�𝑖2, 𝐸) is a 

complex neutrosophic soft open set and 𝐵𝐶𝑁𝑆𝑆 is a complex neutrosophic soft basis for 

𝜏𝐶𝑁𝑆𝑆, 𝑡ℎ𝑒𝑛 

(�̃�𝑖1, 𝐸) ∩ (�̃�𝑖2, 𝐸) = ⋃ (�̃�𝑖, 𝐸) → 𝑗 𝑥(ϻ,ᶊ,ϗ)
𝑒  ∈  (�̃�𝑖1, 𝐸) ∩ (�̃�𝑖2, 𝐸) = ⋃ (�̃�𝑖, 𝐸) → 𝑗 ∃(�̃�𝑖1, 𝐸), 𝑥(ϻ,ᶊ,ϗ)

𝑒  ∈

 (�̃�𝑖3, 𝐸) ∁ (�̃�𝑖1, 𝐸) ∩ (�̃�𝑖2, 𝐸).                                                                                                                     □ 

Theorem 5.8.  Let 𝜏1
𝐶𝑁𝑆𝑆 and 𝜏2

𝐶𝑁𝑆𝑆 be two complex neutrosophic soft topologies over X 

generated by the complex neutrosophic soft bases 𝐵1
𝐶𝑁𝑆𝑆 and 𝐵2

𝐶𝑁𝑆𝑆 , respectively. Then 

𝜏1
𝐶𝑁𝑆𝑆  ⊆  𝜏2

𝐶𝑁𝑆𝑆 iff for each 𝑥(ϻ,ᶊ,ϗ)
𝑒  ∈ 𝐶𝑁𝑆𝑆(𝑋, 𝐸) and for each (�̃�1, 𝐸) ∈  𝐵1

𝐶𝑁𝑆𝑆 containing 𝑥(ϻ,ᶊ,ϗ)
𝑒  

there exists (�̃�2, 𝐸) ∈  𝐵2
𝐶𝑁𝑆𝑆 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑥(ϻ,ᶊ,ϗ)

𝑒  ∈  (�̃�2, 𝐸) ∁ (�̃�1, 𝐸). 

Proof. Suppose that  𝜏1
𝐶𝑁𝑆𝑆  ⊆  𝜏2

𝐶𝑁𝑆𝑆 𝑎𝑛𝑑 𝑥(ϻ,ᶊ,ϗ)
𝑒  ∈ 𝐶𝑁𝑆𝑆(𝑋, 𝐸), (�̃�1, 𝐸) ∈  𝐵1

𝐶𝑁𝑆𝑆 such that 𝑥(ϻ,ᶊ,ϗ)
𝑒  ∈

 (�̃�1, 𝐸). Since 𝐵1
𝐶𝑁𝑆𝑆 is a complex neutrosophic soft basis for complex neutrosophic soft 

topology 𝜏1
𝐶𝑁𝑆𝑆 over X, then 𝐵1

𝐶𝑁𝑆𝑆  ⊆ 𝜏1
𝐶𝑁𝑆𝑆 → 𝑥(ϻ,ᶊ,ϗ)

𝑒  ∈  (�̃�1, 𝐸) ∈  𝐵2
𝐶𝑁𝑆𝑆  ⊆  𝜏1

𝐶𝑁𝑆𝑆 𝑖. 𝑒, 𝑥(ϻ,ᶊ,ϗ)
𝑒  ∈

 (�̃�1, 𝐸) ∈ 𝜏2
𝐶𝑁𝑆𝑆. Since 𝐵2

𝐶𝑁𝑆𝑆 is a complex neutrosophic soft basis for 𝜏2
𝐶𝑁𝑆𝑆, so for (�̃�2, 𝐸) ∈

 𝐵2
𝐶𝑁𝑆𝑆 we have 𝑥(ϻ,ᶊ,ϗ)

𝑒  ∈  (�̃�2, 𝐸)  ⊆  (�̃�1, 𝐸). 

Conversely, assume that the hypothesis holds. Let (�̃�, 𝐸) ∈  𝜏1
𝐶𝑁𝑆𝑆. Since 𝐵1

𝐶𝑁𝑆𝑆 is a complex 

neutrosophic soft basis for complex neutrosophic soft topology 𝜏1
𝐶𝑁𝑆𝑆, then for 𝑥(ϻ,ᶊ,ϗ)

𝑒  ∈  (�̃�, 𝐸) 

there exist (�̃�1, 𝐸) ∈ 𝐵1
𝐶𝑁𝑆𝑆 such that 𝑥(ϻ,ᶊ,ϗ)

𝑒  ∈  (�̃�1, 𝐸)  ⊆(�̃�, E). No by hypothesis, there exist (�̃�2 , 

E) ∈  𝐵2
𝐶𝑁𝑆𝑆 such that (�̃�2 , E) ⊆ (�̃�1 , E) ⇒ (�̃�2 , E) ⊆ (�̃�1 , E) ⊆ (�̃�, E) ⇒ (�̃�2 , E) ⊆ (�̃�, E) ⇒ (�̃�, E) ∈

 𝜏2
𝐶𝑁𝑆𝑆.This show that 𝜏1

𝐶𝑁𝑆𝑆  ⊆ 𝜏2
𝐶𝑁𝑆𝑆.                                        

Theorem 5.9.  Let (𝑋(�̃�,E), 𝜏(�̃�,E)
𝐶𝑁𝑆𝑆, 𝐸) be a neutrosophjci soft topological space over X and (�̃�, E) ∈ 

NSS (X;E). Then the collection 

𝜏(�̃�,𝐸)
𝐶𝑁𝑆𝑆 = {(�̃�, 𝐸) ∩ (�̃�𝑖, 𝐸) ∶  (�̃�𝑖, 𝐸) ∈  𝜏

𝐶𝑁𝑆𝑆 𝑓𝑜𝑟 𝑖 ∈ 𝐼} 

is a complex neutrosophic soft topology on (�̃�, E) and (𝑋(�̃�,E), 𝜏(�̃�,E)
𝐶𝑁𝑆𝑆, 𝐸) is a complex 

neutrosophic soft topological space. 

Proof. Since 0(�̃�,E) ∩ (�̃�, E) = 0(𝐹,E) and 1(𝑋,𝐸) ∩ (�̃�, E) = (�̃�, E), Then 0(�̃�,E) 𝑎𝑛𝑑 (�̃�, E)  ∈  𝜏(�̃�,E)
𝐶𝑁𝑆𝑆 

Moreover, 

⋂((𝐹�̃�, E) ∩ (�̃�, E)) =  (⋂(�̃�𝑖, 𝐸)

𝑛

𝑖=1

) ∩ (�̃�, E)

𝑛

𝑖=1

 

and 

⋃((𝐹�̃�, E) ∩ (�̃�, E)) = (⋃(�̃�𝑖 , 𝐸)

𝑖∈𝐼

) ∪ (�̃�, E)

𝑖∈𝐼

 

for 𝜏𝐶𝑁𝑆𝑆 = {(𝐹�̃�, E): 𝑖 ∈ 𝐼}. Therefore 𝜏(�̃�,E)
𝐶𝑁𝑆𝑆 is a complex neutrosophic soft topology over (�̃�, E).                               
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Definition 5.10.  Let (𝑋(�̃�,E), 𝜏(�̃�,E)
𝐶𝑁𝑆𝑆, 𝐸) be a complex neutrosophic soft topological space over X 

and (�̃�, E) ∈ NSS (X, E).Then the collection 

𝜏(�̃�,𝐸)
𝐶𝑁𝑆𝑆 = {(�̃�, 𝐸) ∩ (�̃�𝑖, 𝐸) ∶  (�̃�𝑖, 𝐸) ∈  𝜏

𝐶𝑁𝑆𝑆 𝑓𝑜𝑟 𝑖 ∈ 𝐼} 

is called a complex neutrosophic soft subspace topology on (�̃�, E) and (𝑋(�̃�,E), 𝜏(�̃�,E)
𝐶𝑁𝑆𝑆, 𝐸) is called 

a complex neutrosophic soft topological subspace of (𝑋(�̃�,E), 𝜏(�̃�,E)
𝐶𝑁𝑆𝑆, 𝐸). 

Theorem 5.11. Let (𝑋(�̃�,E), 𝜏(�̃�,E)
𝐶𝑁𝑆𝑆, 𝐸) be a complex neutrosophic soft topological space over of 

(�̃�, 𝐸), (�̃�, 𝐸) ∈ 𝐶𝑁𝑆𝑆 (𝑋, 𝐸). 

1. If 𝐵𝐶𝑁𝑆𝑆 is a complex neutrosophic soft base for 𝜏𝐶𝑁𝑆𝑆, 𝑡ℎ𝑒𝑛 𝐵(�̃�,E)
𝐶𝑁𝑆𝑆 = {(�̃�, 𝐸) ∩ (�̃�, 𝐸) ∶

 (�̃�, 𝐸) ∈ 𝐵𝐶𝑁𝑆𝑆} is a complex neutrosophic soft base for the complex neutrosophic soft sub-

topology  𝜏(�̃�,E)
𝐶𝑁𝑆𝑆, 

2. If (�̃�, 𝐸) is a complex neutrosophic soft set in 𝜏(�̃�,E)
𝐶𝑁𝑆𝑆 𝑎𝑛𝑑 (�̃�, 𝐸) is a complex neutrosophic 

soft closed set in 𝜏(�̃�,E)
𝐶𝑁𝑆𝑆,then (�̃�, 𝐸) is a complex neutrosophic soft closed in 𝜏(�̃�,E)

𝐶𝑁𝑆𝑆, 

3. Let (�̃�, 𝐸) ⊆  (�̃�, 𝐸). 𝐼𝑓 (�̃�, 𝐸) is the complex neutrosophic soft closure (X, 𝜏𝐶𝑁𝑆𝑆, E),then 

(�̃�, 𝐸) ∩ (�̃�, 𝐸) is a complex neutrosophic soft closure in (𝑋(�̃�,E), 𝜏(�̃�,E)
𝐶𝑁𝑆𝑆, 𝐸). 

Proof. 1. Since 𝐵𝐶𝑁𝑆𝑆 is a complex neutrosophic soft base for 𝜏𝐶𝑁𝑆𝑆 so for arbitrary (�̃�, 𝐸) ∈ 

𝜏𝐶𝑁𝑆𝑆, we have (�̃�, 𝐸) = ⋃ (�̃�, 𝐸)(�̃�,𝐸)∈𝐵𝐶𝑁𝑆𝑆 .In case, 

(�̃�, 𝐸) ∩ (�̃�, 𝐸) = ( ⋃ (�̃�, 𝐸)

(�̃�,𝐸)∈𝐵𝐶𝑁𝑆𝑆 

) ∩ (�̃�, 𝐸) = ⋃ ((�̃�, 𝐸) ∩ (�̃�, 𝐸)) 

(�̃�,𝐸)∈𝐵𝐶𝑁𝑆𝑆 

 

for (�̃�, 𝐸) ∩ (�̃�, 𝐸) ∈  𝜏(�̃�,E)
𝐶𝑁𝑆𝑆.Since arbitrary member 𝜏(�̃�,E)

𝐶𝑁𝑆𝑆 can be expressed as the union of 

members of 𝐵(�̃�,E)
𝐶𝑁𝑆𝑆. 

      2. we first show that if (�̃�, 𝐸) is a complex neutrosophic soft closed set in 𝜏(�̃�,E)
𝐶𝑁𝑆𝑆 then there 

exist a closed set (�̃�, 𝐸) ⊆ (�̃�, 𝐸) 𝑖. 𝑒, (�̃�, 𝐸) ∉ 𝜏𝐶𝑁𝑆𝑆 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡(�̃�, 𝐸) = (�̃�, 𝐸) ∩ (�̃�, 𝐸). 

Let (�̃�, 𝐸) be a closed in 𝜏(�̃�,E)
𝐶𝑁𝑆𝑆. Then (�̃�𝑖, 𝐸)

𝑐 is a complex neutrosophic soft open set in 𝜏(�̃�,E)
𝐶𝑁𝑆𝑆 i.e, 

(�̃�𝑖, 𝐸)
𝑐 can be put as (�̃� ′𝐸)

𝑐 = (�̃�, 𝐸) ∩ (�̃�, 𝐸) 𝑓𝑜𝑟 (�̃�, 𝐸) ∈ 𝜏𝐶𝑁𝑆𝑆 ⟹ ((�̃� ′𝐸)
𝑐)𝑐 = (�̃�, 𝐸) ∩

((�̃�, 𝐸) ∩ (�̃�, 𝐸))𝑐 = (�̃� ′𝐸)
𝑐 ∩ (�̃�, 𝐸).Here (�̃�, 𝐸)𝑐 ∉ 𝜏𝐶𝑁𝑆𝑆 i.e, (�̃�, 𝐸)𝑐 is a closed in 𝜏𝐶𝑁𝑆𝑆.So here 

acts as (�̃�, 𝐸) ⊆ (�̃�, 𝐸). 

Conversely, suppose that (�̃�, 𝐸) = (�̃�, 𝐸) ∩ (�̃�, 𝐸) where (�̃�, 𝐸) ⊆ (�̃�, 𝐸) and (�̃�, 𝐸) is closed in 

𝜏(𝐾,E)
𝐶𝑁𝑆𝑆. 

Clearly, (�̃�, 𝐸)𝑐 ∈ 𝜏𝐶𝑁𝑆𝑆 so that (�̃�, 𝐸)𝑐 ∩ (�̃�, 𝐸) ∈ 𝜏(𝐾,E)
𝐶𝑁𝑆𝑆.Now, 

(�̃�, 𝐸)𝑐 ∩ (�̃�, 𝐸) = ((�̃�, 𝐸)\(�̃�, 𝐸)) ∩ (�̃�, 𝐸) = ((�̃�, 𝐸) ∩ (�̃�, 𝐸)) \ ((�̃�, 𝐸) ∩ (�̃�, 𝐸)) = (�̃�, 𝐸)\

(�̃�, 𝐸).This implies (�̃�, 𝐸)\(�̃�, 𝐸) is a complex neutrosophic soft set in (�̃�, 𝐸) 𝑖, 𝑒. , (�̃�, 𝐸) is a 
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neutrosophic soft closed set in 𝜏(𝐾,E)
𝐶𝑁𝑆𝑆. (�̃�, 𝐸) = ⋂{(�̃�𝑖, 𝐸) ∶  (�̃�𝑖, 𝐸) 𝑖𝑠 𝑐𝑙𝑜𝑠𝑒𝑑 𝑎𝑛𝑑 (�̃�𝑖, 𝐸) ⊇ (�̃�, 𝐸)} 

is the complex neutrosophic soft closure of (�̃�, 𝐸) and so (�̃�, 𝐸) is a complex neutrosophic soft 

closed set. Now, (�̃�, 𝐸) ∩ (�̃�, 𝐸) = ⋂{(�̃�𝑖, 𝐸) ∶  (�̃�𝑖, 𝐸) 𝑖𝑠 𝑐𝑙𝑜𝑠𝑒𝑑 𝑎𝑛𝑑 (�̃�𝑖, 𝐸) ⊇ (�̃�, 𝐸)} ∩ (�̃�, 𝐸) =

⋂((�̃�𝑖 , 𝐸) ∩ (�̃�, 𝐸)) .Since each (�̃�𝑖 , 𝐸)is closed then each (�̃�𝑖, 𝐸) ∩ (�̃�, 𝐸) is closed in 𝜏(�̃�,E)
𝐶𝑁𝑆𝑆. Now 

(𝐺, 𝐸) ⊆ (�̃�𝑖 , 𝐸) 𝑎𝑛𝑑 (𝐺, 𝐸) ⊆ (�̃�, 𝐸).So ((�̃�, 𝐸) ∩ (�̃�, 𝐸)) ⊆ ((�̃�𝑖 , 𝐸) ∩ (�̃�, 𝐸)) ⟹ (�̃�, 𝐸) ⊆ (�̃�𝑖, 𝐸) ∩

(�̃�, 𝐸).Therefore, (�̃�, 𝐸) ∩ (�̃�, 𝐸) = ⋂{((�̃�𝑖 , 𝐸) ∩ (�̃�, 𝐸)): (�̃�𝑖, 𝐸) ∩ (�̃�, 𝐸) is closed and ((�̃�𝑖, 𝐸) ∩

(�̃�, 𝐸)) ⊇ (�̃�𝑖 , 𝐸)}. Thus (�̃�, 𝐸) ∩ (�̃�, 𝐸) is a complex neutrosophic soft closure of (�̃�, 𝐸) in 𝜏(�̃�,E)
𝐶𝑁𝑆𝑆. 

□ 

Theorem 5.12.  Let (𝑋(�̃�,E), 𝜏(�̃�,E)
𝐶𝑁𝑆𝑆, 𝐸) be a complex neutrosophic soft subspace of a complex 

neutrosophic soft topological space (𝑋(�̃�,E), 𝜏(�̃�,E)
𝐶𝑁𝑆𝑆, 𝐸) over X. If (�̃�, 𝐸) is a complex neutrosophic 

soft open set in (X, 𝜏𝐶𝑁𝑆𝑆, E)𝑖𝑓𝑓 (�̃�1, 𝐸) is a complex neutrosophic soft open set in (X, 𝜏𝐶𝑁𝑆𝑆, E). 

Proof. Suppose that (�̃�, 𝐸) is a complex neutrosophic soft open set in (X, 𝜏𝐶𝑁𝑆𝑆, E) such that a 

complex neutrosophic soft subset (�̃�1, 𝐸) of (�̃�, 𝐸) is open set in (𝑋(�̃�,E), 𝜏(�̃�,E)
𝐶𝑁𝑆𝑆, 𝐸).Then (�̃�1, 𝐸) ∈

𝜏(�̃�,E)
𝐶𝑁𝑆𝑆 𝑎𝑛𝑑 𝑠𝑜 (�̃�1, 𝐸) = (�̃�, 𝐸) ∩ (�̃�, 𝐸) for (�̃�, 𝐸) ∈  𝜏𝐶𝑁𝑆𝑆.But (�̃�1, 𝐸) is a  complex neutrosophic 

soft open set in (X, 𝜏𝐶𝑁𝑆𝑆, E) as (�̃�, 𝐸) and (�̃�, 𝐸) both are complex neutrosophic soft open set in 

(𝑋(�̃�,E), 𝜏(�̃�,E)
𝐶𝑁𝑆𝑆, 𝐸). 

Conversely, assume that (�̃�1, 𝐸) is a complex neutrosophic soft open set in (X, 𝜏𝐶𝑁𝑆𝑆, E) when 

(�̃�, 𝐸) is a complex neutrosophic soft open set in (X, 𝜏𝐶𝑁𝑆𝑆, E) and (�̃�1, 𝐸) ⊆ (�̃�, 𝐸). Then 

(�̃�1, 𝐸) ∈  𝜏
𝐶𝑁𝑆𝑆.But (�̃�1, 𝐸) ∩ (�̃�, 𝐸) = (�̃�1, 𝐸) and so (�̃�1, 𝐸) is a complex neutrosophic soft set in  

(𝑋(�̃�,E), 𝜏(�̃�,E)
𝐶𝑁𝑆𝑆, 𝐸).Therefore, the first part is proved.□ 

Theorem 5.13. Let (𝑋(�̃�,E), 𝜏(�̃�,E)
𝐶𝑁𝑆𝑆, 𝐸) be a complex neutrosophic soft subspace of a complex 

neutrosophic soft topological space (𝑋(�̃�,E), 𝜏(�̃�,E)
𝐶𝑁𝑆𝑆, 𝐸) over 𝑋. If (�̃�, 𝐸) is a complex neutrosophic 

soft closed set in (X, 𝜏𝐶𝑁𝑆𝑆, E),then a complex neutrosophic soft set (�̃�1, 𝐸) ⊆ (�̃�, 𝐸) is a complex 

neutrosophic soft closed set in (𝑋(�̃�,E), 𝜏(�̃�,E)
𝐶𝑁𝑆𝑆, 𝐸)  𝑖𝑓𝑓 (�̃�1, 𝐸) is a complex neutrosophic soft 

closed set in (X, 𝜏𝐶𝑁𝑆𝑆, E). 

Proof. Suppose that (�̃�, 𝐸) is a complex neutrosophic soft closed set (X, 𝜏𝐶𝑁𝑆𝑆, E) such that a 

complex neutrosophic soft subset (�̃�1, 𝐸) 𝑜𝑟(�̃�, 𝐸) is a complex neutrosophic soft closed set in 

(𝑋(�̃�,E), 𝜏(�̃�,E)
𝐶𝑁𝑆𝑆, 𝐸). Since (�̃�1, 𝐸) is closed in (𝑋(�̃�,E), 𝜏(�̃�,E)

𝐶𝑁𝑆𝑆, 𝐸) and so (�̃�1, 𝐸) = (�̃�, 𝐸) ∩ (�̃�, 𝐸) 𝑓𝑜𝑟 

(�̃�, 𝐸) being complex neutrosophic soft closed set in (X, 𝜏𝐶𝑁𝑆𝑆, E).But (�̃�1, 𝐸) is a complex 
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neutrosophic soft closed set in (X, 𝜏𝐶𝑁𝑆𝑆, E) as (�̃�, 𝐸) and (�̃�, 𝐸) both are complex neutrosophic 

soft closed sets in (𝑋(�̃�,E), 𝜏(�̃�,E)
𝐶𝑁𝑆𝑆, 𝐸). 

Conversely, assume that (�̃�1, 𝐸) is a complex neutrosophic soft open set in 

(𝑋(�̃�,E), 𝜏(�̃�,E)
𝐶𝑁𝑆𝑆, 𝐸)when (𝐾, 𝐸) is complex neutrosophic soft closed set in (X, 𝜏𝐶𝑁𝑆𝑆, E) and 

(�̃�1, 𝐸) ⊆ (�̃�, 𝐸).Then (�̃�1, 𝐸) ∩ (�̃�, 𝐸) = (�̃�1, 𝐸) and so (�̃�1, 𝐸) is a complex neutrosophic soft 

closed in (𝑋(�̃�,E), 𝜏(�̃�,E)
𝐶𝑁𝑆𝑆, 𝐸). Hence the first part is proved.                                                    

6. Application 

In this section, the application about the performance of network is defined. We studied the 

existing research, in the field of networking and identify commonly discussed factors and 

challenges affecting network performance. Interval valued complex neutrosophic fuzzy 

relations (IVCNFRs) used to establish the performance of networking with different factors. 

Also, to simulate a network's behavior in a controlled setting, a virtual model of the network is 

created. This makes it possible to experiment with different parameters and see how they affect 

performance. Tools for network simulation, like NS-3 or Cisco Packet Tracer, allow various 

scenarios to be tested. Performance of network depends on the different factors that affect the 

network.  

 

Figure 1. Performance of network. 

4.1. Performance of Networking   

The process of transporting and exchanging the data among different nodes with a shared 

medium in an information system is known as networking. The performance of a network 

describes the measurement of the quality of a network considered by the user. Different 

techniques are used to measure the performance of a network, depending on the nature and 
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design of the network. The complex and dynamic nature of computer networks is reflected in 

the statement "network performance/status depends on different factors". Networks are 

complex systems made up of many interconnected parts, and a wide range of factors affect how 

they function. There are different factors that affect the performance of a network. These factors 

are as follows: 

1) Bandwidth 

2) Number of devices 

3) Network traffic  

4) Latency 

Normal network transmission  

 

Figure 2. Normal network transmission. 

The maximum amount of data transmitted in a transmission medium with some time period is 

known as bandwidth. With the use of grater bandwidth more devices can connect at once. But it 

may affect the speed of overall network. Small amount of data with bandwidth in more devices 

can easily and quickly transfer but large amount of data takes time to transfer using 

transmission medium. Devices are an important part of any network. Data is transmitted 

through bandwidth from one device to other. Large amount of data can transfer through the 

small packets otherwise data loss or data errors occur. These packets can combine before 

receiving device. This all manage through network traffic. Latency is the time that takes some 

data to transfer. Usually, buffering is caused by latency. 

Network with high latency 
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Figure 3. Effect of latency on network. 
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IVCNRs are used to examine the performance of networking on Bandwidth, Number of 

devices, Network traffic, and Latency. Modeling problems by using the idea of IVCNSs and 

IVCNRs will not only formulate the effects of one factor to other but also defines the grades of 

membership, abstains and non-membership. Let 𝐵, 𝐷,𝑁𝑇 and 𝐿 symbolize the bandwidth, 

number of devices, network traffic and latency, respectively. So, the set of the factors is given as 

𝔽 =

{
  
 

  
 (𝐵, ([0.4,0.8]𝑒

2𝜋𝑖[0.2,0.5]), ([0.1,0.6]𝑒2𝜋𝑖[0.1,0.5]), ([0,0.3]𝑒2𝜋𝑖[0.3,0.6])) ,

(𝐷, ([0.3,0.6]𝑒2𝜋𝑖[0.2,0.6]), ([0,0.3]𝑒2𝜋𝑖[0.3,0.5]), ([0.2,0.5]𝑒2𝜋𝑖[0.1,0.6])) ,

(𝑁𝑇, ([0.2,0.7]𝑒2𝜋𝑖[0.1,0.5]), ([0,0.5]𝑒2𝜋𝑖[0,0.6]), ([0.1,0.5]𝑒2𝜋𝑖[0.1,0.4])) ,

(𝐿, ([0.4,0.7]𝑒2𝜋𝑖[0,0.4]), ([0.2,0.4]𝑒2𝜋𝑖[0.5,0.7]), ([0.3,0.6]𝑒2𝜋𝑖[0.2,0.5])) }
  
 

  
 

 

The relation Ω of CP is given below 

Ω =

{
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 ((𝐵, 𝐷), ([0.3,0.6]𝑒

2𝜋𝑖[0.2,0.5]), ([0,0.3]𝑒2𝜋𝑖[0.1,0.5]), ([0.2,0.5]𝑒2𝜋𝑖[0.3,0.6])) ,

((𝐵,𝑁𝑇), ([0.2,0.7]𝑒2𝜋𝑖[0.1,0.5]), ([0,0.5]𝑒2𝜋𝑖[0,0.5]), ([0.1,0.5]𝑒2𝜋𝑖[0.1,0.4])) ,

((𝐵, 𝐿), ([0.4,0.7]𝑒2𝜋𝑖[0,0.4]), ([0.1,0.4]𝑒2𝜋𝑖[0.1,0.5]), ([0.3,0.6]𝑒2𝜋𝑖[0.3,0.6])) ,

((𝐷, 𝐵), ([0.3,0.6]𝑒2𝜋𝑖[0.2,0.5]), ([0,0.3]𝑒2𝜋𝑖[0.1,0.5]), ([0.2,0.5]𝑒2𝜋𝑖[0.3,0.6])) ,

((𝐷,𝑁𝑇), ([0.2,0.6]𝑒2𝜋𝑖[0.1,0.5]), ([0,0.3]𝑒2𝜋𝑖[0,0.5]), ([0.2,0.5]𝑒2𝜋𝑖[0.1,0.6])) ,

((𝐷, 𝐿), ([0.3,0.6]𝑒2𝜋𝑖[0,0.4]), ([0,0.3]𝑒2𝜋𝑖[0.3,0.5]), ([0.3,0.6]𝑒2𝜋𝑖[0.2,0.6])) ,

((𝑁𝑇, 𝐵), ([0.2,0.7]𝑒2𝜋𝑖[0.1,0.5]), ([0,0.5]𝑒2𝜋𝑖[0,0.5]), ([0.1,0.5]𝑒2𝜋𝑖[0.3,0.6])) ,

((𝑁𝑇, 𝐷), ([0.2,0.6]𝑒2𝜋𝑖[0.1,0.5]), ([0,0.3]𝑒2𝜋𝑖[0,0.5]), ([0.2,0.5]𝑒2𝜋𝑖[0.1,0.6])) ,

((𝑁𝑇, 𝐿), ([0.2,0.7]𝑒2𝜋𝑖[0,0.4]), ([0,0.4]𝑒2𝜋𝑖[0,0.6]), ([0.3,0.6]𝑒2𝜋𝑖[0.2,0.5])) ,

((𝐿, 𝐵), ([0.4,0.7]𝑒2𝜋𝑖[0,0.4]), ([0.1,0.4]𝑒2𝜋𝑖[0.1,0.5]), ([0.3,0.6]𝑒2𝜋𝑖[0.3,0.6])) ,

((𝐿, 𝑁𝑇), ([0.2,0.7]𝑒2𝜋𝑖[0,0.4]), ([0,0.4]𝑒2𝜋𝑖[0,0.6]), ([0.3,0.6]𝑒2𝜋𝑖[0.2,0.5])) ,

((𝐿, 𝐷), ([0.3,0.6]𝑒2𝜋𝑖[0,0.4]), ([0,0.3]𝑒2𝜋𝑖[0.3,0.5]), ([0.3,0.6]𝑒2𝜋𝑖[0.2,0.6])) }
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 

The event ((𝐵, 𝐷), ([0.3,0.6]𝑒2𝜋𝑖[0.2,0.5]), ([0,0.3]𝑒2𝜋𝑖[0.1,0.5]), ([0.2,0.5]𝑒2𝜋𝑖[0.3,0.6])) describes the 

membership grade from 0.3 to 0.6 with better-quality bandwidth that provides better transfer 

rate if the number of devices is limited with some time interval. Absence of bandwidth from 0 

to 0.3 provides no effect on the number of devices with the time interval. Also, non-membership 

from 0.2 to 0.5 describes the low-quality bandwidth that creates difficulties in transferring data 

and information through connected devices with particular time. The membership defines the 

good performance of different relations, non-membership discusses the bad or low-quality 

network and abstains provides no effect or neutral effects on the performance of network using 

different factors. 
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7. Comparative Analysis 

In this section, we describe the comparison between different presented and existing methods 

like FR, IVFR, IVIFR, IVCq-ROFR, IVNR with IVCNR was described. The idea of IVCNSs and 

IVCNRs are incredible of all above methods and ideas to manipulate the fuzziness. With the use 

of these methods in the performance of network one can manage the quality and speed of the 

overall network by tackle any problem with using grades (membership, non-membership and 

abstinence). In these sets we discuss about the membership grade, abstinence and non-

membership grades for finding a solution of any problem. Construction of IVCNR is made out 

of the intervals of amplitude term and phase term, which permit it to project the situations with 

phase modification and periodicity. This application discusses the performance of networking 

over different factors. The performance of one factor on the other effect the whole network 

performance.  7.1. FS vs IVCNS FS  

defines the membership grades for any problem, but IVCNS is an improved method rather than 

FS. IVCNS determine not only membership grade of any problem it also defines the non-

membership grade and abstains for the purpose of problem solving.  

7.2. IVFS vs IVCNS 

IVFS discusses the conception of intervals in membership grads. The intervals break down the 

single value of membership into the lower and upper value of membership grades. But IVFS 

have limitations that it only discusses about membership grades. Since IVCNS defines the good 

performance, neutral and bad performance of one factor to the other in intervals. So, IVCNS is a 

better conception than IVFS. 

7.3. IVIFS vs IVCNS 

IVIFS describes the formulation of intervals in the membership and non-membership grades. 

IVIFS discusses the performance of different factors in the term of good and bad effects. On the 

other hand, IVCNS have no limitations of good and bad effects it is step forward to good, bad 

and neutral values so that the performance of one factor to the other specifies these effects. 

7.4. IVCq-ROFS vs IVCNS 

IVCNS is step forward than IVCq-ROFS. IVCq-ROFS determines only the complex intervals of 

membership and non-membership grades for fixing any problem. But IVCNS provides the 

membership grade and non-membership grade and neutral values for performing any task to 

do. 

7.5. IVNS vs IVCNS 

IVCNS is one step higher than IVNS. IVNS provides the intervals of membership grade, 

abstains and non-membership grades whereas IVCNS provides the complex intervals of 

membership grade, abstains and non-membership grades. 
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Sets Membership  Non-

membership 

Abstains  Multi-

dimensional 

Remarks  

FS Yes  No  No  No  Contains single value of 

membership 

IVFS Yes  No No  No  Contains interval of single 

value 

IVIFS Yes  Yes  No  No  Intervals of membership and 

non-membership. 

IVCq-

ROFS 

Yes  Yes  No Yes  Is provides multidimensional 

values in intervals. 

IVNS Yes  Yes  Yes  No  Having good, neutral and bad 

influences. 

IVCNS Yes  Yes  Yes  Yes  It consists of multidimensional 

complex intervals. 

Table 1. Comparison of FS, IVFS, IVIFS, IVCq-ROFS, IVNS and IVCNS. 

 

8. Conclusions 

The major purpose of this study was to represent the conception of IVCNRs that is a new 

concept. The IVCNSs and IVCNRs are ranging in three complex valued mappings of 

membership, abstinence, and non-membership grades in a complex plane. Each degree consists 

of two terms that are discuss as real and imaginary parts. Also, each term consists of the interval 

from lower value to high value. The real term known as amplitude term and imaginary term is 

called phase term of the degrees. Moreover, the types of IVCNRs also define with examples. 

IVCNRs used to produce better and useful results. IVCNRs used to implement the factor 

affecting the performance of network. In continuation this study introduced and investigates 

the structure of complex neutrosophic soft topological spaces. The foundational definitions of 

complex neutrosophic soft topology, open and closed sets, interior, closure, and boundary are 

formally established. The study also explores the concept of complex neutrosophic soft bases 

and subspace topologies, along with criteria for basis generation and topological refinement. 

Several theorems elucidate the relationships among topological constructs and operations such 

as union, intersection, and complementation under complex neutrosophic soft conditions. We 

apply pervious methods on these problems and collect some results. But through this method, 

the required results achieved more reliable than the previous methods. So, the proposed 

method is the best method for modeling uncertain complexities in the required results. Some 

applications are also given that can be applied in our day to day life.   

 The application provides important results by using the proposed method. IVCNRs is the best 

method for the purpose of improving the quality and speed of the computer network. A 
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comparative study is having been established between proposed methodology to existing 

methods. Future research can explore extending IVCNRs to multi-criteria decision-making and 

integrating them with machine learning for dynamic network optimization. Further studies 

may also focus on developing software tools, applying IVCNRs in other fields like healthcare 

and finance, and expanding the theoretical framework of complex neutrosophic soft topologies. 

Empirical validation and comparative analysis with existing models will enhance the practical 

reliability of the proposed approach. 

Author Contributions: All authors equally contributed. 

Conflicts of Interest: The author(s) declare(s) that there are no conflicts of interest regarding the 

publication of this paper. 

 

References 

[1] L. Zadeh, Fuzzy Sets, Inf. Control 8 (1965), 338-353. https://doi.org/10.1016/s0019-9958(65)90241-x. 

[2] K.T. Atanassov, Intuitionistic Fuzzy Sets, Fuzzy Sets Syst. 20 (1986), 87-96. 

https://doi.org/10.1016/s0165-0114(86)80034-3.  

[3] F. Smarandache, Neutrosophic Set - A Generalization of the Intuitionistic Fuzzy Set, Int. J. Pure 

Appl. Math. 24 (2005), 287-297. 

[4] S. Broumi, F. Smarandache, M. Dhar, Rough Neutrosophic Sets, Neutrosophic Sets Syst. 3 (2014), 62-

67. 

[5] D. Ramot, R. Milo, M. Friedman, A. Kandel, Complex Fuzzy Sets, IEEE Trans. Fuzzy Syst. 10 (2002), 

171–186. https://doi.org/10.1109/91.995119.  

[6] A. Alkouri, A.R. Salleh, Complex Intuitionistic Fuzzy Sets, AIP Conf. Proc. 1482 (2012), 464–470. 

https://doi.org/10.1063/1.4757515. 

[7] M. Ali, F. Smarandache, Complex Neutrosophic Set, Neural Comput. Appl. 28 (2016), 1817-1834. 

https://doi.org/10.1007/s00521-015-2154-y.  

[8] S. Broumi, A. Bakali, M. Talea, et al. Bipolar Complex Neutrosophic Sets and Its Application in 

Decision Making Problem, in: C. Kahraman, İ. Otay (Eds.), Fuzzy Multi-Criteria Decision-Making 

Using Neutrosophic Sets, Springer, Cham, 2019: pp. 677–710. https://doi.org/10.1007/978-3-030-

00045-5_26.  

[9] L.A. Zadeh, The Concept of a Linguistic Variable and Its Application to Approximate Reasoning—I, 

Inf. Sci. 8 (1975), 199–249. https://doi.org/10.1016/0020-0255(75)90036-5.  

[10] K.T. Atanassov, Interval Valued Intuitionistic Fuzzy Sets, in: Intuitionistic Fuzzy Sets, Physica-

Verlag HD, Heidelberg, 1999: pp. 139–177. https://doi.org/10.1007/978-3-7908-1870-3_2.  

[11] C. Cornelis, G. Deschrijver, E.E. Kerre, Implication in Intuitionistic Fuzzy and Interval-Valued Fuzzy 

Set Theory: Construction, Classification, Application, Int. J. Approx. Reason. 35 (2004), 55–95. 

https://doi.org/10.1016/S0888-613X(03)00072-0.  

[12] H. Zhang, J. Wang, X. Chen, An Outranking Approach for Multi-Criteria Decision-Making Problems 

with Interval-Valued Neutrosophic Sets, Neural Comput. Appl. 27 (2016), 615–627. 

https://doi.org/10.1007/s00521-015-1882-3.  

https://doi.org/10.1016/s0165-0114(86)80034-3
https://doi.org/10.1109/91.995119
https://doi.org/10.1007/s00521-015-2154-y
https://doi.org/10.1007/978-3-030-00045-5_26
https://doi.org/10.1007/978-3-030-00045-5_26
https://doi.org/10.1016/0020-0255(75)90036-5
https://doi.org/10.1007/978-3-7908-1870-3_2
https://doi.org/10.1016/S0888-613X(03)00072-0
https://doi.org/10.1007/s00521-015-1882-3


34 Int. J. Anal. Appl. (2025), 23:132 

 

[13] S. Broumi, F. Smarandache, Cosine Similarity Measure of Interval Valued Neutrosophic Sets, (2012). 

https://doi.org/10.5281/ZENODO.30150.  

[14] S. Greenfield, F. Chiclana, S. Dick, Interval-Valued Complex Fuzzy Logic, in: 2016 IEEE International 

Conference on Fuzzy Systems (FUZZ-IEEE), IEEE, Vancouver, BC, Canada, 2016: pp. 2014–2019. 

https://doi.org/10.1109/FUZZ-IEEE.2016.7737939.  

[15] H. Garg, D. Rani, Complex Interval-Valued Intuitionistic Fuzzy Sets and Their Aggregation 

Operators, Fundam. Inform. 164 (2019), 61–101. https://doi.org/10.3233/FI-2019-1755.  

[16] M. Ali, L.Q. Dat, L.H. Son, F. Smarandache, Interval Complex Neutrosophic Set: Formulation and 

Applications in Decision-Making, Int. J. Fuzzy Syst. 20 (2018), 986–999. 

https://doi.org/10.1007/s40815-017-0380-4.  

[17] J.M. Mendel, Fuzzy Logic Systems for Engineering: A Tutorial, Proc. IEEE 83 (1995), 345–377. 

https://doi.org/10.1109/5.364485.  

[18] A. Nasir, N. Jan, A. Gumaei, S.U. Khan, Medical Diagnosis and Life Span of Sufferer Using Interval 

Valued Complex Fuzzy Relations, IEEE Access 9 (2021), 93764-93780. 

https://doi.org/10.1109/access.2021.3078185.  

[19] P. Burillo, H. Bustince, Intuitionistic Fuzzy Relations (Part I), Math-ware Soft Comput. 2 (1995), 5-38. 

[20] A. Nasir, N. Jan, A. Gumaei, S.U. Khan, F.R. Albogamy, Cybersecurity against the Loopholes in 

Industrial Control Systems Using Interval-Valued Complex Intuitionistic Fuzzy Relations, Appl. Sci. 

11 (2021), 7668. https://doi.org/10.3390/app11167668.  

[21] H. Yang, Z. Guo, Y. She, X. Liao, On Single Valued Neutrosophic Relations, J. Intell. Fuzzy Syst. 30 

(2015), 1045-1056. https://doi.org/10.3233/ifs-151827.  

[22] D. Ramot, R. Milo, M. Friedman, A. Kandel, Complex Fuzzy Sets, IEEE Trans. Fuzzy Syst. 10 (2002), 

171-186. https://doi.org/10.1109/91.995119.  

[23] N. Jan, A. Nasir, M. Alhilal, S. Khan, D. Pamucar, A. Alothaim, Investigation of Cyber-security and 

Cyber-crimes in Oil and Gas Sectors Using the Innovative Structures of Complex Intuitionistic Fuzzy 

Relations, Entropy 23 (2021), 1112. https://doi.org/10.3390/e23091112.  

[24] A. Nasir, N. Jan, A. Gumaei, S.U. Khan, M. Al-Rakhami, Evaluation of the Economic Relationships 

on the Basis of Statistical Decision‐making in Complex Neutrosophic Environment, Complexity 2021 

(2021), 5595474. https://doi.org/10.1155/2021/5595474.  

[25] A. Al-Quran, S. Alkhazaleh, Relations Between the Complex Neutrosophic Sets with Their 

Applications in Decision Making, Axioms 7 (2018), 64. https://doi.org/10.3390/axioms7030064.  

[26] S. Broumi, A. Bakali, M. Talea, et al. Bipolar Complex Neutrosophic Sets and Its Application in 

Decision Making Problem, in: C. Kahraman, İ. Otay (Eds.), Fuzzy Multi-Criteria Decision-Making 

Using Neutrosophic Sets, Springer, Cham, 2019: pp. 677–710. https://doi.org/10.1007/978-3-030-

00045-5_26.  

[27] H. Bustince, P. Burillo, Mathematical Analysis of Interval-valued Fuzzy Relations: Application to 

Approximate Reasoning, Fuzzy Sets Syst. 113 (2000), 205-219. https://doi.org/10.1016/s0165-

0114(98)00020-7.  

[28] A. Nasir, N. Jan, A. Gumaei, S.U. Khan, Medical Diagnosis and Life Span of Sufferer Using Interval 

Valued Complex Fuzzy Relations, IEEE Access 9 (2021), 93764-93780. 

https://doi.org/10.1109/access.2021.3078185.  

https://doi.org/10.5281/ZENODO.30150
https://doi.org/10.1109/FUZZ-IEEE.2016.7737939
https://doi.org/10.3233/FI-2019-1755
https://doi.org/10.1007/s40815-017-0380-4
https://doi.org/10.1109/5.364485
https://doi.org/10.1109/access.2021.3078185
https://doi.org/10.3390/app11167668
https://doi.org/10.3233/ifs-151827
https://doi.org/10.1109/91.995119
https://doi.org/10.3390/e23091112
https://doi.org/10.1155/2021/5595474
https://doi.org/10.3390/axioms7030064
https://doi.org/10.1007/978-3-030-00045-5_26
https://doi.org/10.1007/978-3-030-00045-5_26
https://doi.org/10.1016/s0165-0114(98)00020-7
https://doi.org/10.1016/s0165-0114(98)00020-7
https://doi.org/10.1109/access.2021.3078185


Int. J. Anal. Appl. (2025), 23:132 35 

 

[29] J. Wu, F. Chiclana, Non-dominance and Attitudinal Prioritisation Methods for Intuitionistic and 

Interval-valued Intuitionistic Fuzzy Preference Relations, Expert Syst. Appl. 39 (2012), 13409-13416. 

https://doi.org/10.1016/j.eswa.2012.05.062.  

[30] H. Zhang, J. Wang, X. Chen, An Outranking Approach for Multi-criteria Decision-making Problems 

with Interval-valued Neutrosophic Sets, Neural Comput. Appl. 27 (2015), 615-627. 

https://doi.org/10.1007/s00521-015-1882-3.  

 

https://doi.org/10.1016/j.eswa.2012.05.062
https://doi.org/10.1007/s00521-015-1882-3

