Exploring the Role of [d, e]-Lindelöf Spaces: Theoretical Insights and Practical Implications
Main Article Content
Abstract
Several recent notions have expanded the field of topological generalized structures. Notably, among these generalizations, [d,e]-compactness spaces have emerged as particularly significant. The concept of [d,e]-Lindelöfness topology, serving as corresponding generalizations of [d,e]-compactness topology is introduced. The emphasis in this research is on exploring separation axioms and limit points in [d,e]-Lindelöfness spaces through the use of [d,e]-open covers, aiming to make contributions in this area. Description is provided for these concepts, and their behavior is examined in relation to the perfect functions and infinite products. The definitions that are introduced align with their counterparts in topological spaces. The thesis delves into the sufficient conditions and in general, elucidates their fundamental characteristics.
Article Details
References
- P. Alexandrov, P. Urysohn, On Compact Topological Spaces, Trudy Math. Inst. Steklov 31 (1929), 3–95.
- P.S. Alexandroff, Mémoire sur les Espaces Topologiques Compacts, Verh. Kon. Akad. Wetensch. Amsterdam 14 (1929), 1–96.
- K. Alster, On the Class of All Spaces of Weight Not Greater than ω1 Whose Cartesian Product with Every Lindelöf Space is Lindelöf, Fundam. Math. 129 (1988), 133–140. https://eudml.org/doc/211653.
- A. Arhangel’skii, On the Cardinality of Bicompacta Satisfying the First Axiom of Countability, Sov. Math. Dokl. 10 (1969), 951–955.
- A. Atoom, F. Bani-Ahmad, Between Pairwise -α- Perfect Functions and Pairwise -t- α- Perfect Functions, J. Appl. Math. Inform. 42 (2024), 15–29.
- A. Atoom, H. Qoqazeh, N.A. Alkishik, Lindelöf Perfect Functions, JP J. Geom. Topol. 26 (2021), 91–101. https://doi.org/10.17654/gt026020091.
- A.A. Atoom, H. Qoqazeh, E. Hussein, A. Owledat, Analyzing the Local Lindelöf Proper Function and the Local Proper Function of Deep Learning in Bitopological Spaces, Int. J. Neutrosophic Sci. 26 (2025), 299–309. https://doi.org/10.54216/ijns.260223.
- A.A. Atoom, R. Alrababah, M. Alholi, H. Qoqazeh, A. Alnana, D.A. Mahmoud, Exploring the Difference Paralindelöf in Topological Spaces, Int. J. Anal. Appl. 23 (2025), 24. https://doi.org/10.28924/2291-8639-23-2025-24.
- A.A. Atoom, H. Qoqazeh, N. Abu-Alkishik, Study the Structure of Difference Lindelöf Topological Spaces and Their Properties, J. Appl. Math. Inform. 42 (2024), 471–481. https://doi.org/10.14317/JAMI.2024.471.
- A. Atoom, M. Al-Otaibi, H. Qoqazeh, A.-F.O. AlKhawaldeh, On The Distinctive Bi-generations That are Arising Three Frameworks for Maximal and Minimal Bitopologies spaces, Their Relationship to Bitopological Spaces, and Their Respective Applications, Eur. J. Pure Appl. Math. 18 (2025), 5962. https://doi.org/10.29020/nybg.ejpam.v18i2.5962.
- M. Barr, J.F. Kennison, R. Raphael, On Productively Lindelof Spaces, Sci. Math. Japon. 56 (2007), 319–332.
- R. Engelking, General Topology, Heldermann Verlag, Berlin, (1989).
- P. Fletcher, H.B. Hoyle, III, C.W. Patty, The Comparison of Topologies, Duke Math. J. 36 (1969), 325-331. https://doi.org/10.1215/S0012-7094-69-03641-2.
- Z. Frolík, Generalizations of Compact and Lindelöf Spaces, Czechoslovak Math. J. 9 (1959), 172–217. https://cir.nii.ac.jp/crid/1363107368384269952.
- H.Z. Hdeib, M.S. Sarsak, On Almost Lindelof Spaces, Quest. Answers Gen. Topol. 19 (2001), 17–26.
- A.S. Mishchenko, Finally Compact Spaces, Sov. Math. Dokl. 3 (1962), 1199–1202. https://cir.nii.ac.jp/crid/1571980075478354816.
- M.S. Sarsak, On µ-β-Lindelöf Sets in Generalized Topological Spaces, Heliyon 9 (2023) e13597. https://doi.org/10.1016/j.heliyon.2023.e13597.
- C.M. Pareek, H.Z. Hdeib, A Note on [a, b]-Compact Spaces, Canad. Math. Bull. 22 (1979), 105–112. https://doi.org/10.4153/CMB-1979-017-8.
- F.D. Tall, B. Tsaban, On Productively Lindelöf Spaces, Topol. Appl. 158 (2011), 1239–1248. https://doi.org/10.1016/j.topol.2011.04.003.