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ABSTRACT. Mathematicians attach importance to extending ideals in algebraic structures. The concept of bi-quasi (ƁԚ) 

ideal was introduced as a generalization version of quasi-ideal, bi-ideal, and left (right) ideals in semigroups. This 

paper applies this concept to soft set theory and semigroups, introducing the notion of "Soft union (S-uni) ƁԚ ideal." 

The aim of this paper is to explore the relationships between S-uni ƁԚ ideals and other types of S-uni ideals in 

semigroups. It is shown that every S-uni bi-ideal, S-uni ideal, S-uni quasi-ideal, and S-uni interior ideal of an 

idempotent soft set are S-uni ƁԚ ideals. Counterexamples demonstrate that the converses are not always true unless 

the semigroup is special soft simple or regular. For special soft simple semigroups, the S-uni ƁԚ ideal coincides with 

the S-uni bi-ideal, S-uni left (right) ideal, and S-uni quasi-ideal. Additionally, we provide conceptual definitions and 

analyses of the new concept in the context of soft set operations, supporting our claims with clear examples. 

 

 

1. Introduction 

Semigroups are crucial in various areas of mathematics as they provide the abstract 

algebraic foundation for "memoryless" systems, which reset after every iteration. Initially studied 

in the early 1900s, semigroups serve as key models for linear time-invariant systems in applied 

mathematics. Their connection to finite automata makes the study of finite semigroups 

particularly important in theoretical computer science. In probability theory, semigroups are also 

linked to Markov processes. The concept of ideals is vital for understanding the structure and 

https://doi.org/10.28924/2291-8639-23-2025-100


2 Int. J. Anal. Appl. (2025), 23:100 

 

applications of mathematical systems, and thus, many mathematicians have focused on 

extending the theory of ideals in algebraic structures. In fact, advancing the study of algebraic 

systems requires a broader understanding of ideals. By utilizing the concept and properties of 

generalized ideals, mathematicians have made significant contributions to the characterization of 

algebraic structures. Dedekind introduced ideals in the context of algebraic number theory, and 

Noether expanded this concept to include associative rings. The notion of a one-sided ideal 

extends the idea of an ideal, and the theory of one-sided and two-sided ideals remains central to 

ring theory. 

In 1952, Good and Hughes [1] introduced the concept of bi-ideals for semigroups. 

Steinfeld [2] was the first to present the idea of quasi-ideals for semigroups, later extending it to 

rings. Quasi-ideals are a generalization of right and left ideals, while bi-ideals are a further 

generalization of quasi-ideals. The concept of interior ideals was initially introduced by Lajos [3] 

and later explored by Szasz [4,5]. Interior ideals represent a generalization of the traditional ideal 

concept. Rao [6-9] developed several novel types of semigroup ideals that generalize existing 

ones, such as bi-interior ideals, bi-quasi ideals, quasi-ideal, interior ideals, weak-interior ideals 

and bi-quasi-interior ideals. Moreover, Baupradist et al. [10] introduced the concept of essential 

ideals in semigroups. The concept of "almost" ideals was proposed as a broader form of various 

ideal types, and a comprehensive study was conducted on their properties and interrelationships. 

In this regard, the idea of almost ideals was first presented in [11]. Additionally, various types of 

almost ideals for semigroups were introduced in [12-18]. Furthermore, in [13, 15–20], several 

fuzzy types of almost ideals for semigroups were explored. 

In 1999, Molodtsov [21] introduced the "Soft Set Theory" to address and provide solutions 

for problems involving uncertainty. Since its inception, extensive research has been conducted on 

the concepts of soft sets, particularly focusing on operations involving soft sets. Maji et al. [22] 

defined specific operations on soft sets and introduced related concepts. Pei and Miao [23], as 

well as Ali et al. [24], proposed various operations on soft sets. Sezgin and Atagün [25] conducted 

studies on soft set operations. For more information on soft set operations, which have gained 

significant attention since their introduction, we refer to [26–36]. Çağman and Enginoğlu [37] 

revisited the notions and operations of soft sets. In addition, Çağman et al. [38] developed the 

concept of soft intersection groups, which led to the exploration of different soft algebraic 

systems. Sezgin [39], using soft sets in the context of semigroup theory, defined soft union (S-uni) 

semigroups, left (right/two-sided) ideals, and bi-ideals of semigroups. Sezgin et al. [40] defined 

S-uni interior ideals, quasi-ideals, and generalized bi-ideals of semigroups, thoroughly analyzing 

their fundamental properties. Regarding the S-uni substructures of semigroups, Sezer et al. [41] 

defined and classified several types of semigroups. In [42], various types of regularities in 

semigroups were characterized using soft union quasi-ideals, soft union (generalized) bi-ideals, 
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and soft union semiprime ideals of a semigroup. Several types of soft intersection almost ideals 

were introduced and studied in [43–54] as a generalization of soft intersection ideals. Finally, in 

[55–72], the soft versions of various algebraic structures were explored. 

As a generalization of bi-ideals and interior ideals of semigroups, The first of these is the 

study by Rao [6] on the bi-quasi ideals of Γ-semigroups and the fuzzy bi-quasi ideals of these 

semigroups. Additionally, the bi-quasi ideals of Γ-semirings were examined by Rao, 

Venkateswarlu, and Rafi [73]. Rao [74,75]  provided an extensive study on the bi-quasi ideals of 

semirings. Similarly, Rao [8] made significant contributions to the study of bi-quasi ideals of 

semigroups. In this study, we extend this idea to semigroups and soft set theory by introducing 

"S-uni bi-quasi ideals of semigroups." We analyze the relationships between S-uni bi-quasi ideals 

and various types of S-uni ideals of semigroups. Under certain necessary conditions, it is 

demonstrated that an S-uni ideal (bi-ideal, quasi-ideal, interior ideal) is indeed an S-uni ƁԚ ideal 

of a semigroup. Counterexamples are provided to show that the reverse of these statements does 

not always hold. However, the converse statements are not true, as demonstrated by 

counterexamples. We show that for the converses to hold, the semigroup must be a special soft 

simple semigroup. Additionally, we provide conceptual characterizations and analyses of this 

new concept in the context of soft set operations, supporting our claims with specific, illustrative 

examples. This study is structured into four sections: Section 1 offers an introduction to the topic, 

Section 2 presents the basic concepts of semigroups and soft set ideals along with relevant 

definitions and implications, Section 3 introduces the idea of S-uni bi-quasi ideals of semigroups 

and uses specific examples to examine their characteristics and their connections to other S-uni 

ideals, and Section 4 outlines our findings and suggests directions for future research. 

 

2. Preliminaries 

In this study, 𝑆 is used to represent a semigroup. A nonempty subset Ҡ of 𝑆 is called a 

subsemigroup of 𝑆 if ҠҠ ⊆ Ҡ, is called a left (right) ideal of 𝑆 if 𝑆Ҡ ⊆ Ҡ (Ҡ𝑆 ⊆ Ҡ), is called a bi-

ideal of 𝑆 if ҠҠ ⊆ Ҡ and Ҡ𝑆Ҡ ⊆ Ҡ, is called an interior ideal of 𝑆 if 𝑆Ҡ𝑆 ⊆ Ҡ, and is called a quasi-

ideal of 𝑆 if Ҡ𝑆 ∩ 𝑆Ҡ ⊆ Ҡ.  

A subsemigroup Ҡ of 𝑆 is called a left (ʟ-) ƁԚ ideal of 𝑆 if 𝑆Ҡ ∩ Ҡ𝑆Ҡ ⊆ Ҡ , is called a right 

(ʀ-) ƁԚ ideal of 𝑆 if Ҡ𝑆 ∩ Ҡ𝑆Ҡ ⊆ Ҡ, and is called a ƁԚ ideal of 𝑆 if it is both ʟ-ƁԚ ideal of 𝑆 and ʀ-

ƁԚ ideal [8]. 

Definition 2.1. [21, 37] Let 𝐸 be the parameter set, 𝑈 be the universal set, 𝑃(𝑈) be the power set 

of 𝑈, and Ɗ ⊇ 𝐸. The soft set (𝚂𝚂) ƍƊ over 𝑈 is a function such that ƍƊ: 𝐸 → 𝑃(𝑈), where for all 

ⱴ ∉ Ɗ, ƍƊ(ⱴ) = ∅. That is, 

ƍƊ = {(ⱴ, ƍƊ(ⱴ)): ⱴ ∈ 𝐸, ƍƊ(ⱴ) ∈ 𝑃(𝑈)} 

The set of all 𝚂𝚂s over 𝑈 is designated by 𝑆𝐸(𝑈) throughout this paper. 
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Definition 2.2. [37] Let ƍƊ ∈ 𝑆𝐸(𝑈). If ƍƊ(𝑡) = ∅ for all 𝑡 ∈ 𝐸, then ƍƊ is called a null 𝚂𝚂 and 

indicated by ∅E . 

Definition 2.3. [37] Let ƍℳ , ƍN ∈ 𝑆𝐸(𝑈). If ƍℳ(ҩ) ⊆ ƍN(ҩ), for all ҩ ∈ 𝐸, then ƍℳ is a soft subset of 

ƍN and indicated by ƍℳ ⊆̃ ƍN. If ƍℳ(ҩ) ⊇ ƍN(ҩ), for all ҩ ∈ 𝐸, then ƍℳ is a soft superset of ƍN and 

indicated by ƍℳ ⊇̃ ƍN, and if ƍℳ(𝜍) = ƍN(𝜍), for all 𝜍 ∈ 𝐸, then ƍℳ is called soft equal to ƍN and 

denoted by ƍℳ = ƍN. 

Definition 2.4. [37] Let ƣℳ , ƣͶ ∈ 𝑆𝐸(𝑈). The union (intersection) of ƣℳ and ƣͶ is the 𝚂𝚂 

ƣℳ ∪̃ ƣͶ (ƣℳ ∩̃ ƣͶ), where (ƣℳ ∪̃ ƣͶ)(ʋ) = ƣℳ(ʋ) ∪ ƣͶ(ʋ) ((ƣℳ ∩̃ ƣͶ)(ʋ) = ƣℳ(ʋ) ∩ ƣͶ(ʋ)), 

for all ʋ ∈ 𝐸, respectively. 

Definition 2.5. [39] Let ƒӃ ∈ 𝑆𝐸(𝑈) and 𝛼 ⊆ 𝑈. Then, lower 𝛼-inclusion of ƒӃ, denoted by ℒ(ƒӃ; 𝛼), 

is defined as ℒ(ƒӃ; 𝛼) = {𝑥 ∈ Ӄ | ƒӃ(𝑥) ⊆ 𝛼}. 

Definition 2.6. [39] Let ɲ𝑆, 𝑔𝑆 ∈ 𝑆𝑆(𝑈). S-uni product ɲ𝑆 ∗ 𝑔𝑆 is defined by 

(ɲ𝑆  ∗  𝑔𝑆)(ⱴ) = {
⋂ {ɲ𝑆(𝑦) ∪ 𝑔𝑆(𝑧)},       

ⱴ=𝑦𝑧 

𝑖𝑓 ∃𝑦, 𝑧 ∈ 𝑆 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ⱴ = 𝑦𝑧 

𝑈,                                             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                         

 

Theorem 2.7. [39] Let ի𝑆, թ𝑆, ռ𝑆 ∈ 𝑆𝑆(𝑈). Then,  

i. (ի𝑆 ∗  թ𝑆) ∗ ռ𝑆 = ի𝑆 ∗ (թ𝑆 ∗ ռ𝑆) 

ii. ի𝑆 ∗ թ𝑆 ≠ թ𝑆 ∗ ի𝑆 

iii. ի𝑆 ∗ (թ𝑆 ∪̃ ռ𝑆) = (ի𝑆 ∗ թ𝑆) ∪̃ (ի𝑆 ∗ ռ𝑆) and (ի𝑆 ∪̃ թ𝑆) ∗ ռ𝑆 = (ի𝑆 ∗ ռ𝑆) ∪̃ (թ𝑆 ∗ ռ𝑆) 

iv. ի𝑆 ∗ (թ𝑆 ∩̃ ռ𝑆) = (ի𝑆 ∗ թ𝑆) ∩̃ (ի𝑆 ∗ ռ𝑆) and (ի𝑆 ∩̃ թ𝑆) ∗ ռ𝑆 = (ի𝑆 ∗ ռ𝑆) ∩̃ (թ𝑆 ∗ ռ𝑆) 

v. If ի𝑆 ⊆̃ թ𝑆, then ի𝑆 ∗ ռ𝑆 ⊆̃ թ𝑆 ∗ ռ𝑆 and  ռ𝑆 ∗ ի𝑆 ⊆̃ ռ𝑆 ∗ թ𝑆 

vi. If ɉ𝑆, ն𝑆 ∈ 𝑆𝑆(𝑈) such that ɉ𝑆 ⊆̃ ի𝑆 and ն𝑆 ⊆̃ թ𝑆, then ɉ𝑆 ∗ ն𝑆 ⊆̃ ի𝑆 ∗ թ𝑆. 

Definition 2.8. [39] Let 𝒯 ⊆ 𝑆. We denote by ζ𝒯C the soft characteristic function (𝚂𝙲𝙵) of the 

complement 𝒯 and defined as 

ζ𝒯C(𝑣) = {
𝑈,   𝑖𝑓 𝑣 ∈ 𝒯       
∅,   𝑖𝑓 𝑣 ∈ 𝑆\𝒯    

 

Definition 2.9. [39, 40] An 𝚂𝚂 ի𝑆 ∈ 𝑆𝑆(𝑈) is called  

i. an S-uni subsemigroup of S over U if իS(ab) ⊆ իS(a) ∪ իS(b) for all a, b ∈ S, 

ii. an S-uni left (right) ideal of S over U if իS(ռυ) ⊆ իS(υ) (իS(ռυ) ⊆ իS(ռ)) for all ռ, υ ∈ S, and 

is called an S-uni two-sided ideal (S-uni ideal) of S over U if it is both S-uni left ideal of S 

over U and S-uni right ideal of S over U, 

iii. an S-uni bi-ideal of S over U if իS is an S-uni subsemigroup of S over U and իS(ϳռρ) ⊆

իS(ϳ) ∪ իS(ρ) for all ϳ, ռ, ρ ∈ S, 

iv. an S-uni interior ideal of S over U if իS(ϳռρ) ⊆ իS(ռ) for all ϳ, ռ, ρ ∈ S. 

Note that in [39], the definition of “S-uni subsemigroup of 𝑆” is given as “S-uni semigroup of 𝑆”; 

however in this paper, without loss of generality, we prefer to use “S-uni subsemigroup of 𝑆”. 
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If 𝜗𝑆(𝑥) = ∅ for all 𝑥 ∈ 𝑆,  then 𝜗𝑆 is an S-uni subsemigroup (left ideal, right ideal, ideal, bi-ideal, 

interior ideal). Such a kind of S-uni subsemigroup (left ideal, right ideal, ideal, bi-ideal, interior 

ideal) is denoted by �̃�. It is obvious that �̃� = 𝜁𝑆𝐶, that is, �̃�(𝑥) = ∅ for all 𝑥 ∈ 𝑆 [39, 40]. 

Definition 2.10. [40] ի𝑆 ∈ 𝑆𝑆(𝑈) is called an S-uni quasi-ideal of 𝑆 over 𝑈 if (ϴ̃  ∗ ի𝑆) ∪̃ (ի𝑆  ∗

 ϴ̃) ⊇̃ ի𝑆. 

Theorem 2.11. [40] Let ի𝑆 ∈ 𝑆𝑆(𝑈). Then, 

i. ϴ̃  ∗  ϴ̃ ⊇̃ ϴ̃ 

ii. ϴ̃  ∗  ի𝑆 ⊇̃ ϴ̃ and ի𝑆  ∗  ϴ̃ ⊇̃ ϴ̃ 

iii. ի𝑆 ∪̃ ϴ̃ = ϴ̃ and ի𝑆 ∩̃ ϴ̃ = ի𝑆. 

Theorem 2.12. [39, 40] Let ի𝑆 ∈ 𝑆𝑆(𝑈). Then, 

(1) ի𝑆 is an S-uni subsemigroup ⟺ (ի𝑆  ∗  ի𝑆) ⊇̃ ի𝑆, 

(2) ի𝑆 is an S-uni left (right) ideal ⟺ (ϴ̃  ∗  ի𝑆) ⊇̃ ի𝑆 and (ի𝑆  ∗  ϴ̃) ⊇̃ ի𝑆,  

(3) ի𝑆 is an S-uni bi-ideal ⟺ (ի𝑆  ∗  ի𝑆) ⊇̃ ի𝑆 and (ի𝑆  ∗  ϴ̃  ∗  ի𝑆) ⊇̃ ի𝑆, 

(4) ի𝑆 is an S-uni interior ideal ⟺ (ϴ̃ ∗  ի𝑆  ∗  ϴ̃) ⊇̃ ի𝑆. 

Theorem 2.13. [39,40] The following assertions hold: 

(1) Every S-uni left (right/two-sided) ideal is an S-uni subsemigroup (S-uni bi-ideal/S-uni quasi-

ideal), 

(2) Every S-uni ideal is an S-uni bi-ideal. 

Proposition 2.14. [39] Let ի𝑆 ∈ 𝑆𝑆(𝑈), 𝛼 be a subset of 𝑈, 𝐼𝑚(𝑓𝑆) be the image of ի𝑆 such that 𝛼 ∈

𝐼𝑚(ի𝑆). If ի𝑆 is an S-uni subsemigroup of 𝑆, then ℒ(ի𝑆; 𝛼) is a subsemigroup of 𝑆. 

Definition 2.15. [76] Let ի𝑆 ∈ 𝑆𝑆(𝑈). Then, 𝑆 is called a special soft left (right) simple semigroup 

(with respect to ի𝑆) if ϴ̃ = ϴ̃  ∗  ի𝑆 (ϴ̃ = ի𝑆  ∗  ϴ̃) , is called a special soft simple semigroup (with 

respect to ի𝑆) if ϴ̃ = ϴ̃  ∗  ի𝑆 = ի𝑆  ∗  ϴ̃. If 𝑆 is a special soft (left/right) simple semigroup with 

respect to all soft sets over 𝑈, then it is called a special soft (left/right) simple semigroup. 

For the sake of brevity, special soft (left/right) simple semigroup is abbreviated by special soft (ʟ-

/ ʀ-) simple. 

Corollary 2.16. [39] For a semigroup 𝑆, the following conditions are equivalent:  

(1) 𝑆 is regular. 

(2) ի𝑆 ∗ թ𝑆 = ի𝑆 ∪̃ թ𝑆 for every S-uni ideals ի𝑆 and թ𝑆 of 𝑆 over 𝑈. 

 

3. Soft Union Bi-quasi Ideals of Semigroups 

In this section, we present the concept of soft union bi-quasi ideals of semigroups, provide its 

examples, thoroughly examine its relationships with other soft union ideals, and analyze the 

concept in terms of certain 𝚂𝚂 concepts and operations. 
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Definition 3.1. A soft set 𝜂𝑆 over 𝑈 is called a soft union left (right) (ʟ-( ʀ-)) bi-quasi ideal of 𝑆 over 

𝑈 if (ϴ̃ ∗  𝜂𝑆) ∪̃ (𝜂𝑆  ∗  ϴ̃  ∗  𝜂𝑆) ⊇̃ 𝜂𝑆 ((𝜂𝑆  ∗  ϴ̃ ) ∪̃ (𝜂𝑆  ∗  ϴ̃  ∗  𝜂𝑆) ⊇̃ 𝜂𝑆).  

An 𝚂𝚂 over 𝑈 is called a soft union bi-quasi ideal of 𝑆 if it is both a soft union ʟ-bi-quasi ideal and 

a soft union ʀ-bi-quasi ideal of 𝑆 over 𝑈.     

For the sake of brevity, soft union bi-quasi ideal of 𝑆 over 𝑈 is abbreviated by S-uni ƁԚ ideal. 

Example 3.2. Consider the semigroup 𝑆 = {𝔣, ℎ, ᵲ} defined by the following table: 

 

Table 1: Cayley table of ‘♦’ binary operation. 

♦ 𝔣 ℎ ᵲ 

𝔣 𝔣 ᵲ ᵲ 

ℎ ᵲ ℎ ᵲ 

ᵲ ᵲ ᵲ ᵲ 

 

Let 𝜂𝑆 and ₰𝑆 be 𝚂𝚂s over 𝑈 = 𝐷3 = {< 𝑥, 𝑦 > : 𝑥3 = 𝑦2 = 𝑒, 𝑥𝑦 = 𝑦𝑥2} = {𝑒, 𝑥, 𝑥2, 𝑦, 𝑦𝑥, 𝑦𝑥2} as 

follows: 

𝜂𝑆 = {(𝔣, {𝑒, 𝑥, 𝑥2}), (ℎ, {𝑒, 𝑥, 𝑥2, 𝑦}), (ᵲ, {𝑒, 𝑥})} 

₰𝑆 = {(𝔣, {𝑒, 𝑥, 𝑦}), (ℎ, {𝑒, 𝑥2, 𝑦, 𝑦𝑥2}), (ᵲ, {𝑒, 𝑥} )}   

It can be readily proven that 𝜂𝑆 is an S-uni ƁԚ ideal of 𝑆. Here, we find it appropriate to give a 

few concrete examples of elements for ease of illustration in order to be more understandable. In 

fact, 

[(ϴ̃  ∗  𝜂𝑆) ∪̃ (𝜂𝑆 ∗  ϴ̃  ∗  𝜂𝑆)](𝔣) = (ϴ̃  ∗  𝜂𝑆)(𝔣) ∪ (𝜂𝑆  ∗  ϴ̃  ∗  𝜂𝑆)(𝔣)

= [ϴ̃(𝔣) ∪ 𝜂𝑆(𝔣)] ∪ [𝜂𝑆(𝔣) ∪ (ϴ̃  ∗  𝜂𝑆)(𝔣)] = 𝜂𝑆(𝔣) ∪ 𝜂𝑆(𝔣) = 𝜂𝑆(𝔣) ⊇ 𝜂𝑆(𝔣) 

[(ϴ̃  ∗  𝜂𝑆) ∪̃ (𝜂𝑆  ∗  ϴ̃  ∗  𝜂𝑆)](ℎ) = (ϴ̃  ∗  𝜂𝑆)(ℎ) ∪ (𝜂𝑆  ∗  ϴ̃  ∗  𝜂𝑆)(ℎ)

= [ϴ̃(ℎ) ∪ 𝜂𝑆(ℎ)] ∪ [𝜂𝑆(ℎ) ∪ (ϴ̃  ∗  𝜂𝑆)(ℎ)] = 𝜂𝑆(ℎ) ∪ 𝜂𝑆(ℎ) = 𝜂𝑆(ℎ) ⊇  𝜂𝑆(ℎ) 

[(ϴ̃  ∗  𝜂𝑆) ∪̃ (𝜂𝑆  ∗  ϴ̃  ∗  𝜂𝑆)](ᵲ) = (ϴ̃  ∗  𝜂𝑆)(ᵲ) ∪ (𝜂𝑆  ∗  ϴ̃  ∗  𝜂𝑆)(ᵲ)

= [[ϴ̃(𝑓) ∪ 𝜂𝑆(ℎ)] ∩ [ϴ̃(𝑓) ∪ 𝜂𝑆(ᵲ)] ∩ [ϴ̃(ℎ) ∪ 𝜂𝑆(𝔣)] ∩ [ϴ̃(ℎ) ∪ 𝜂𝑆(ᵲ)]

∩ [ϴ̃(ᵲ) ∪ 𝜂𝑆(𝔣)] ∩ [ϴ̃(ᵲ) ∪ 𝜂𝑆(ℎ)] ∩ [ϴ̃(ᵲ) ∪ 𝜂𝑆(ᵲ)]]

∪ [[[𝜂𝑆(𝔣) ∪ (ϴ̃  ∗  𝜂𝑆)(ℎ)] ∩ [𝜂𝑆(𝔣) ∪ (ϴ̃  ∗  𝜂𝑆)(ᵲ)] ∩ [𝜂𝑆(ℎ) ∪ (ϴ̃  ∗  𝜂𝑆)(𝔣)]

∩ [𝜂𝑆(ℎ) ∪ (ϴ̃  ∗  𝜂𝑆)(ᵲ)] ∩ [𝜂𝑆(ᵲ) ∪ (ϴ̃  ∗  𝜂𝑆)(𝔣)] ∩ [𝜂𝑆(ᵲ) ∪ (ϴ̃  ∗  𝜂𝑆)(ℎ)]

∩ [𝜂𝑆(ᵲ) ∪ (ϴ̃  ∗  𝜂𝑆)(ᵲ)] ] = [𝜂𝑆(ℎ) ∩ 𝜂𝑆(ᵲ) ∩ 𝜂𝑆(𝔣)] ∪ [𝜂𝑆(ℎ) ∩ 𝜂𝑆(ᵲ) ∩ 𝜂𝑆(𝔣)]

= 𝜂𝑆(ℎ) ∩ 𝜂𝑆(ᵲ) ∩ 𝜂𝑆(𝔣) ⊇ 𝜂𝑆(ᵲ) 
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It can be easily shown that the 𝚂𝚂 𝜂𝑆 satisfies the S-uni ʟ-ƁԚ ideal condition for all other element 

combinations of the set 𝑆. Similarly, 

[(𝜂𝑆  ∗  ϴ̃) ∪̃ (𝜂𝑆  ∗  ϴ̃  ∗  𝜂𝑆)](𝔣) ⊇ 𝜂𝑆(𝔣),     [(𝜂𝑆  ∗  ϴ̃) ∪̃ (𝜂𝑆  ∗  ϴ̃  ∗  𝜂𝑆)](ℎ) ⊇ 𝜂𝑆(ℎ) 

[(𝜂𝑆  ∗  ϴ̃) ∪̃ (𝜂𝑆  ∗  ϴ̃  ∗  𝜂𝑆)](ᵲ) ⊇ 𝜂𝑆(ᵲ) 

It can be easily shown that the 𝚂𝚂 𝜂𝑆 satisfies the S-uni ʀ-ƁԚ ideal condition for all other element 

combinations of the set 𝑆, thus 𝜂𝑆 is an S-uni ƁԚ ideal. However, since 

[(ϴ̃  ∗  ₰𝑆) ∪̃ (₰𝑆  ∗  ϴ̃  ∗  ₰𝑆)](ᵲ) = [₰𝑆(ℎ) ∩ ₰𝑆(ᵲ) ∩ ₰𝑆(𝔣)] ⊉ ₰𝑆(ᵲ) 

₰𝑆 is not an S-uni ƁԚ ideal. 

Corollary 3.3. ϴ̃ is an S-uni ƁԚ ideals. 

Proposition 3.4. Every S-uni bi-ideal is an S-uni ʀ-ƁԚ ideal. 

Proof: Let ҕ𝑆 be an S-uni bi-ideal of 𝑆. Then,  ҕ𝑆  ∗  ϴ̃  ∗  ҕ𝑆 ⊇̃ ҕ𝑆. Thus, 

(ҕ𝑆  ∗  ϴ̃) ∪̃ (ҕ𝑆  ∗  ϴ̃  ∗  ҕ𝑆) ⊇̃ ҕ𝑆  ∗  ϴ̃  ∗  ҕ𝑆 ⊇̃ ҕ𝑆 

Hence, ҕ𝑆 is an S-uni ʀ-ƁԚ ideal of 𝑆. 

We show with a counterexample that the converse of Proposition 3.4 is not true: 

Example 3.5. Consider the semigroup 𝑆 = {ɚ, ƴ, 𝔯, 𝔰} defined by the following table: 

 

Table 2: Cayley table of ‘⸙’ binary operation. 

 

 

 

 

 

 

Let ҕ𝑆 be an 𝚂𝚂 over 𝑈 = 𝑁  as follows: 

ҕ𝑆 = {(ɚ, {4}), (ƴ, {1,2,4}), (𝔯, {4,5}), (𝔰, {1,2,3,4})} 

Here, ҕ𝑆 is an S-uni ʀ-ƁԚ ideal. In fact, 

[(ҕ𝑆  ∗  ϴ̃) ∪̃ (ҕ𝑆  ∗  ϴ̃  ∗  ҕ𝑆)](ɚ) = ҕ𝑆(ɚ) ∩ ҕ𝑆(ƴ) ∩ ҕ𝑆(𝔯) ∩ ҕ𝑆(𝔰) ⊇ ҕ𝑆(ɚ) 

[(ҕ𝑆  ∗  ϴ̃) ∪̃ (ҕ𝑆  ∗  ϴ̃  ∗  ҕ𝑆)](ƴ) = ҕ𝑆(𝔰) ⊇ ҕ𝑆(ƴ),   [(ҕ𝑆  ∗  ϴ̃) ∪̃ (ҕ𝑆  ∗  ϴ̃  ∗  ҕ𝑆)](𝔯) = 𝑈 ⊇ ҕ𝑆(𝔯) 

[(ҕ𝑆  ∗  ϴ̃) ∪̃ (ҕ𝑆  ∗  ϴ̃  ∗  ҕ𝑆)](𝔰) = 𝑈 ⊇ ҕ𝑆(𝔰) 

thus, ҕ𝑆 is an S-uni ʀ-ƁԚ ideal of 𝑆. However, since (ҕ𝑆  ∗  ҕ𝑆)(𝔯) = ҕ𝑆(𝔰) ∪ ҕ𝑆(𝔰) ⊉ ҕ𝑆(𝔯). 

ҕ𝑆 is not an S-uni bi-ideal. 

Proposition 3.6 shows that the converse of Proposition 3.4 holds for soft ʟ-simple semigroups. 

Proposition 3.6. Let ҕ𝑆 ∈ 𝑆𝑆(𝑈) and 𝑆 be a special soft ʟ-simple semigroup. Then, the following 

conditions are equivalent: 

1. ҕ𝑆 is an S-uni bi-ideal. 

2. ҕ𝑆 is an S-uni ʀ-ƁԚ ideal. 

 ⸙ ɚ ƴ 𝔯 𝔰 

ɚ ɚ ɚ ɚ ɚ 

ƴ ɚ ɚ ɚ ɚ 

𝔯 ɚ ɚ ɚ Ƴ 

𝔰 ɚ ɚ ƴ 𝔯 
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Proof: (1) implies (2) is obvious by Proposition 3.6. Assume that ҕ𝑆 is an S-uni ʀ-ƁԚ ideal. By 

assumption, ϴ̃ = ϴ̃  ∗  ҕ𝑆. Thus, ҕ𝑆  ∗  ҕ𝑆 = (ҕ𝑆  ∗  ҕ𝑆) ∪̃ (ҕ𝑆  ∗  ҕ𝑆) ⊇̃ (ҕ𝑆  ∗  ϴ̃) ∪̃ (ҕ𝑆  ∗  ϴ̃) = (ҕ𝑆  ∗

 ϴ̃) ∪̃ (ҕ𝑆  ∗  ϴ̃  ∗  ҕ𝑆) ⊇̃ ҕ𝑆. 

Hence, ҕ𝑆 is an S-uni subsemigroup. 

ҕ𝑆  ∗  ϴ̃  ∗  ҕ𝑆 = (ҕ𝑆  ∗  ϴ̃  ∗  ҕ𝑆) ∪̃ (ҕ𝑆  ∗  ϴ̃  ∗  ҕ𝑆) = (ҕ𝑆  ∗  ϴ̃) ∪̃ (ҕ𝑆  ∗  ϴ̃  ∗  ҕ𝑆) ⊇̃ ҕ𝑆 

Thus, ҕ𝑆 is an S-uni bi-ideal. 

Proposition 3.7. Every S-uni bi-ideal is an S-uni ʟ-ƁԚ ideal. 

Proof: Let ҕ𝑆 be an S-uni bi-ideal of 𝑆. Then, ҕ𝑆  ∗  ϴ̃  ∗  ҕ𝑆 ⊇̃ ҕ𝑆. Thus, 

(ϴ̃  ∗  ҕ𝑆) ∪̃ (ҕ𝑆  ∗  ϴ̃  ∗  ҕ𝑆) ⊇̃ ҕ𝑆  ∗  ϴ̃  ∗  ҕ𝑆 ⊇̃ ҕ𝑆 

Hence, ҕ𝑆 is an S-uni ʟ-ƁԚ ideal of 𝑆. 

We show with a counterexample that the converse of Proposition 3.7 is not true: 

Example 3.8. Consider the 𝚂𝚂 ҕ𝑆 in Example 3.5. The 𝚂𝚂 ҕ𝑆 is an S-uni ʟ-ƁԚ ideal. Since, 

[(ϴ̃  ∗  ҕ𝑆) ∪̃ (ҕ𝑆  ∗  ϴ̃  ∗  ҕ𝑆)](ɚ) = ҕ𝑆(ɚ) ∩ ҕ𝑆(ƴ) ∩ ҕ𝑆(𝔯) ∩ ҕ𝑆(𝔰) ⊇ ҕ𝑆(ɚ) 

[(ϴ̃  ∗  ҕ𝑆) ∪̃ (ҕ𝑆  ∗  ϴ̃  ∗  ҕ𝑆)](ƴ) = ҕ𝑆(𝔰) ⊇ ҕ𝑆(ƴ) 

[(ϴ̃  ∗  ҕ𝑆) ∪̃ (ҕ𝑆 ∗ ϴ̃  ∗  ҕ𝑆)](𝔯) = ∅ ⊇ ҕ𝑆(𝔯) 

[(ϴ̃  ∗  ҕ𝑆) ∪̃ (ҕ𝑆  ∗  ϴ̃  ∗  ҕ𝑆)](𝔰) = ∅ ⊇ ҕ𝑆(𝔰) 

Hence, ҕ𝑆 is an S-uni ʟ-ƁԚ ideal. However, since 

(ҕ𝑆  ∗  ҕ𝑆)(𝔯) = ҕ𝑆(𝔰) ∪ ҕ𝑆(𝔰) ⊉ ҕ𝑆(𝔯) 

ҕ𝑆 is not an S-uni bi-ideal. 

Proposition 3.9 shows that the converse of Proposition 3.7 holds for special soft ʀ-simple 

semigroups. 

Proposition 3.9. Let ҕ𝑆 ∈ 𝑆𝑆(𝑈) and 𝑆 be a special soft ʀ-simple semigroup. Then, the following 

conditions are equivalent: 

1. ҕ𝑆 is an S-uni bi-ideal. 

2. ҕ𝑆 is an S-uni ʟ-ƁԚ ideal. 

Proof: (1) implies (2) is obvious by Theorem 3.7. Assume that ҕ𝑆 is an S-uni ʟ-ƁԚ ideal. By 

assumption, ϴ̃ = ҕ𝑆  ∗  ϴ̃. Thus,  

ҕ𝑆  ∗  ҕ𝑆 = (ҕ𝑆  ∗  ҕ𝑆) ∪̃ (ҕ𝑆  ∗  ҕ𝑆) ⊇̃ (ҕ𝑆  ∗  ϴ̃) ∪̃ (ҕ𝑆  ∗  ϴ̃) = (ҕ𝑆  ∗  ϴ̃) ∪̃ (ҕ𝑆  ∗  ϴ̃  ∗  ҕ𝑆) ⊇̃ ҕ𝑆. 

Hence, ҕ𝑆 is an S-uni subsemigroup. 

ҕ𝑆  ∗  ϴ̃  ∗  ҕ𝑆 = (ҕ𝑆  ∗  ϴ̃  ∗  ҕ𝑆) ∪̃ (ҕ𝑆  ∗  ϴ̃  ∗  ҕ𝑆) = (ϴ̃  ∗  ҕ𝑆) ∪̃ (ҕ𝑆  ∗  ϴ̃  ∗  ҕ𝑆) ⊇̃ ҕ𝑆 

Thus, ҕ𝑆 is an S-uni bi-ideal. 

Theorem 3.10. Every S-uni bi-ideal is an S-uni ƁԚ ideal. 

Proof: It is followed by Proposition 3.4 and Proposition 3.7. 

Theorem 3.11 shows that the converse of Theorem 3.10 holds for special soft simple semigroup. 

Theorem 3.11. Let ҕ𝑆 ∈ 𝑆𝑆(𝑈) and 𝑆 be a special soft simple semigroup. Then, the following 

conditions are equivalent: 
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1. ҕ𝑆 is an S-uni bi-ideal. 

2. ҕ𝑆 is an S-uni ƁԚ ideal. 

Proof: (1) implies (2) is obvious by Theorem 3.10. Assume that ҕ𝑆 is an S-uni ƁԚ ideal. Then, by 

Definition 2.15, 𝑆 is both a special soft ʟ-simple and a special soft ʀ-simple semigroup. The rest of 

the proof follows from Proposition 3.6 and Proposition 3.9. 

Proposition 3.12. Every S-uni ʀ-ideal is an S-uni ʀ-ƁԚ ideal. 

Proof: Let 𝜂𝑆 be an S-uni ʀ-ideal of 𝑆. Then, 𝜂𝑆  ∗  ϴ̃ ⊇̃ 𝜂𝑆. Thus, (𝜂𝑆  ∗  ϴ̃) ∪̃ (𝜂𝑆 ∗  ϴ̃  ∗  𝜂𝑆) ⊇̃ 𝜂𝑆  ∗

 ϴ̃ ⊇̃ 𝜂𝑆. Hence, 𝜂𝑆 is an S-uni ʀ-ƁԚ ideal of 𝑆. 

Additionally, since 𝜂𝑆 is an S-uni ʀ-ideal, by Theorem 2.13, it is an S-uni bi-ideal. Therefore, by 

Proposition 3.4, 𝜂𝑆 is an S-uni ʀ-ƁԚ ideal. 

We show with a counterexample that the converse of Proposition 3.10 is not true: 

Example 3.13. Consider the semigroup 𝑆 = {ɣ, ɀ} defined by the following table: 

 

Table 3: Cayley table of ‘☼’ binary operation. 

  ☼ ɣ ɀ 

ɣ ɣ ɀ 

ɀ ɣ ɀ 

 

Let 𝜂𝑆 be a 𝚂𝚂 over 𝑈 = ℤ  as follows: 

𝜂𝑆 = {(ɣ, {1,3}), (ɀ, {1,2})} 

Here, 𝜂𝑆 is an S-uni ʀ-ƁԚ ideal. In fact, 

[(𝜂𝑆  ∗  ϴ̃) ∪̃ (𝜂𝑆  ∗  ϴ̃  ∗  𝜂𝑆)](ɣ) = (𝜂𝑆  ∗  ϴ̃)(ɣ) ∪ (𝜂𝑆  ∗  ϴ̃  ∗  𝜂𝑆)(ɣ) = 𝜂𝑆(ɣ) ⊇ 𝜂𝑆(ɣ) 

[(𝜂𝑆  ∗  ϴ̃) ∪̃ (𝜂𝑆  ∗  ϴ̃  ∗  𝜂𝑆)](ɀ) = (𝜂𝑆  ∗  ϴ̃)(ɀ) ∪ (𝜂𝑆  ∗  ϴ̃  ∗  𝜂𝑆)(ɀ) = 𝜂𝑆(ɀ) ⊇ 𝜂𝑆(ɀ) 

thus, 𝜂𝑆 is an S-uni ʀ-ƁԚ ideal of 𝑆. However, since 

(𝜂𝑆  ∗  ϴ̃)(ɣ) = [𝜂𝑆(ɣ) ∪ ϴ̃(ɣ)] ∩ [𝜂𝑆(ɀ) ∪ ϴ̃(ɣ)] = 𝜂𝑆(ɣ) ∩ 𝜂𝑆(ɀ) ⊉ 𝜂𝑆(ɣ) 

(𝜂𝑆  ∗  ϴ̃)(ɀ) = [𝜂𝑆(ɣ) ∪ ϴ̃(ɀ)] ∩ [𝜂𝑆(ɀ) ∪ ϴ̃(ɀ)] = 𝜂𝑆(ɣ) ∩ 𝜂𝑆(ɀ) ⊉ 𝜂𝑆(ɀ) 

𝜂𝑆 is not an S-uni ʀ-ideal. 

Proposition 3.14 shows that the converse of Proposition 3.12 holds for special soft ʟ-simple 

semigroups. 

Proposition 3.14. Let ηS ∈ SS(U) and S be a special soft ʟ-simple semigroup. Then, the following 

conditions are equivalent: 

1. ηS is an S-uni ʀ-ideal. 

2. ηS is an S-uni ʀ-ƁԚ ideal. 
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Proof: (1) implies (2) is obvious by Proposition 3.12. Assume that 𝜂𝑆 is an S-uni ʀ-ƁԚ ideal. By 

assumption, ϴ̃ = ϴ̃  ∗  𝜂𝑆. Thus, (𝜂𝑆  ∗  ϴ̃) = (𝜂𝑆  ∗  ϴ̃) ∪̃ (𝜂𝑆  ∗  ϴ̃) = (𝜂𝑆  ∗  ϴ̃) ∪̃ (𝜂𝑆  ∗

 ϴ̃  ∗  𝜂𝑆) ⊇̃ 𝜂𝑆. 

Hence, 𝜂𝑆 is an S-uni ʀ-ideal. 

Proposition 3.15. Every S-uni ʀ-ideal is an S-uni ʟ-ƁԚ ideal. 

Proof: Let 𝜂𝑆 be an S-uni ʀ-ideal of 𝑆. Then, 𝜂𝑆  ∗  ϴ̃ ⊇̃ 𝜂𝑆 and 𝜂𝑆  ∗  𝜂𝑆 ⊇̃ 𝜂𝑆. Thus, 

(ϴ̃  ∗  𝜂𝑆) ∪̃ (𝜂𝑆  ∗  ϴ̃  ∗  𝜂𝑆) ⊇̃ 𝜂𝑆  ∗  ϴ̃  ∗  𝜂𝑆 ⊇̃ 𝜂𝑆  ∗  𝜂𝑆 ⊇̃ 𝜂𝑆. Hence, 𝜂𝑆 is an S-uni ʟ-ƁԚ ideal of 𝑆. 

Additionally, since 𝜂𝑆 is an S-uni ʀ-ideal, by Theorem 2.13, it is an S-uni bi-ideal. Therefore, by 

Proposition 3.7, 𝜂𝑆 is an S-uni ʟ-ƁԚ ideal. 

We show with a counterexample that the converse of Proposition 3.15 is not true: 

Example 3.16. Consider the 𝚂𝚂 𝜂𝑆 in Example 3.13. The 𝚂𝚂 𝜂𝑆 is an S-uni ʟ-ƁԚ ideal. Since, 

[(ϴ̃  ∗  𝜂𝑆) ∪̃ (𝜂𝑆  ∗  ϴ̃  ∗  𝜂𝑆)](ɣ) = (ϴ̃  ∗  𝜂𝑆)(ɣ) ∪ (𝜂𝑆  ∗  ϴ̃  ∗  𝜂𝑆)(ɣ) = 𝜂𝑆(ɣ) ⊇ 𝜂𝑆(ɣ) 

[(ϴ̃  ∗  𝜂𝑆) ∪̃ (𝜂𝑆  ∗  ϴ̃  ∗  𝜂𝑆)](ɀ) = (ϴ̃  ∗  𝜂𝑆)(ɀ) ∪ (𝜂𝑆  ∗  ϴ̃  ∗  𝜂𝑆)(ɀ) = 𝜂𝑆(ɀ) ⊇ 𝜂𝑆(ɀ) 

Hence, 𝜂𝑆 is an S-uni ʟ-ƁԚ ideal. However, since 

(𝜂𝑆  ∗  ϴ̃)(ɣ) = [𝜂𝑆(ɣ) ∪ ϴ̃(ɣ)] ∩ [𝜂𝑆(ɀ) ∪ ϴ̃(ɣ)] = 𝜂𝑆(ɣ) ∩ 𝜂𝑆(ɀ) ⊉ 𝜂𝑆(ɣ) 

(𝜂𝑆  ∗  ϴ̃)(ɀ) = [𝜂𝑆(ɣ) ∪ ϴ̃(ɀ)] ∩ [𝜂𝑆(ɀ) ∪ ϴ̃(ɀ)] = 𝜂𝑆(ɣ) ∩ 𝜂𝑆(ɀ) ⊉ 𝜂𝑆(ɀ) 

𝜂𝑆 is not an S-uni ʀ-ideal. 

Proposition 3.17 shows that the converse of Proposition 3.15 holds for special soft simple 

semigroups. 

Proposition 3.17. Let 𝜂𝑆 ∈ 𝑆𝑆(𝑈) and 𝑆 be a special soft simple semigroup. Then, the following 

conditions are equivalent: 

1. 𝜂𝑆 is an S-uni ʀ-ideal. 

2. 𝜂𝑆 is an S-uni ʟ-ƁԚ ideal. 

Proof: (1) implies (2) is obvious by Theorem 3.15. Assume that 𝜂𝑆 is an S-uni ʟ-ƁԚ ideal. By 

assumption, ϴ̃ = 𝜂𝑆  ∗  ϴ̃ = ϴ̃  ∗  𝜂𝑆. Thus, (𝜂𝑆  ∗  ϴ̃) = (𝜂𝑆  ∗  ϴ̃) ∪̃ (𝜂𝑆  ∗  ϴ̃) = (ϴ̃  ∗  𝜂𝑆) ∪̃ (𝜂𝑆  ∗

 ϴ̃  ∗  𝜂𝑆) ⊇̃ 𝜂𝑆. 

𝜂𝑆 is an S-uni ʀ-ideal. 

Theorem 3.18. Every S-uni ʀ-ideal is an S-uni ƁԚ ideal. 

Proof: It is followed by Proposition 3.12 and Proposition 3.15. 

Here note that the converse of Theorem 3.18 is not true follows from Example 3.13 and Example 

3.16.  

Theorem 3.19 shows that the converse of Theorem 3.18 holds for special soft simple semigroup. 

Theorem 3.19. Let 𝑓𝑆 ∈ 𝑆𝑆(𝑈) and 𝑆 be a special soft simple semigroup. Then, the following 

conditions are equivalent: 

1. 𝜂𝑆 is an S-uni ʀ-ideal. 

2. 𝜂𝑆 is an S-uni ƁԚ ideal. 
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Proof: (1) implies (2) is obvious by Theorem 3.18. (2) implies (1) is obvious by Proposition 3.14 

and Proposition 3.17. 

Proposition 3.20. Every S-uni ʟ-ideal is an S-uni ʀ-ƁԚ ideal. 

Proof: Let 𝑓𝑆 be an S-uni ʟ-ideal of 𝑆. Then, ϴ̃  ∗  𝑓𝑆 ⊇̃ 𝑓𝑆 and 𝑓𝑆  ∗  𝑓𝑆 ⊇̃ 𝑓𝑆. Thus, (𝑓𝑆  ∗  ϴ̃) ∪̃ (𝑓𝑆  ∗

 ϴ̃  ∗  𝑓𝑆) ⊇̃ 𝑓𝑆  ∗  ϴ̃  ∗  𝑓𝑆 ⊇̃ 𝑓𝑆 ∗  𝑓𝑆 ⊇̃ 𝑓𝑆. Hence, 𝑓𝑆 is an S-uni ʀ-ƁԚ ideal of 𝑆. 

Additionally, since 𝑓𝑆 is an S-uni ʟ-ideal, by Theorem 2.13, it is an S-uni bi-ideal. Therefore, by 

Proposition 3.4, 𝑓𝑆 is an S-uni ʀ-ƁԚ ideal. 

We show with a counterexample that the converse of Proposition 3.20 is not true: 

Example 3.21. Consider the semigroup 𝑆 = {𝜚, Ձ} defined by the following table: 

 

Table 4: Cayley table of ‘֎’ binary operation. 

  ֎ 𝜚 Ձ 

𝜚 𝜚 𝜚 

Ձ Ձ Ձ 

 

Let ϥ𝑆 be a 𝚂𝚂 over 𝑈 = ℤ  as follows: 

ϥ𝑆 =  {(𝜚, {3,6}) , (Ձ, {3,9})} 

Here, ϥ𝑆 is an S-uni ʀ-ƁԚ ideal. In fact, 

[(ϥ𝑆  ∗  ϴ̃) ∪̃ (ϥ𝑆  ∗  ϴ̃  ∗  ϥ𝑆)](𝜚) = (ϥ𝑆  ∗  ϴ̃)(𝜚) ∪ (ϥ𝑆  ∗  ϴ̃  ∗  ϥ𝑆)(𝜚) = ϥ𝑆(𝜚) ⊇ ϥ𝑆(𝜚) 

[(ϥ𝑆  ∗  ϴ̃) ∪̃ (ϥ𝑆  ∗  ϴ̃  ∗  ϥ𝑆)](Ձ) = (ϥ𝑆  ∗  ϴ̃)(Ձ) ∪ (ϥ𝑆  ∗  ϴ̃  ∗  ϥ𝑆)(Ձ) = ϥ𝑆(Ձ) ⊇ ϥ𝑆(Ձ) 

thus, ϥ𝑆 is an S-uni ʀ-ƁԚ ideal of 𝑆. However, since 

(ϴ̃ ∗  ϥ𝑆)(𝜚) = [ϴ̃(𝜚) ∪ ϥ𝑆(𝜚)] ∩ [ϴ̃(𝜚) ∪ ϥ𝑆(Ձ)] = ϥ𝑆(𝜚) ∩ ϥ𝑆(Ձ) ⊉ ϥ𝑆(𝜚) 

(ϴ̃  ∗  ϥ𝑆)(Ձ) = [ϴ̃(Ձ) ∪ ϥ𝑆(𝜚)] ∩ [ϴ̃(Ձ) ∪ ϥ𝑆(Ձ)] = ϥ𝑆(𝜚) ∩ ϥ𝑆(Ձ) ⊉ ϥ𝑆(Ձ) 

ϥ𝑆 is not an S-uni ʟ-ideal. 

Proposition 3.22 shows that the converse of Proposition 3.20 holds for special soft simple 

semigroups. 

Proposition 3.22. Let ϥ𝑆 ∈ 𝑆𝑆(𝑈) and 𝑆 be a special soft simple semigroup. Then, the following 

conditions are equivalent: 

1. ϥ𝑆 is an S-uni ʟ-ideal. 

2. ϥ𝑆 is an S-uni ʀ-ƁԚ ideal. 

Proof: (1) implies (2) is obvious by Proposition 3.20. Assume that ϥ𝑆 is an S-uni ʀ-ƁԚ ideal. By 

assumption, ϴ̃ = ϥ𝑆  ∗  ϴ̃ = ϴ̃  ∗  ϥ𝑆. Thus, ϴ̃  ∗  ϥ𝑆 = (ϴ̃  ∗  ϥ𝑆) ∪̃ (ϴ̃  ∗  ϥ𝑆) = (ϥ𝑆  ∗  ϴ̃) ∪̃ (ϥ𝑆  ∗  ϴ̃  ∗

 ϥ𝑆) ⊇̃ ϥ𝑆. ϥ𝑆 is an S-uni ʟ- ideal. 
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Proposition 3.23. Every S-uni ʟ-ideal is an S-uni ʟ-ƁԚ ideal. 

Proof: Let ϥ𝑆 be an S-uni ʟ-ideal of 𝑆. Then, ϴ̃  ∗  ϥ𝑆 ⊇̃ ϥ𝑆. Thus, (ϴ̃  ∗  ϥ𝑆) ∪̃ (ϥ𝑆  ∗  ϴ̃  ∗

 ϥ𝑆 ) ⊇̃ ϴ̃  ∗  ϥ𝑆 ⊇̃ ϥ𝑆. Hence, ϥ𝑆 is an S-uni ʟ-ƁԚ ideal of 𝑆. 

Additionally, since ϥ𝑆 is an S-uni ʟ-ideal, by Theorem 2.13, it is an S-uni bi-ideal. Therefore, by 

Proposition 3.7, ϥ𝑆 is an S-uni ʟ-ƁԚ ideal. 

We show with a counterexample that the converse of Proposition 3.23 is not true: 

Example 3.24. Consider the 𝚂𝚂 ϥ𝑆 in Example 3.21. The 𝚂𝚂 ϥ𝑆 is an S-uni ʟ-ƁԚ ideal. Since, 

[(ϴ̃  ∗  ϥ𝑆) ∪̃ (ϥ𝑆  ∗  ϴ̃  ∗  ϥ𝑆)](𝜚) = (ϴ̃  ∗  ϥ𝑆)(𝜚) ∪ (ϥ𝑆  ∗  ϴ̃  ∗  ϥ𝑆)(𝜚) = ϥ𝑆(𝜚) ⊇ ϥ𝑆(𝜚) 

[(ϴ̃  ∗  ϥ𝑆) ∪̃ (ϥ𝑆 ∗  ϴ̃  ∗  ϥ𝑆)](Ձ) = (ϴ̃  ∗  ϥ𝑆)(Ձ) ∪ (ϥ𝑆  ∗  ϴ̃  ∗  ϥ𝑆)(Ձ) = ϥ𝑆(Ձ) ⊇  ϥ𝑆(Ձ) 

Hence, ϥ𝑆 is an S-uni ʟ-ƁԚ ideal. However, since 

(ϴ̃ ∗  ϥ𝑆)(𝜚) = [ϴ̃(𝜚) ∪ ϥ𝑆(𝜚)] ∩ [ϴ̃(𝜚) ∪ ϥ𝑆(Ձ)] = ϥ𝑆(𝜚) ∩ ϥ𝑆(Ձ) ⊉ ϥ𝑆(𝜚) 

(ϴ̃  ∗  ϥ𝑆)(Ձ) = [ϴ̃(Ձ) ∪ ϥ𝑆(𝜚)] ∩ [ϴ̃(Ձ) ∪ ϥ𝑆(Ձ)] = ϥ𝑆(𝜚) ∩ ϥ𝑆(Ձ) ⊉ ϥ𝑆(Ձ) 

ϥ𝑆 is not an S-uni ʟ-ideal. 

Proposition 3.25 shows that the converse of Proposition 3.23 holds for special soft ʀ-simple 

semigroups. 

Proposition 3.25. Let ϥ𝑆 ∈ 𝑆𝑆(𝑈) and 𝑆 be a special soft ʀ-simple semigroup. Then, the following 

conditions are equivalent: 

1. ϥ𝑆 is an S-uni ʟ-ideal. 

2. ϥ𝑆 is an S-uni ʟ-ƁԚ ideal. 

Proof: (1) implies (2) is obvious by Theorem 3.21. Assume that ϥ𝑆 is an S-uni ʟ-ƁԚ ideal. By 

assumption, ϴ̃ = ϥ𝑆  ∗  ϴ̃. Thus, ϴ̃  ∗  ϥ𝑆 = (ϴ̃  ∗  ϥ𝑆) ∪̃ (ϴ̃  ∗  ϥ𝑆) = (ϴ̃  ∗  ϥ𝑆) ∪̃ (ϥ𝑆 ∗  ϴ̃  ∗  ϥ𝑆) ⊇̃ ϥ𝑆. 

ϥ𝑆 is an S-uni ʟ-ideal. 

Theorem 3.26. Every S-uni ʟ-ideal is an S-uni ƁԚ ideal. 

Proof: It is followed by Proposition 3.20 and Proposition 3.23. 

Note that the converse of Theorem 3.26 is not true follows from Example 3.21 and Example 3.24.  

Theorem 3.27 shows that the converse of Theorem 3.26 holds for special soft simple semigroup. 

Theorem 3.27. Let ϥ𝑆 ∈ 𝑆𝑆(𝑈) and 𝑆 be a special soft simple semigroup. Then, the following 

conditions are equivalent: 

1. ϥ𝑆 is an S-uni ʟ-ideal. 

2. ϥ𝑆 is an S-uni ƁԚ ideal. 

Proof: (1) implies (2) is obvious by Theorem 3.26. (2) implies (1) is obvious by Proposition 3.22 

and Proposition 3.25. 

Theorem 3.28. Every S-uni ideal is an S-uni ƁԚ ideal. 

Proof: It follows by Theorem 3.18 and Theorem 3.26. 

Theorem 3.29 shows that the converse of Theorem 3.28 holds for special soft simple semigroup. 
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Theorem 3.29. Let ϥ𝑆 ∈ 𝑆𝑆(𝑈) and 𝑆 be a special soft simple semigroup. Then, the following 

conditions are equivalent: 

1. ϥ𝑆 is an S-uni ideal. 

2. ϥ𝑆 is an S-uni ƁԚ ideal. 

Proof: (1) implies (2) is obvious by Theorem 3.28. (2) implies (1) is obvious by Proposition 3.19 

and Proposition 3.26. 

Proposition 3.30. Every S-uni quasi-ideal is an S-uni ʀ-ƁԚ ideal. 

Proof: Let 𝑓𝑆 be an S-uni quasi-ideal of 𝑆. Then, (ҕ𝑆  ∗  ϴ̃) ∪̃ (ϴ̃  ∗  ҕ𝑆) ⊇̃ ҕ𝑆. Thus, (ҕ𝑆  ∗

 ϴ̃) ∪̃ (ҕ𝑆  ∗  ϴ̃  ∗  ҕ𝑆) ⊇̃ (ҕ𝑆  ∗  ϴ̃) ∪̃ (ϴ̃  ∗  ϴ̃  ∗  ҕ𝑆) ⊇̃ (ҕ𝑆  ∗  ϴ̃) ∪̃ (ϴ̃  ∗  ҕ𝑆) ⊇̃ ҕ𝑆. Hence, ҕ𝑆 is an S-uni 

ʀ-ƁԚ ideal of 𝑆. 

We show with a counterexample that the converse of Proposition 3.30 is not true: 

Example 3.31. Consider the 𝚂𝚂 ҕ𝑆 in Example 3.5. The 𝚂𝚂 ҕ𝑆 is an S-uni ʀ-ƁԚ ideal. Since, 

[(ҕ𝑆  ∗  ϴ̃) ∪̃ (ϴ̃  ∗  ҕ𝑆)](ƴ) = ҕ𝑆(𝔯) ∩ ҕ𝑆(𝔰) ⊉ ҕ𝑆(ƴ). Hence, ҕ𝑆 is not an S-uni quasi ideal. 

Proposition 3.32 shows that the converse of Proposition 3.30 holds for special soft ʀ-simple 

semigroups. 

Proposition 3.32. Let ҕ𝑆 ∈ 𝑆𝑆(𝑈) and 𝑆 be a special soft ʀ-simple semigroup. Then, the following 

conditions are equivalent: 

1. ҕ𝑆 is an S-uni quasi-ideal. 

2. ҕ𝑆 is an S-uni ʀ-ƁԚ ideal. 

Proof: (1) implies (2) is obvious by Theorem 3.30. Assume that ҕ𝑆 is an S-uni ʀ-ƁԚ ideal. By 

assumption, ϴ̃ = ҕ𝑆  ∗  ϴ̃. Thus, (ҕ𝑆  ∗  ϴ̃) ∪̃ (ϴ̃  ∗  ҕ𝑆) = (ҕ𝑆  ∗  ϴ̃) ∪̃ (ҕ𝑆  ∗  ϴ̃  ∗  ҕ𝑆) ⊇̃ ҕ𝑆, implying 

that ҕ𝑆 is an S-uni quasi-ideal. 

Proposition 3.33. Every S-uni quasi-ideal is an S-uni ʟ-ƁԚ ideal. 

Proof: Let ℊ𝑆 be an S-uni quasi-ideal of 𝑆. Then, (ℊ𝑆  ∗  ϴ̃) ∪̃ (ϴ̃  ∗  ℊ𝑆) ⊇̃ ℊ𝑆. Thus, 

(ϴ̃  ∗  ℊ𝑆) ∪̃ (ℊ𝑆  ∗  ϴ̃  ∗  ℊ𝑆) ⊇̃ (ϴ̃  ∗  ℊ𝑆) ∪̃ (ℊ𝑆  ∗  ϴ̃  ∗  ϴ̃) ⊇̃ (ϴ̃  ∗  ℊ𝑆) ∪̃ (ℊ𝑆  ∗  ϴ̃) ⊇̃ ℊ𝑆. Hence, ℊ𝑆 is 

an S-uni ʟ-ƁԚ ideal of 𝑆. 

We show with a counterexample that the converse of Proposition 3.33 is not true: 

Example 3.34. Consider the 𝚂𝚂 ҕ𝑆 in Example 3.5. The 𝚂𝚂 ҕ𝑆 is an S-uni ʟ-ƁԚ ideal. Since, 

[(ҕ𝑆  ∗  ϴ̃) ∪̃ (ϴ̃  ∗  ҕ𝑆)](ƴ) = ҕ𝑆(𝔯) ∩ ҕ𝑆(𝔰) ⊉ ҕ𝑆(ƴ). Hence, ҕ𝑆 is not an S-uni quasi-ideal. 

Proposition 3.35 shows that the converse of Proposition 3.33 holds for special soft simple 

semigroups. 

Proposition 3.35. Let ℊ𝑆 ∈ 𝑆𝑆(𝑈) and 𝑆 be a special soft simple semigroup. Then, the following 

conditions are equivalent: 

1. ℊ𝑆 is an S-uni quasi-ideal. 

2. ℊ𝑆 is an S-uni ʟ-ƁԚ ideal. 
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Proof: (1) implies (2) is obvious by Theorem 3.33. Assume that ℊ𝑆 is an S-uni ʟ-ƁԚ ideal. By 

assumption, ϴ̃ = ℊ𝑆  ∗  ϴ̃ = ϴ̃  ∗  ℊ𝑆. Thus, (ℊ𝑆  ∗  ϴ̃) ∪̃ (ϴ̃  ∗  ℊ𝑆) = (ϴ̃  ∗  ℊ𝑆) ∪̃ (ℊ𝑆  ∗

 ϴ̃  ∗  ℊ𝑆) ⊇̃ ℊ𝑆.  

ℊ𝑆 is an S-uni quasi-ideal. 

Theorem 3.36. Every S-uni quasi-ideal is an S-uni ƁԚ ideal. 

Proof: It follows by Theorem 3.30 and Theorem 3.33. 

Here note that the converse of Theorem 3.36 is not true follows from Example 3.31 and Example 

3.34.  

Theorem 3.37 shows that the converse of Theorem 3.38 holds for special soft simple semigroup. 

Theorem 3.37. Let ℊ𝑆 ∈ 𝑆𝑆(𝑈) and 𝑆 be a special soft simple semigroup. Then, the following 

conditions are equivalent: 

1. ℊ𝑆 is an S-uni quasi-ideal. 

2. ℊ𝑆 is an S-uni ƁԚ ideal. 

Proof: (1) implies (2) is obvious by Theorem 3.36. (2) implies (1) is obvious by Proposition 3.32 

and Proposition 3.35. 

Proposition 3.38. Let 𝜗𝑆 be an idempotent 𝚂𝚂 over 𝑈. If 𝜗𝑆 is an S-uni interior ideal, then 𝜗𝑆 is an 

S-uni ʟ-ƁԚ ideal. 

Proof: Let 𝜗𝑆 be an idempotent S-uni interior ideal of 𝑆. Then, 𝜗𝑆  ∗  𝜗𝑆 = 𝜗𝑆 and ϴ̃  ∗  𝜗𝑆  ∗  ϴ̃ ⊇̃ 𝜗𝑆. 

Thus, (ϴ̃  ∗  𝜗𝑆) ∪̃ (𝜗𝑆  ∗  ϴ̃  ∗  𝜗𝑆) ⊇̃ ϴ̃  ∗  𝜗𝑆 = ϴ̃ ∗  𝜗𝑆  ∗  𝜗𝑆 ⊇̃ ϴ̃  ∗  𝜗𝑆  ∗  ϴ̃ ⊇̃ 𝜗𝑆. Hence, 𝜗𝑆 is an S-

uni ʟ-ƁԚ ideal of 𝑆. 

Proposition 3.39. Let 𝜗𝑆 be an idempotent 𝚂𝚂 over 𝑈. If 𝜗𝑆 is an S-uni interior ideal, then 𝜗𝑆 is an 

S-uni ʀ-ƁԚ ideal. 

Proof: Let 𝜗𝑆 be an idempotent S-uni interior ideal of 𝑆. Then, 𝜗𝑆  ∗  𝜗𝑆 = 𝜗𝑆 and ϴ̃  ∗  𝜗𝑆  ∗  ϴ̃ ⊇̃ 𝜗𝑆. 

Thus, (𝜗𝑆  ∗  ϴ̃) ∪̃ (𝜗𝑆  ∗  ϴ̃  ∗  𝜗𝑆) ⊇̃ 𝜗𝑆  ∗  ϴ̃ = 𝜗𝑆  ∗  𝜗𝑆  ∗  ϴ̃ ⊇̃ ϴ̃  ∗  𝜗𝑆  ∗  ϴ̃ ⊇̃ 𝜗𝑆. Hence, 𝜗𝑆 is an S-

uni ʀ-ƁԚ ideal of 𝑆. 

Theorem 3.40. Let 𝜗𝑆 be an idempotent 𝚂𝚂 over 𝑈. If 𝜗𝑆 is an S-uni interior ideal, then 𝜗𝑆 is an S-

uni ƁԚ ideal. 

Proof: It follows by Theorem 3.38 and Theorem 3.39. 

Proposition 3.41. Let 𝜗𝑆 ∈ 𝑆𝑆(𝑈) and 𝑆 be a special soft simple semigroup. Then, the following 

conditions are equivalent: 

1. 𝜗𝑆 is an S-uni interior ideal. 

2. 𝜗𝑆 is an S-uni ʟ-ƁԚ ideal. 

Proof: First assume that (1) holds. Where 𝜗𝑆 is an S-uni interior ideal of 𝑆. Then, ϴ̃  ∗  𝜗𝑆  ∗  ϴ̃ ⊇̃ 𝜗𝑆. 

By assumption, ϴ̃ = 𝜗𝑆  ∗  ϴ̃ = ϴ̃  ∗  𝜗𝑆. Thus, 

(ϴ̃  ∗  𝜗𝑆) ∪̃ (𝜗𝑆  ∗  ϴ̃  ∗  𝜗𝑆) ⊇̃ 𝜗𝑆  ∗  ϴ̃  ∗  𝜗𝑆 = ϴ̃ ∗  𝜗𝑆  ∗  𝜗𝑆 ⊇̃ ϴ̃  ∗  𝜗𝑆  ∗  ϴ̃ ⊇̃ 𝜗𝑆  

𝜗𝑆 is an S-uni ʟ-ƁԚ ideal. 
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Conversely, assume that (2) holds. Where 𝜗𝑆 is an S-uni ʟ-ƁԚ ideal of 𝑆. Then, (ϴ̃  ∗

 𝜗𝑆) ∪̃ (𝜗𝑆  ∗  ϴ̃  ∗  𝜗𝑆) ⊇̃ 𝜗𝑆.  In order to show that 𝜗𝑆 S-uni interior ideal, we need to show that ϴ̃  ∗

 𝜗𝑆  ∗  ϴ̃ ⊇̃ 𝜗𝑆. By assumption, ϴ̃ = 𝜗𝑆  ∗  ϴ̃ = ϴ̃  ∗  𝜗𝑆. Thus, 

ϴ̃  ∗  𝜗𝑆  ∗  ϴ̃ = (ϴ̃  ∗  𝜗𝑆  ∗  ϴ̃) ∪̃ (ϴ̃  ∗  𝜗𝑆  ∗  ϴ̃)

= (ϴ̃  ∗  ϴ̃  ∗  𝜗𝑆) ∪̃ (𝜗𝑆  ∗  ϴ̃  ∗  ϴ̃) ⊇̃ (ϴ̃  ∗  𝜗𝑆) ∪̃ (𝜗𝑆  ∗  ϴ̃ )

= (ϴ̃  ∗  𝜗𝑆) ∪̃ (𝜗𝑆  ∗  ϴ̃  ∗  𝜗𝑆) ⊇̃ 𝜗𝑆 

𝜗𝑆 is an S-uni interior ideal. 

Proposition 3.42. Let 𝜗𝑆 ∈ 𝑆𝑆(𝑈) and 𝑆 be a special soft simple semigroup. Then, the following 

conditions are equivalent: 

1. 𝜗𝑆 is an S-uni interior ideal. 

2. 𝜗𝑆 is an S-uni ʀ-ƁԚ ideal. 

Proof: First assume that (1) holds.Where 𝜗𝑆 is an S-uni interior ideal of 𝑆. Then, ϴ̃  ∗  𝜗𝑆  ∗  ϴ̃ ⊇̃ 𝜗𝑆. 

By assumption, ϴ̃ = 𝜗𝑆  ∗  ϴ̃ = ϴ̃  ∗  𝜗𝑆. Thus, 

(𝜗𝑆  ∗  ϴ̃) ∪̃ (𝜗𝑆  ∗  ϴ̃  ∗  𝜗𝑆) ⊇̃ 𝜗𝑆  ∗  ϴ̃  ∗  𝜗𝑆 = ϴ̃ ∗  𝜗𝑆  ∗  𝜗𝑆 ⊇̃ ϴ̃  ∗  𝜗𝑆  ∗  ϴ̃ ⊇̃ 𝜗𝑆 

𝜗𝑆 is an S-uni ʀ-ƁԚ ideal. 

Conversely, assume that (2) holds. Where 𝑓𝑆 is an S-uni ʀ-ƁԚ ideal of 𝑆. Then, (𝜗𝑆  ∗

 ϴ̃) ∪̃ (𝜗𝑆  ∗  ϴ̃  ∗  𝜗𝑆) ⊇̃ 𝜗𝑆. In order to show that 𝜗𝑆 S-uni interior ideal, we need to show that ϴ̃  ∗

 𝜗𝑆  ∗  ϴ̃ ⊇̃ 𝜗𝑆. By assumption, ϴ̃ = 𝜗𝑆  ∗  ϴ̃ = ϴ̃  ∗  𝜗𝑆. Thus, 

ϴ̃  ∗  𝜗𝑆  ∗  ϴ̃ = (ϴ̃  ∗  𝜗𝑆  ∗  ϴ̃) ∪̃ (ϴ̃  ∗  𝜗𝑆  ∗  ϴ̃)

= (𝜗𝑆  ∗  ϴ̃  ∗  ϴ̃) ∪̃ (𝜗𝑆  ∗  ϴ̃  ∗  ϴ̃) ⊇̃ (𝜗𝑆  ∗  ϴ̃) ∪̃ (𝜗𝑆  ∗  ϴ̃ )

= (𝜗𝑆  ∗  ϴ̃) ∪̃ (𝜗𝑆  ∗  ϴ̃  ∗  𝜗𝑆) ⊇̃ 𝜗𝑆 

𝜗𝑆 is an S-uni interior ideal. 

Theorem 3.43. Let 𝜗𝑆 ∈ 𝑆𝑆(𝑈) and 𝑆 be a special soft simple semigroup. Then, the following 

conditions are equivalent: 

1. 𝜗𝑆 is an S-uni interior ideal. 

2. 𝜗𝑆 is an S-uni ƁԚ ideal. 

Proof: It follows by Theorem 3.41 and Theorem 3.42. 

Proposition 3.44. Let ƿ𝑆 and ƾ𝑆 be S-uni ʟ-(ʀ-) ƁԚ ideals. Then, ƿ𝑆 ∪̃ ƾ𝑆 is an S-uni ʟ-(ʀ-) ƁԚ ideal. 

Proof: The proof is presented only for S-uni ʟ-ƁԚ ideal, as the proof for S-uni ʀ- ƁԚ ideal can be 

shown similarly. Let ƿ𝑆 and ƾ𝑆 be S-uni ʟ-ƁԚ ideals of 𝑆. Then, (ϴ̃  ∗  ƿ𝑆) ∪̃ (ƿ𝑆  ∗  ϴ̃  ∗  ƿ𝑆) ⊇̃ ƿ𝑆 and 

(ϴ̃  ∗  ƾ𝑆) ∪̃ (ƾ𝑆  ∗  ϴ̃  ∗  ƾ𝑆) ⊇̃ ƾ𝑆. Thus, 

[ϴ̃  ∗  (ƿ𝑆 ∪̃ ƾ𝑆)] ∪̃ [(ƿ𝑆 ∪̃ ƾ𝑆) ∗  ϴ̃  ∗  (ƿ𝑆 ∪̃ ƾ𝑆)] ⊇̃ (ϴ̃  ∗  ƿ𝑆) ∪̃ (ƿ𝑆  ∗  ϴ̃  ∗  ƿ𝑆) ⊇̃ ƿ𝑆  

and 

[ϴ̃  ∗  (ƿ𝑆 ∪̃ ƾ𝑆)] ∪̃ [(ƿ𝑆 ∪̃ ƾ𝑆)  ∗  ϴ̃  ∗  (ƿ𝑆 ∪̃ ƾ𝑆)] ⊇̃ (ϴ̃  ∗  ƾ𝑆) ∪̃ (ƾ𝑆  ∗  ϴ̃  ∗  ƾ𝑆) ⊇̃ ƾ𝑆 
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Hence, [ϴ̃  ∗  (ƿ𝑆 ∪̃ ƾ𝑆)] ∪̃ [(ƿ𝑆 ∪̃ ƾ𝑆)  ∗  ϴ̃  ∗  (ƿ𝑆 ∪̃ ƾ𝑆)] ⊇̃ ƿ𝑆 ∪̃ ƾ𝑆. Thus, ƿ𝑆 ∪̃ ƾ𝑆 is an S-uni ʟ-ƁԚ 

ideals. 

Theorem 3.45. Let ƿ𝑆 and ƾ𝑆 be S-uni ƁԚ ideals. Then, ƿ𝑆 ∪̃ ƾ𝑆 is an S-uni ƁԚ ideals. 

Corollary 3.46. The finite union of S-uni ƁԚ ideals is an S-uni ƁԚ ideal. 

Proposition 3.47. Let Գ𝑆 and ƾ𝑆 be S-uni ʟ-(ʀ-) ideals. Then, Գ𝑆 ∪̃ ƾ𝑆 is an S-uni ʟ-(ʀ-) ƁԚ ideal. 

Proof: The proof is presented only for S-uni ʟ-ƁԚ ideal, as the proof for S-uni ʀ- ƁԚ ideal can be 

shown similarly. Let Գ𝑆 and ƾ𝑆 be S-uni ʟ-ideals of 𝑆. Then, ϴ̃  ∗  Գ𝑆 ⊇̃ Գ𝑆 and ϴ̃  ∗  ƾ𝑆 ⊇̃ ƾ𝑆. Thus, 

[ϴ̃  ∗  (Գ𝑆 ∪̃ ƾ𝑆)] ∩̃ [(Գ𝑆 ∪̃ ƾ𝑆)  ∗  ϴ̃  ∗  (Գ𝑆 ∪̃ ƾ𝑆)] ⊇̃ (ϴ̃  ∗  Գ𝑆) ∪̃ (Գ𝑆  ∗  ϴ̃  ∗  Գ𝑆) ⊇̃ ϴ̃  ∗  Գ𝑆 ⊇̃ Գ𝑆 

 and 

[ϴ̃  ∗  (Գ𝑆 ∪̃ ƾ𝑆)] ∪̃ [(Գ𝑆 ∪̃ ƾ𝑆)  ∗  ϴ̃  ∗  (Գ𝑆 ∪̃ ƾ𝑆)] ⊇̃ (ϴ̃  ∗  ƾ𝑆) ∪̃ (ƾ𝑆  ∗  ϴ̃  ∗  ƾ𝑆) ⊇̃ ϴ̃  ∗  ƾ𝑆 ⊇̃ ƾ𝑆 

Hence, [ϴ̃  ∗  (Գ𝑆 ∪̃ ƾ𝑆)] ∩̃ [(Գ𝑆 ∪̃ ƾ𝑆)  ∗  ϴ̃  ∗  (Գ𝑆 ∪̃ ƾ𝑆)] ⊇̃ Գ𝑆 ∪̃ ƾ𝑆. Thus, Գ𝑆 ∪̃ ƾ𝑆 is an S-uni ʟ-ƁԚ 

ideals. 

Theorem 3.48. Let Գ𝑆 and ƾ𝑆 be S-uni ideals. Then, Գ𝑆 ∪̃ ƾ𝑆 is an S-uni ƁԚ ideals. 

Theorem 3.49. Let Գ𝑆 be an S-uni ʀ-ideal and ƾ𝑆 be an S-uni ʟ- ideal. Then, Գ𝑆 ∪̃ ƾ𝑆 is an S-uni ƁԚ 

ideal. 

Proof: Let Գ𝑆 be an S-uni ʀ-ideal and ƾ𝑆 be an S-uni ʟ-ideal. Then, Գ𝑆  ∗  ϴ̃ ⊇̃ Գ𝑆, ϴ̃  ∗  ƾ𝑆 ⊇̃ ƾ𝑆, and 

Գ𝑆  ∗  Գ𝑆 ⊇̃ Գ𝑆,   ƾ𝑆  ∗  ƾ𝑆 ⊇̃ ƾ𝑆.Thus,  

[ϴ̃  ∗  (Գ𝑆 ∪̃ ƾ𝑆)] ∪̃ [(Գ𝑆 ∪̃ ƾ𝑆)  ∗  ϴ̃  ∗  (Գ𝑆 ∪̃ ƾ𝑆)] ⊇̃ (ϴ̃  ∗ ƾ𝑆) ∪̃ (Գ𝑆  ∗  ϴ̃  ∗  Գ𝑆) ⊇̃ ƾ𝑆 ∪̃ (Գ𝑆  

∗  Գ𝑆) ⊇̃ ƾ𝑆 ∪̃ Գ𝑆 

Hence, Գ𝑆 ∪̃ ƾ𝑆 is an S-uni ʟ-ƁԚ ideal. Similarly, since 

[(Գ𝑆 ∪̃ ƾ𝑆)  ∗  ϴ̃] ∪̃ [(Գ𝑆 ∪̃ ƾ𝑆)  ∗  ϴ̃  ∗  (Գ𝑆 ∪̃ ƾ𝑆)] ⊇̃ (Գ𝑆  ∗  ϴ̃) ∪̃ (ƾ𝑆  ∗  ϴ̃  ∗  ƾ𝑆) ⊇̃ Գ𝑆 ∪̃ (ƾ𝑆  

∗  ƾ𝑆) ⊇̃ Գ𝑆 ∪̃ ƾ𝑆 

Գ𝑆 ∪̃ ƾ𝑆  is an S-uni ʀ-ƁԚ ideal. Therefore, Գ𝑆 ∪̃ ƾ𝑆 is an S-uni ƁԚ ideal. 

Theorem 3.50. Let 𝜗𝑆 be an S-uni ʟ-ƁԚ ideal and 𝔱𝑆 be an S-uni ʟ-ideal. Then, 𝜗𝑆 ∪̃ 𝔱𝑆 is an S-uni 

ƁԚ ideal. 

Proof: Let 𝜗𝑆 be an S-uni ʟ-ƁԚ ideal and 𝔱𝑆 be an S-uni ʟ-ideal. Then, (ϴ̃  ∗  𝜗𝑆) ∪̃ (𝜗𝑆  ∗

 ϴ̃  ∗  𝜗𝑆) ⊇̃ 𝜗𝑆 and ϴ̃  ∗  𝔱𝑆 ⊇̃ 𝔱𝑆. Thus, 

[ϴ̃  ∗  (𝜗𝑆 ∪̃ 𝔱𝑆)] ∪̃ [(𝜗𝑆 ∪̃ 𝔱𝑆)  ∗  ϴ̃  ∗  (𝜗𝑆 ∪̃ 𝔱𝑆)] ⊇̃ (ϴ̃  ∗  𝜗𝑆) ∪̃ (𝜗𝑆  ∗  ϴ̃  ∗  𝜗𝑆) ⊇̃ 𝜗𝑆 

[ϴ̃  ∗  (𝜗𝑆 ∪̃ 𝔱𝑆)] ∪̃ [(𝜗𝑆 ∪̃ 𝔱𝑆)  ∗  ϴ̃  ∗  (𝜗𝑆 ∪̃ 𝔱𝑆)] ⊇̃ (ϴ̃  ∗  𝔱𝑆) ∪̃ (𝔱𝑆  ∗  ϴ̃  ∗  𝔱𝑆) ⊇̃ ϴ̃  ∗  𝔱𝑆 ⊇̃ 𝔱𝑆 

Hence, [ϴ̃  ∗  (𝜗𝑆 ∪̃ 𝔱𝑆)] ∪̃ [(𝜗𝑆 ∪̃ 𝔱𝑆)  ∗  ϴ̃  ∗  (𝜗𝑆 ∪̃ 𝔱𝑆)] ⊇̃ 𝜗𝑆 ∪̃ 𝔱𝑆. Thus, 𝜗𝑆 ∪̃ 𝔱𝑆 is an S-uni ʟ-ƁԚ ideal. 

Theorem 3.51. Let ƾ𝑆 be an S-uni ʟ-ideal and բ𝑆 be a 𝚂𝚂 over 𝑈. Then, ƾ𝑆  ∗  բ𝑆 is an S-uni ʟ-ƁԚ 

ideal. 

Proof: Let ƾ𝑆 be an S-uni ʟ- ideal. Then, ϴ̃  ∗  ƾ𝑆 ⊇̃ ƾ𝑆. Thus, 

[ϴ̃  ∗  (ƾ𝑆  ∗  բ𝑆)] ∪̃ [(ƾ𝑆  ∗  բ𝑆) ∗  ϴ̃  ∗  (ƾ𝑆  ∗  բ𝑆)] ⊇̃ ϴ̃  ∗  (ƾ𝑆  ∗  բ𝑆) = (ϴ̃  ∗  ƾ𝑆) ∗  բ𝑆 ⊇̃ ƾ𝑆  ∗  բ𝑆 

Hence, ƾ𝑆  ∗  բ𝑆 is an S-uni ʟ-ƁԚ ideal.  
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Theorem 3.52. Let ƾ𝑆 be an S-uni ʀ-ideal and բ𝑆 be a 𝚂𝚂 over 𝑈. Then, բ𝑆  ∗  ƾ𝑆 is an S-uni ʀ-ƁԚ 

ideal. 

Proof: Let ƾ𝑆 be an S-uni ʀ-ideal. Then, ƾ𝑆  ∗  ϴ̃ ⊇̃ ƾ𝑆. Thus, 

[(բ𝑆  ∗  ƾ𝑆)  ∗  ϴ̃] ∪̃ [(բ𝑆  ∗  ƾ𝑆)  ∗  ϴ̃  ∗  (բ𝑆  ∗  ƾ𝑆)] ⊇̃ (բ𝑆  ∗  ƾ𝑆)  ∗  ϴ̃ = բ𝑆  ∗  (ƾ𝑆  ∗  ϴ̃) ⊇̃ բ𝑆  ∗  ƾ𝑆 

Hence, բ𝑆  ∗  ƾ𝑆 is an S-uni ʀ-ƁԚ ideal.  

Theorem 3.53. Let Һ𝑆 be a nonempty 𝚂𝚂 over 𝑈. Then, every 𝚂𝚂 containing Һ𝑆 which is the soft 

superset of (ϴ̃   ∗  Һ𝑆) ∩̃ (Һ𝑆  ∗  ϴ̃ ) is an S-uni ƁԚ ideal.  

Proof: Let 𝔭𝑆 ⊇̃ Һ𝑆 and  𝔭𝑆 ⊇̃ (ϴ̃  ∗  Һ𝑆) ∩̃ (Һ𝑆  ∗  ϴ̃). Since, 

ϴ̃  ∗  𝔭𝑆 ⊇̃ ϴ̃  ∗  Һ𝑆 ⊇̃ (ϴ̃  ∗  Һ𝑆) ∩̃ (Һ𝑆  ∗  ϴ̃) ⊇̃ 𝔭𝑆 

Thus, ϴ̃  ∗  𝔭𝑆 ⊇̃ 𝔭𝑆, implying that 𝔭𝑆 is an S-uni ʟ-ideal. Similarly,  

𝔭𝑆  ∗  ϴ̃  ⊇̃ Һ𝑆  ∗  ϴ̃  ⊇̃ (ϴ̃  ∗  Һ𝑆) ∩̃ (Һ𝑆  ∗  ϴ̃ ) ⊇̃ 𝔭𝑆 

 Thereby, 𝔭𝑆  ∗  ϴ̃ ⊇̃ 𝔭𝑆, 𝔭𝑆 is an S-uni ʀ-ideal. Therefore, 𝔭𝑆 is an S-uni ideal. Thus, by Theorem 

3.28, 𝔭𝑆 is an S-uni ƁԚ ideal.  

Theorem 3.54. Let 𝜗𝑆 be a nonempty 𝚂𝚂 over 𝑈. Then, every 𝚂𝚂 containing 𝜗𝑆 which is the soft 

superset of ϴ̃   ∗  𝜗𝑆 is an S-uni ʟ- ƁԚ ideal.  

Proof: Let ɧ𝑆 ⊇̃ 𝜗𝑆 and ɧ𝑆 ⊇̃ ϴ̃  ∗  𝜗𝑆. Since, ϴ̃  ∗  ɧ𝑆 ⊇̃ ϴ̃  ∗  𝜗𝑆 ⊇̃ ɧ𝑆, ϴ̃  ∗  ɧ𝑆 ⊇̃ ɧ𝑆 is obtained. Hence, 

ɦ𝑆 is an S-uni ʟ-ideal. Thus, by Theorem 3.23, ɦ𝑆 is an S-uni ƁԚ ideal.  

Theorem 3.55. Let 𝜗𝑆 be a nonempty 𝚂𝚂 over 𝑈. Then, every 𝚂𝚂 containing 𝜗𝑆, and contained by 

(ϴ̃  ∗  𝜗𝑆) ∩̃ (𝜗𝑆  ∗  ϴ̃  ∗  𝜗𝑆) is an S-uni ʟ-ƁԚ ideal.  

Proof: Let ɧ𝑆 ⊇̃ 𝜗𝑆 and ɧ𝑆 ⊇̃ (ϴ̃  ∗  𝜗𝑆) ∩̃ (𝜗𝑆  ∗  ϴ̃  ∗  𝜗𝑆). Then, ϴ̃  ∗  ɧ𝑆 ⊇̃ ϴ̃  ∗  𝜗𝑆 and  ɧ𝑆  ∗  ϴ̃  ∗

 ɧ𝑆 ⊇̃ 𝜗𝑆  ∗  ϴ̃  ∗  𝜗𝑆. Since,  

(ϴ̃  ∗  ɧ𝑆) ∩̃ (ɧ𝑆  ∗  ϴ̃  ∗  ɧ𝑆) ⊇̃ (ϴ̃  ∗  𝜗𝑆) ∩̃ (𝜗𝑆  ∗  ϴ̃  ∗  𝜗𝑆) ⊇̃ ɧ𝑆 

ɧ𝑆 is an S-uni ʟ-ideal.  

Proposition 3.56. Let ϼ𝑆, be an S-uni subsemigroup over 𝑈, 𝜎 be a subset of 𝑈, 𝐼𝑚(ϼ𝑆 ) be the image 

of ϼ𝑆 such that 𝜎 ∈ 𝐼𝑚(ϼ𝑆 ). If ϼ𝑆 is an S-uni ʟ −(ʀ-) ƁԚ ideal of 𝑆, then ℒ(ϼ𝑆; 𝜎) is a ʟ-(ʀ-) ƁԚ ideal. 

Proof: The proof is presented only for S-uni ʟ- ƁԚ ideal, as the proof for S-uni ʀ-ƁԚ ideal can be 

shown similarly. Since, ϼ𝑆(ӿ) = 𝜎 for some ӿ ∈ 𝑆, ∅ ≠ ℒ(ϼ𝑆; 𝜎) ⊆ 𝑆. Let 𝜅 ∈ (𝑆. ℒ(ϼ𝑆; 𝜎)) ∪

(ℒ(ϼ𝑆; 𝜎). 𝑆. ℒ(ϼ𝑆; 𝜎)). Then, there exist ӿ, 𝘺, 𝑧 ∈ ℒ(ϼ𝑆; 𝜎) and 𝑟, 𝓈 ∈ 𝑆 such that 𝜅 = 𝓈ӿ = 𝘺𝑟𝑧. Thus, 

ϼ𝑆(𝑥) ⊆ 𝜎, ϼ𝑆(𝘺) ⊆ 𝜎 and ϼ𝑆(𝑧) ⊆ 𝜎. Since ϼ𝑆 is an S-uni ʟ-ƁԚ ideal, 

(ϴ̃  ∗  ϼ𝑆)(𝜅) = ⋂ {ϴ̃(ɱ) ∪ ϼ𝑆(𝑛)}

𝜅=ɱ𝑛

 

                                                                            ⊆ ϴ̃(𝓈) ∪ ϼ𝑆(ӿ) 

                                                                            = ∅ ∪ ϼ𝑆(ӿ) = ϼ𝑆(ӿ) 

                                                                            ⊆ 𝜎  

and  
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(ϼ𝑆  ∗  ϴ̃  ∗  ϼ𝑆)(𝜅) = ⋂ {ϼ𝑆(ɱ) ∪ (ϴ̃  ∗  ϼ𝑆)(𝑛)}

𝜅=ɱ𝑛

 

                                                                            ⊆ ϼ𝑆(ӿ) ∪ (ϴ̃  ∗  ϼ𝑆)(𝘺𝑧) 

                                                                            = ϼ𝑆(ӿ) ∪ [⋂  {ϴ̃ (𝑝) ∪ ϼ𝑆(𝑞)}𝘺𝑧=𝑝𝑞 ] 

                                                                            ⊆ ϼ𝑆(ӿ) ∪ �̃�(𝘺) ∪ ϼ𝑆(𝑧) 

                                                                            ⊆ 𝜎 ∪ ∅ ∪ 𝜎 = 𝜎.  

Thus, (ϴ̃  ∗  ϼ𝑆)(𝜅) ∪ (ϼ𝑆  ∗  ϴ̃  ∗  ϼ𝑆)(𝜅)) ⊆ 𝜎. Since ϼ𝑆 is an S-uni ʟ-ƁԚ ideal, ϼ𝑆(𝜅) ⊆ (ϴ̃  ∗  ϼ𝑆)(𝜅) ∪

(ϼ𝑆  ∗  ϴ̃  ∗  ϼ𝑆)(𝜅) ⊆ 𝜎. Thus, 𝜅 ∈ ℒ(ϼ𝑆; 𝜎). Therefore, [𝑆. ℒ(ϼ𝑆; 𝜎)] ∪ [ℒ(ϼ𝑆; 𝜎). 𝑆. ℒ(ϼ𝑆; 𝜎)]. Hence, 

ℒ(ϼ𝑆; 𝜎) is a ƁԚ ideal. 

Theorem 3.57. Let ϼ𝑆, be an S-uni subsemigroup over 𝑈, 𝜎 be a subset of 𝑈, 𝐼𝑚(ϼ𝑆 ) be the image 

of ϼ𝑆 such that 𝜎 ∈ 𝐼𝑚(ϼ𝑆 ). If ϼ𝑆 is an S-uni ƁԚ ideal of 𝑆, then ℒ(ϼ𝑆; 𝜎) is a ƁԚ ideal. 

We illustrate Theorem 3.57 with Example 3.58. 

Example 3.58. Consider the 𝚂𝚂 𝜂𝑆 in Example 3.2. By considering the image set of 𝜂𝑆, that is, 

𝐼𝑚(𝜂𝑆) = {{𝑒, 𝑥}, {𝑒, 𝑥, 𝑥2}, {𝑒, 𝑥, 𝑥2, 𝑦}} 

we obtain the following: 

ℒ(𝜂𝑆; 𝜎) = {

{ᵲ},                    𝜎 = {𝑒, 𝑥}           

{𝔣, ᵲ},                  𝜎 = {𝑒, 𝑥, 𝑥2}     

{𝔣, ℎ, ᵲ},               𝜎 = {𝑒, 𝑥, 𝑥2, 𝑦} 

 

Here, {𝑓, ℎ, ᵲ}, {𝑓, ᵲ} and {ᵲ} are all ƁԚ ideals of 𝑆. In fact, since 

{ᵲ}. {ᵲ} ⊆ {ᵲ}, {𝔣, ᵲ}. {𝔣, ᵲ} ⊆ {𝔣, ᵲ}, {𝔣, ℎ, ᵲ}. {𝔣, ℎ, ᵲ} ⊆ {𝔣, ℎ, ᵲ} 

each ℒ(𝜂𝑆; 𝜎) is a subsemigroup of 𝑆. Similarly, since 

(𝑆. {ᵲ}) ∩ ({ᵲ}. 𝑆. {ᵲ}) ⊆ {ᵲ} ∩ {ᵲ} ⊆ {ᵲ} 

(𝑆. {𝔣, ᵲ}) ∩ ({𝔣, ᵲ}. 𝑆. {𝔣, ᵲ}) ⊆ {𝔣, ᵲ} ∩ {𝔣, ᵲ} ⊆ {𝔣, ᵲ} 

(𝑆. {𝔣, ℎ, ᵲ}) ∩ ({𝔣, ℎ, ᵲ}. 𝑆. {𝔣, ℎ, ᵲ}) ⊆ {𝔣, ℎ, ᵲ} ∩ {𝔣, ℎ, ᵲ} ⊆ {𝔣, ℎ, ᵲ} 

each ℒ(𝜂𝑆; 𝜎) is a ʟ-ƁԚ ideal of 𝑆. Similarly, since 

({ᵲ}. 𝑆)  ∩ ({ᵲ}. 𝑆. {ᵲ}) ⊆ {ᵲ} ∩ {ᵲ} ⊆ {ᵲ} 

({𝔣, ᵲ}. 𝑆) ∩ ({𝔣, ᵲ}. 𝑆. {𝔣, ᵲ}) ⊆ {𝔣, ᵲ} ∩ {𝔣, ᵲ} ⊆ {𝔣, ᵲ} 

({𝔣, ℎ, ᵲ}. 𝑆) ∩ ({𝔣, ℎ, ᵲ}. 𝑆. {𝔣, ℎ, ᵲ}) ⊆ {𝔣, ℎ, ᵲ} ∩ {𝔣, ℎ, ᵲ} ⊆ {𝔣, ℎ, ᵲ} 

each ℒ(𝜂𝑆; 𝜎) is a ʀ-ƁԚ ideal of 𝑆, and thus each of ℒ(𝜂𝑆; 𝜎) is a ƁԚ ideal of 𝑆. 

Now, consider the 𝚂𝚂 ₰𝑆 in Example 3.2. By taking into account 

𝐼𝑚(₰𝑆) = {{𝑒, 𝑥}, {𝑒, 𝑥, 𝑦}, {𝑒, 𝑥2, 𝑦, 𝑦𝑥2}} 

we obtain the following: 

ℒ(₰𝑆; 𝜎) = {

{ᵲ},          𝜎 = {𝑒, 𝑥}                 
{𝔣, ᵲ},          𝜎 = {𝑒, 𝑥, 𝑦}            

{ℎ},        𝜎 = {e, 𝑥2, 𝑦, 𝑦𝑥2} 

 

Here, {ℎ} is not a ƁԚ ideal of 𝑆. In fact, since 

(𝑆. {ℎ}) ∩ ({ℎ}. 𝑆. {ℎ}) ⊆ {ℎ, ᵲ} ∩ {ℎ, ᵲ} ⊈ {ℎ} 
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one of the ℒ(₰𝑆; 𝜎) is not a ʟ-ƁԚ ideal of 𝑆, hence it is not a ƁԚ ideal of 𝑆, It is seen that each of 

ℒ(₰𝑆; 𝜎) is not a ƁԚ ideal of 𝑆. On the other hand, in Example 3.2 it was shown that  ₰𝑆 is not an 

S-uni ƁԚ ideal of 𝑆. 

Proposition 3.59. Let 𝑆 be a regular semigroup. Then, 𝜂𝑆 = (ϴ̃  ∗  𝜂𝑆) ∪̃ (𝜂𝑆  ∗  ϴ̃  ∗  𝜂𝑆) for every S-

uni ʟ-ƁԚ ideal 𝜂𝑆. 

Proof: Let 𝑆 be a regular semigroup, 𝜂𝑆 be an S-uni ʟ-ƁԚ ideal and ӽ ∈ 𝑆. Then, (ϴ̃  ∗

 𝜂𝑆) ∪̃ (𝜂𝑆  ∗  ϴ̃  ∗  𝜂𝑆) ⊇̃ 𝜂𝑆 and there exist an element 𝑦 ∈ 𝑆 such that ӽ = ӽ𝑦ӽ. Since  

(ϴ̃  ∗  𝜂𝑆)(ӽ) = ⋂ {ϴ̃(𝑘) ∪ 𝜂𝑆(𝑛)}

ӽ=𝑘𝑛

 

                                                                              ⊆ ϴ̃(ӽ𝑦) ∪ 𝜂𝑆(ӽ) 

                                                                              = ∅ ∪ 𝜂𝑆(ӽ) 

                                                                                         = 𝜂𝑆(ӽ)  

and 

                                                 (𝜂𝑆 ∗  ϴ̃  ∗  𝜂𝑆)(ӽ) = ⋂ {𝜂𝑆(𝑘) ∪ (ϴ̃  ∗  𝜂𝑆)(𝑛)}ӽ=𝑘𝑛  

                                                                               ⊆ 𝜂𝑆(ӽ) ∪ (ϴ̃  ∗  𝜂𝑆)(𝑦ӽ) 

                                            = 𝜂𝑆(ӽ) ∪ ⋂ {ϴ̃(𝑟) ∪ 𝜂𝑆(𝑠)}

𝑦ӽ=𝑟𝑠

 

                                                                               ⊆ 𝜂𝑆(ӽ) ∪ ϴ̃(𝑦) ∪ 𝜂𝑆(ӽ) 

                          =  𝜂𝑆(ӽ) ∪ ∅ ∪ 𝜂𝑆(ӽ) 

 = 𝜂𝑆(ӽ) 

Thus, (ϴ̃  ∗  𝜂𝑆)(ӽ) ∪ (𝜂𝑆  ∗  ϴ̃  ∗  𝜂𝑆 )(ӽ) ⊆ 𝜂𝑆(ӽ) ∪ 𝜂𝑆(ӽ) ⊆ 𝜂𝑆(ӽ) implying that 

𝜂𝑆 ⊇̃ (ϴ̃  ∗  𝜂𝑆) ∪̃ (𝜂𝑆  ∗  ϴ̃  ∗  𝜂𝑆). Therefore, 𝜂𝑆 = (ϴ̃  ∗  𝜂𝑆) ∪̃ (𝜂𝑆  ∗  ϴ̃  ∗  𝜂𝑆).    

Proposition 3.60. Let 𝑆 be a regular semigroup. Then, Ϧ𝑆 = (Ϧ𝑆  ∗  ϴ̃) ∪̃ (Ϧ𝑆  ∗  ϴ̃  ∗  Ϧ𝑆) for every S-

uni ʀ-ƁԚ ideal Ϧ𝑆. 

Proof: Let 𝑆 be a regular semigroup, Ϧ𝑆 be an S-uni ʀ-ƁԚ ideal and ӽ ∈ 𝑆. Then, 

(Ϧ𝑆 ∗  ϴ̃) ∪̃ (Ϧ𝑆  ∗  ϴ̃  ∗  Ϧ𝑆) ⊇̃ Ϧ𝑆 and there exist an element 𝑡 ∈ 𝑆 such that ӽ = ӽ𝑡ӽ. Since,  

(Ϧ𝑆 ∗  ϴ̃)(ӽ) = ⋂ {Ϧ𝑆(𝑘) ∪ ϴ̃(𝑛)}

ӽ=𝑘𝑛

 

                                                                              ⊆ Ϧ𝑆(ӽ) ∪ ϴ̃(𝑡ӽ) 

                                                                                        = Ϧ𝑆(ӽ) ∪ ∅ = Ϧ𝑆(ӽ)  

and  

(Ϧ𝑆 ∗  ϴ̃  ∗  Ϧ𝑆)(ӽ) = ⋂ {Ϧ𝑆(𝑘) ∪ (ϴ̃  ∗  Ϧ𝑆)(𝑛)}

ӽ=𝑘𝑛

 

                         ⊆  Ϧ𝑆(ӽ) ∪ (ϴ̃  ∗  Ϧ𝑆)(𝑡ӽ) 

                                   = Ϧ𝑆(ӽ) ∪ ⋂ {ϴ̃(𝑞) ∪ Ϧ𝑆(𝑠)}

𝑡ӽ=𝑞𝑠
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                                                                           ⊆ Ϧ𝑆(ӽ) ∪ ϴ̃(𝑡) ∪ Ϧ𝑆(ӽ)  

                  =  Ϧ𝑆(ӽ) ∪ ∅ ∪ Ϧ𝑆(ӽ) 

                                                                            = Ϧ𝑆(ӽ).  

Thus, (Ϧ𝑆  ∗  ϴ̃)(ӽ) ∪ (Ϧ𝑆  ∗  ϴ̃  ∗  Ϧ𝑆  )(ӽ) ⊆ Ϧ𝑆(ӽ) ∪ Ϧ𝑆(ӽ) ⊆ Ϧ𝑆(ӽ) implying that Ϧ𝑆 ⊇̃ (Ϧ𝑆  ∗

 ϴ̃) ∪̃ (Ϧ𝑆  ∗  ϴ̃  ∗  Ϧ𝑆). Therefore, Ϧ𝑆 = (Ϧ𝑆  ∗  ϴ̃) ∪̃ (Ϧ𝑆  ∗  ϴ̃  ∗  Ϧ𝑆). 

Theorem 3.61. Let 𝑆 be a regular semigroup. Then, ɲ𝑆 = (ϴ̃  ∗  ɲ𝑆) ∩̃ (ɲ𝑆  ∗  ϴ̃  ∗  ɲ𝑆) =

(ɲ𝑆  ∗  ϴ̃) ∩̃ (ɲ𝑆 ∗  ϴ̃  ∗  ɲ𝑆) for every S-uni ƁԚ ideal. 

Proof: It is followed by Proposition 3.59 and Proposition 3.60. 

Proposition 3.62. Let 𝑆 be a regular semigroup. Then every S-uni ʟ-ƁԚ ideal of a semigroup 𝑆 is 

an S-uni quasi ideal of a semigroup. 

Proof: Let 𝑓𝑆 be an S-uni ʟ-ƁԚ ideal of 𝑆. Then, (ϴ̃  ∗  Գ𝑆) ∪̃ (Գ𝑆  ∗  ϴ̃  ∗  Գ𝑆) ⊇̃ Գ𝑆. We know 

that  Գ𝑆  ∗  ϴ̃ and ϴ̃  ∗  Գ𝑆 are S-uni ʀ-and S-uni ʟ-ideals of the semigroup 𝑆 respectively. By 

Corollary 2.16, we have  

(Գ𝑆 ∗  ϴ̃) ∪̃ (ϴ̃  ∗  Գ𝑆) = Գ𝑆  ∗  ϴ̃  ∗  ϴ̃  ∗  Գ𝑆 

Thus, (Գ𝑆 ∗  ϴ̃) ∪̃ (ϴ̃  ∗  Գ𝑆) ⊇̃ ϴ̃  ∗  Գ𝑆 and (Գ𝑆 ∗  ϴ̃) ∪̃ (ϴ̃  ∗  Գ𝑆) = Գ𝑆  ∗  ϴ̃  ∗  ϴ̃  ∗  Գ𝑆 ⊇̃ Գ𝑆  ∗

 ϴ̃  ∗  Գ𝑆. Hence, 

(Գ𝑆 ∗  ϴ̃) ∪̃ (ϴ̃  ∗  Գ𝑆) ⊇̃ (ϴ̃  ∗  Գ𝑆) ∪̃ (Գ𝑆  ∗  ϴ̃  ∗  Գ𝑆) ⊇̃ Գ𝑆 

Therefore, Գ𝑆 is an S-uni quasi ideal. 

Proposition 3.63. Let 𝑆 be a regular semigroup. Then every S-uni ʀ-ƁԚ ideal of a semigroup 𝑆 is 

an S-uni quasi ideal of a semigroup. 

Proof: Let Գ𝑆 be an S-uni ʀ-ƁԚ ideal of 𝑆. Then, (Գ𝑆  ∗  ϴ̃) ∪̃ (Գ𝑆  ∗  ϴ̃  ∗  Գ𝑆) ⊇̃ Գ𝑆. We know 

that  Գ𝑆  ∗  ϴ̃ and ϴ̃  ∗  Գ𝑆 are S-uni ʀ-and S-uni ʟ-ideals of the semigroup 𝑆 respectively. By 

Corollary 2.16, we have  

(Գ𝑆 ∗  ϴ̃) ∪̃ (ϴ̃  ∗  Գ𝑆) = Գ𝑆  ∗  ϴ̃  ∗  ϴ̃  ∗  Գ𝑆 

 Thus, (Գ𝑆 ∗  ϴ̃) ∪̃ (ϴ̃  ∗  Գ𝑆) ⊇̃ Գ𝑆 ∗  ϴ̃ and (Գ𝑆 ∗  ϴ̃) ∪̃ (ϴ̃  ∗  Գ𝑆) = Գ𝑆  ∗  ϴ̃  ∗  ϴ̃  ∗  Գ𝑆 ⊇̃ Գ𝑆  ∗

 ϴ̃  ∗  Գ𝑆.  Hence,  

(Գ𝑆 ∗  ϴ̃) ∪̃ (ϴ̃  ∗  Գ𝑆) ⊇̃ (Գ𝑆 ∗  ϴ̃) ∪̃ (Գ𝑆  ∗  ϴ̃  ∗  Գ𝑆) ⊇̃ Գ𝑆 

Therefore, Գ𝑆 is an S-uni quasi ideal. 

Theorem 3.64. Let 𝑆 be a regular semigroup. Then every S-uni ƁԚ ideal of a semigroup 𝑆 is an S-

uni quasi ideal of semigroup. 

Proof: It follows by Proposition 3.62 and Proposition 3.6. 

The relation between several S-uni ideals and their generalized ideals is depicted in the following 

figure, where 𝒜 → ℬ denotes that 𝒜 is ℬ but ℬ may not always be 𝒜. 
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Figure 1. Diagram illustrating the relationships between some S-uni ideals. 
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4. Conclusion 

Rao [8] expanded the notions of quasi-ideal, bi-ideal, ʟ-(ʀ-) ideal, and ideal in semigroups 

by defining ƁԚ ideals and examining their characteristics. In this study, we applied the concept 

of "S-uni ƁԚ ideals of semigroups" to both 𝚂𝚂 theory and semigroup theory. It has been shown 

that every S-uni bi-ideal, S-uni ideal, S-uni quasi-ideal, and S-uni interior ideal of an idempotent 

𝚂𝚂 is an S-uni ƁԚ ideal. Counterexamples show that the reverse is not always true, and for the 

reverse to hold, the semigroup must be special soft simple, or regular. It has also been 

demonstrated that in a special soft simple semigroup, the S-uni ƁԚ ideal coincides with the S-uni 

bi-ideal, S-uni ʟ- (ʀ-) ideal, S-uni quasi-ideal, and S-uni interior ideal. The finite soft union of S-

uni ƁԚ ideals is shown to be S-uni ƁԚ ideals, as are the soft union of S-uni ideals. Additionally, 

the relationship between regular semigroups and S-uni ƁԚ ideals is explored. In later studies, 

various semigroup types can be used to characterize S-uni ƁԚ ideals. 

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the 

publication of this paper. 
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