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Abstract. Considering the phenomena that depend on their past state or past history, it was noted that they were given
more importance. The mathematical models of these phenomena can be explained by state-dependent differential
equations or a self-referred type. This article is dedicated to studying the solvability of state-dependent or self-referred
dynamic nonlinear problems on time scales. Here, we got the existence of at least one solution to state-dependent
dynamic nonlinear problems on time scales and a unique solution it has. Further more, we obtained results on the

dependency of solutions for state-dependent dynamic nonlinear problems on time scales with respect to initial values.

1. INTRODUCTION

The state-dependent dynamic nonlinear problems on time scales are one of the recent kinds of
functional dynamic nonlinear problems on time scales. Most of the dynamic nonlinear problems on
time scales with deviating arguments that appear in much literature, the deviation of the argument
usually involves only the time itself. However, another case in which the deviating arguments
depend on both the state variable x and the time t is of importance in theory and practice. Several
papers have appeared recently that are kinds of state-dependent differential equations [10,11,13]
and references therein.

The theory of time scales, which has recently received a lot of attention, was initiated by Stefan
Hilger in his PhD thesis in order to unify discrete and continuous analysis [14]. The general idea
is to prove a result for a dynamic equation or a dynamic inequality where the domain of the
unknown function is a so-called time scale T, which may be an arbitrary closed subset of the real
numbers R see [3,6]. The three most popular examples of calculus on time scales are differential
calculus, difference calculus, and quantum calculus (see [16]), i.e., when T = R, T = Z and
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T = q_Z = (g% : z € Z} U {0} where g > 1. The book on the subject of time scales by Bohner and
Peterson [5] summarizes and organizes much of time scales calculus. All time scales notations are
defined in the next section.

Dynamic equations on time scales play a significant role in the mathematical modelling of nu-
merous real-world phenomena involving continuous and discrete data simultaneously. The sphere
of study of dynamic equations covers various aspects like qualitative and quantitative properties
of solutions, stability of solutions, controllability of solutions, and applications in various areas of
applied science and engineering [1,4,9,12,15,18,20,21,23].

In [24] Christopher et al. considered first-order dynamic equations of the type:

x3(t) = f(t,x(t)) tela,blr, (1.1)
x4(t) = f(t,2°(t)) t€la,blr, (12)

subject to the initial condition
x(a) = A, (1.3)

where f : [2,b]T X R" x R" — XIR", may be a nonlinear function, n > 1 and A € R is given.
In [17] the authors considered a generalised form of (1.1) and (1.2) with supposing the function

f is re-continuous, as follows:
xB() = f(t,x(t),x°(t)) t€ablr. (1.4)

without supposing f is rd-continuous, the authors in [22] obtained the existence of solutions to
Egs. (1.4) and (1.3) with respect to initial values.

As we know, the obtained results of dynamic equations with nonlocal conditions are better
than those with local conditions, see for instance [2,8,23]. For example, by Banach’s fixed-point
theorem, [7] Bohner et al. studied the existence of solutions of the first-order dynamic equation of

the type:
XB(t) + ()2 (t) = f(t,x(t), telablrs (1.5)
subject to the nonlocal condition
x(S) = xo.
Here, in this study we proved the existence and uniqueness of the state-dependent dynamic

nonlinear problem of the type:

t
0 =fox [ valsanae) rer=t (1.6

subject to the nonlocal condition
a1x(S) + a2x(a(T)) = xo- (17)

Where T = [S5,T|r, S, Te€T, S<T, xo€ Rand P15 € Cy(TXR,R), a1, az € R.
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Also, we study dependency of solutions to initial value problems with respect to initial values.
The paper is organized as follows. In Section 2, we briefly recall necessary results and notions;
the original results being then given and proved in Section 3.

2. PRELIMINARIES ON TIME SCALES

First, we recall some time scales essentials and some universal symbols used in the present
article. From now on, R and Z denote the set of all real numbers and the set of all integers,
respectively.

A time scale T is an arbitrary nonempty closed subset of R. We suppose throughout the article
that T has the topology that it inherits from the standard topology on R. The forward jump
operator 0 : T — T is defined for any 7 € T by

o(1) :=inflse T :s> 1},
and the backward jump operator p : T :— T is defined for any 7 € T by
p(t) :==supfseT:s <t}

A point T € T with infT < 7 < supT is said to be right-scattered if o(7) > 7, right-dense if
o(t) = 1, left-scattered if p(7) < 7, and left-dense if p(t) = 7. Points that are simultaneously
right-dense and left-dense are called dense points. Whereas points that are simultaneously right-
scattered and left-scattered are called isolated points.

We define the forward graininess function p : T — [0, 00) for any 7 € T by u(t) := o(7) — 7, and
the backward graininess function v : T — [0, ») is defined for any 7 € T by v(7) := © — p(1).

Letw : T — R be a function. Then the function @’ : T — R is defined by v’ (1) = w(o(7)), V7 €
T, that is @’ = woo. In a similar manner, the function w” : T — R is defined by (1) =
w(p(t)), YT €T, thatis o = wo p.

The sets T*, T, and T} are defined as follows: If T has a left-scattered maximum 7;, then
T* = T - {11}, otherwise T* = T. If T has a right-scattered minimum 7, then T\, = T — {12},
otherwise T, = T. Finally, we have T} = T* N T,.

The interval [a, b] in T is defined by

[a,blr ={teT:a<t<b)

Open intervals and half-closed interval are defined similarly.
Suppose @ : T — R is a function and T € T*. Then we say that w*(t) € R is the delta derivative
of w at 7 if for any ¢ > 0 there exists a neighborhood U of 7 such that for all ¢ € U

[w(0(7)) ~ @ ()] = @ (D) [o(7) = ¢]| < elo(r) ~ cl.

Furthermore, w is said to be delta differentiable on T* if it is delta differentiable at each T € T*.
A function @ : T — R is called right-dense continuous (rd-continuous) if w is continuous at

all the right-dense points in T and its left-sided limits exist at all left-dense points in T. On the
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other hand, w is called left-dense continuous (Id-continuous) if w is continuous at all the left-dense
points in T and its right-sided limits exist at all right-dense points in T.
A function F : T — R, is said to be a delta antiderivative of @ : T — R if F* = w(t) for all

T € T*. In this case, the definite integral of w is defined by

fba)(r)AT:F(b)—F(a) forall a,beT.

We will need the following important relations between calculus on time scales T and continuous

calculus on R, discrete calculus on Z. Note that:

(@): T = R, then

(Gi): If T = Z, then

ut(7) = Au(r),
b b-1
ﬁ u(t)At = Z u(t),

a

Lemma 2.1 (See [5]). Ifp € R and fix t € T, then the exponential function e,(t, ty) is the unique solution
of the following initial value problem:

yA(t) = p(ty(t),
{ yito) = 1 29

Definition 2.1 (See [19]). A mapping between normed linear spaces is called compact provided bounded

sets are mapped into relatively compact sets.
Definition 2.2 (See [7]). A set M is called relatively compact provided its closure is compact.

By using the following theorem, Schauder fixed point, we obtain existence of at least one solution
to Egs. (1.6) and (1.7).

Theorem 2.1 (See [19]). Let U be a convex subset of a Banach space F, and T : U — U is compact,

continuous map. Then T has at least one fixed point in U.

Theorem 2.2 (See [25]). A subset of C(I,R) which is both equicontinuous and bounded is relatively

compact.

Now, we are ready to state and prove our main results.
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3. MaIN Resurts

First, we prove the following lemma which establishes the equivalence to Egs. (1.6)—(1.7) and a

delta integral equation.

Lemma 3.1. Let S€ T, xo € R, ¢1 € Cy(T,R) and ax + ay # 0. Then, x solution to Egs. (1.6) and

A7) if
(T) s
() = (a2ta)fxo-a f: wl(s,»d [ ¢z<e,x<e>>Ae>)As1

[ s [ 42(0,1(00)20) s

(3.1)

Proof. First, assume x : I — RR solution to Egs. (1.6) and (1.7). Now integrating from S to t € I, we

obtain
x(t) :X(S)+f5t wl(s,x(f: IPz(G,X(G))AG))As,
and
Ko(m) =x(5)+ | " ¢1(s,x< [ I/Jz(G,X(Q))AQ))As.

Using the condition (1.7), we obtain
a(T) S
ax(o(T)) = axx(S)+az f ¢1(s,x(f lpz(Q,X(Q))AG))As,
S S

a(T) ]
Xo—a1x(S) = sz)((s)‘Fazﬁ ¢1(S,X(L ¢2(9/X(9))A6))A5/

and rearranging (3.3) yields

a(T) s
x(S) = (0624-041)_1[)(0—062[5 lPl(S,)((fs wz(G,x(Q))AG))As].

Hence, from (3.2) and (3.3), we conclude that x satisfies equation (3.1).
Conversely, suppose that x satisfies equation (3.1).

(3.2)

(3.3)

Taking the A—derivatives on both sides of equation (3.1), we obtain the equation (1.6). Now, we

calculate x(0(T)) and x(S) from equation (3.1)

ax(o(T)) = ax(az+a1) " [xo— f(ﬂ ‘7[’1(5,)(([: EDZ(QIX(@))A@))AS]
+ay f:m %(s,)((f: wz(G,x(G))AG))AS,
ax(S) = ai(az+a1) " xo-a L“’(T) %(S,X(LS ¢2(91X(9))A9))A5]~

Therefor
axx(o(T)) + a1 x(S) = xo-
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Hence, x satisfies Egs. (1.6) and (1.7). ]
For the main theorems presented below, we employ the notation

E:=C(LR), d(x,y) =sup|x(t) —y(t)| for x,y € E, ||x|l := d(x,0) for x € E,
tel

and we introduce @ : E — E by
(T) s
2000 = (ax+a) s [ vifsox( [ va(0x(0)80))as
+L 1p1(s,;((f: wz(Q,X(Q))AG))AS, tel, x€RE.

In the following theorem, we obtain the existence of solutions to Eqs. (1.6) and (1.7) applying
Theorem 2.1.

Theorem 3.1. Let 11, € Cpy(T X R, R). If there exists N1 > 0, with
[W1(t,u,0)| < N1 (1+ul), $2(t, w)| < 1and (laz| +1)o(T)Ny < 1, (3.4)
forallu, v, w € R, t €I, then Egs. (1.6) and (1.7) has at least one solution.

Proof. In a first step, we demonstrate that ® : E — [ is continuous.
Let {x, : n € IN} C E be such that y, — x € E asn — oo. Then, for t € I, we find

a(T) s
1D (xn) () —P(X)(B)] = (a2+a1)‘1[;co—azfs ¢1(S,Xn(fs ¢2(6,Xn(6))A6))As]

+ t wl(s,m | S ¢z<6,xn<9>>A9>)

—(a2+a1) [xo - a2 f:m 1,01(5,)(([: le(ﬁ,)((@))AQ))As]
- | fsx [ v20,x(0)80) s
| " %(s,xn( | s wz(e,xnw))A@))

As,

IA

(012 + al)_laz

sl [ w0, 0)20)

s [ vato,xo)20)

hence
|xnf¢zexn ))A0) — fwm 1A0)|
< fs 02(0, X (0))A0) — fs 92(0, 1(0))A0)]
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+|)(nfv,b26)( )JAO) — f¢29X JAO)|

<Lf [2(6, xn(0)) — 2(6, x (6 ))|A6+§

Therefore

a(T)
I

(sl [ 42(0,0(09)00)

v s [} 200,0(0)80) unfs ([ a(o,x(0))00)

Due to the imposed conditions on ¥ and i, we have ®(x,) — ®(x) as n — oo. Hence,

sl [ 420, ,000)0)

A((xa) (1), @) (1) < |(a2+a1) a2

As]

As.

® : E — E is indeed continuous. In a second step, we show that the class of functions {Qx} is

uniformly bounded and equi-continuous in (), where the set () is defined by
Q={xeE:|x(th) - x(k2)| < L(t —t2) forsomeL > 0},

where
Ny + (laz + ea]) 71 [N1lxol]

— (laa|l +1)a(T)N;

L=

Now, let x € Q). Then, for t € I, we obtain

a(T) s
(az+a1)‘1[)co—azfs 1!)1(8,)(([5 ¢z(9,X(9))A9))A5]

# [[foat [ vatex@na)s

[D(x)(H) =

a(T) s
< I(az+a1)‘1l[|)co|+laz|fs ybl(s,x(fs ybz(G,X(@))A@))AS]
# ol [ vxt0x(@)80) s
a(T) s
< |(6¥2+061)_1|[|)(0|+|6¥2|‘[S Nl(l+|)((fS ¢2(91X(9))A9)—X(S)|+|X(S)|)AS]

+fStN1(1+IX(fSS ¢z(9,x(6))A6)_X(s)|+|X(S)|)AS

IA

a(T) s
I(Oéz+011)_1|[|)(0|+|0é2|j; N1(1+L£ |¢2(9,X(9))A9|+|X(5)|)AS]

+ fst N1(1 +L fss [u2(0, x(0))1A0 + |X(S)|)AS
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a(T)
< |(a2+051)_1|[|)(0|+|0¢2|f N1(1+LT+|X(5)|)AS]
s

t
+ f N1(1 + LT+ |X(S)I)As. (3.5)
S

X(S)l < a2 +an)7[[ |X0|+|012|f |¢1(S b% f P2(0, x(6 A@))lAs]

IA

(a2 +a;)™ |Xo|+|az|f 11+|Xf¢26x ))A0) — (S)I+|X(S)I)IAS]

IA

|
(o +ap) 7Y |X0|+|0¢2|f N1(1+Lf [42(0, x(0))A0] +x(S >|)AS]

IA

I(rxz+041)‘1|[|)(o|+Iozz|fS N1(1+LT+|X(S)I)AS]

IA

a2 + ) lxol + |az|Nlo<T>(1 FLT+ IX(S)I)]

IA

(a2 + a1) M[Ixol + lazlo(T)L].

Hence
(a2 + a1) Ylxol + lezlo (T)N1 (1 + LT)]
(s = 1= lazlo(T)N; |

using (3.5) and (3.6), we obtain

1D (x) ()] < (a2 + 1) M[lxol + lazlLa(T)] + LT.

Let t1, to € I with t; < tp, we obtain

a(T) s
D) (1) = D) ()] = |(a2 + 1)~ o — 2 fs ¢1(s,x< fs %(@,X(e))Ae))AS]

# s [ vatoxtoso)|as

ety o-en [ wafox( [ va(0.x(0)00)|os
- [Tl [ va@atonao)as
< [ofort [ vnt0.00010)

< f:M(lJr ‘X(f: 12(6, x(6))A0) —X(S)‘HX(S)I)AS

< f: N1(1 +Lf: ¢2(6,X(9))|A6+I)((5)|)As

As
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< ftZN 14 o7 2t a) ol +lazlo (DN (A + LT])
T —lazlo(T)Ny
N1 +N{LT - Iazla(T)N% - Iale%Lo(T)T + (@ + a1) 7 [N1lxol + |a2|a(T)N%(1 +LT)]
—laalo(T)Ny

< (t1—t)

= (t1 - t2)L.
(3.6)

If t; < tp, then a similar calculation leads to the same result. Altogether, for any t1,f; € I, we have

[P (x)(t2) = @(x)(t)l < (2 = 01)L.

Asty —t; — 0, theright-hand side of this inequality tends to zero. Thus, this proves that® : 3 — ;
the class of functions {®y} is uniformly bounded and equi-continuous in (), by Theorem 2.1, ®
has a fixed point. m]

In the next theorem, we establish the existence exactly one solution to Egs. (1.6) and (1.7).
Theorem 3.2. Let 11, € C,y(T X R, R). If there exists Ly, Ly > 0 with

[Y1,2(t u1) = P12t u2)l < Lypluy — ual, (3.7)

forall uy, up, v1, 1 €R, tel,
then Egs. (1.6) and (1.7) has a unique solution.

Proof. Let the assumptions of Theorem 3.1 are satisfied. Then the solution of Egs. (1.6) and (1.7)
exists. Now, let x, y be two the solutions of (1.6) and (1.7). Then

a(T) S
M-y = |(@2+a) o2 [ wl(s,»d [ le(G,X(Q))AG))AS]

o s [ 42(0,x(00)20) s

~(a+an) - aa [ " wl(s,m [} vnte.viensor)as

_js"t ¢1(s,y(fss IPQ(G,y(Q))A@))AS
st [ o [ en020020)

<
—¢1(s,y(fs ¢2(9,y(6))A9))|As
(S)Cf%@)()Ae) ( fl,bz@y AQ))
< (laz+aal)” |012|f Lilx f 2(0, x(0))A0) - f 2(6,y(0))A0)|As
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lel)(fgbzﬂ)( )AO) flpz@y (0))A0)|As

< (Iaz+a1|)‘1lazlf |)(fl,b2 (6,x(0))A0) - ftpz (0,y(0))A0)]
+|)(f1/126y )JAQ) — f¢29y ))AB)[|As
fL1|)(fl/)29)( AQ fl[)zgy AQ)
+|)(f1,b26y )ABO) — f¢26y ))AO)|]As
< (s + ) oo f f 192(6,1(6)) — (6, y(6))IA0 + d(x, y)]As
f LiL f [92(6, X(0)) - ¥2(6, y(0))IA0 + d(x, y)]As
< (a2 +ar) Yol f Li[LL, f X(0) = y(0)IA0 + d(, y)]As
le Lsz lx(o 0)IA0 +d(x, y)]As
< (lag+aql)” 1|az|<L1LLzT+L1>d<x, y)(o(T)-S)
+(L1LL2T+L1)d(X,y)(t—S)
< (laz + anl) MaalBd(x, y)(o(T) = S) + Bd(x, y)(t - S).

Therefor
d(x,y) < [(laz + all)_lla2|Ba(T) +BTld(x,y),

where B = L1LL,T + L;. Since [(laa + a1|)~}|aa|Ba(T) + BT] < 1, which implies x(t) = y(t) and the
solution of Egs. (1.6) and (1.7) is unique. ]

Below we state and prove the result on the dependency of solutions to Egs. (1.6) and (1.7) with

respect to xo.

Theorem 3.3. Let the assumptions of Theorem 3.2 be satisfied and the solution x to Eqs. (1.6) and (1.7),
depends continuously on xo, if

Ve>0, 3 8(e) st [xo—xpl<d = d(x,x") <e

where x* is the solution of the dynamic boundary value problem

t
)(*A = 1,01(15,)(*([5 tpz(s,)(*(s))As)), tel, (3.8)
with condition

a2x*(S) + a1x*(a(T)) = xp- (3.9)
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Proof. Let x, x" be two solutions of to Egs. (1.6), (1.7), (3.8) and (3.9) respectively. Then

IA

IA

IA

IA

IA

<

therefor

Lx(t) = x*(t)l
e a(T) s
xo ~ Xl + (@2 —f—0é1)_10(2\fS |¢1(5/X(f; EbZ(@fX(Q))AQ))

ar +aq

—wl(s,x% [ ¢2(9,x*(9))A9))IAs

f¢1(sxf¢zex>>A9) (s [[ vat0,0(020)

As

az +aq

Ixo = x5 _
C + (laz 4 a1]) 1|az|f IXfl,bz (6, x(0))A0) — f@ (6,x7(0))A0)]

+|Xf¢29)( 1A0) - fll’z@)( ))A0) | As

fL1|Xf¢29X )AO) — f@@x ))AB)|

+|Xf¢29)( 1A0) - fwzex ))A0)[|As

a +aq

le f|¢29X 26,17 ())1A6 + d(y, x*)]As

LL AQ d As
a2+a + (laz + )™ |0£2|f 2f|)( 0)1A0 +d(x, x*)]

le Lszl)( 0)IA6 +d(x, x")]As

+ (Jaz + aq|) Yaol(LiLLo T + Ly)d(x, x*) (o(T) = S)

ar +aq
+(LiLLoT + Ly)d(x, X*) (= S)

+ (laz + a1l) MazlBd(x, x*) (a(T) = S) + Bd(x, ) (t - S),

ap +aq

(a2 +6¥1)_1 0
— [(lez + a1l)~YazlBo(T) + BT]'

dlx,x") <
(XX)l

° (laz + 1) laal Ile (6,x(0)) = 2(0,x"(0))IA0 +d(x, x")]As
s

This mean that the solution to Egs. (1.6) and (1.7). depends continuously on xo. The proof is

completed.

Below, we offer one example to illustrate our results.

Example 3.1. Let T := [0, 1] U [2,3]. Consider the dynamic boundary value problem

1 1 Lox(s)l ))

A 3 k

X t°+ — ———=—As]||, teT",
2 +4 (X(fo 14 1x(s)l

O

(3.10)
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with the condition
0.75x(S) +0.25x(a(T)) = xo. (3.11)
A delta integral equation for (3.10) and (3.11)

0 e [ o[

A B |

” el [ atsaonas) = 3+ g o ] i)
Then . (t’x( fst s, X(S))ds))g %(1+(IXI))I
and also

[a(s, x(s))l < 1.
It is clear that the assumptions of Theorem 3.1 are satisfied with Ny = 1,
(lazl + 1)N1o(T) = (025+1) x 1 X3 = 12 < 1. Therefore, by applying to Theorem 3.1, the given
dynamic boundary value problem (3.10)—(3.11) has a solution given by the delta integral equation (3.12).
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