Intuitionistic Fuzzy Quasi-Supergraph Integration for Social Network Decision Making

Main Article Content

Mohammed Alqahtani

Abstract

This study explores the complexities of intuitionistic fuzzy (hyper) graphs, considering them as complex (hyper) networks, and presents a unique idea for intuitionistic fuzzy (quasi) superhypergraphs. The extension considers intuitionistic fuzzy superhypergraphs to be complicated superhyper networks to establish particular and general links between labeled items. These intuitionistic fuzzy (quasi) superhypergraphs arrange labeled object groups and analyze them in several relational aspects at the same time, including part-to-part, part-to-whole, and whole-to-whole groupings. The research investigates the characteristics of intuitionistic fuzzy (quasi) superhypergraphs utilizing positive real numbers, such as valued intuitionistic fuzzy (quasi) superhypergraphs and their complements, permutation-based isomorphism notation, and isomorphic (self-complemented) valued intuitionistic fuzzy (quasi) superhypergraphs. It also presents the concept of impact membership value for intuitionistic fuzzy (quasi) superhypergraphs and demonstrates how it may be used to solve real-world problems. Finally, the research demonstrates the use of intuitionistic fuzzy valued quasi superhyper graphs in addressing social network analysis, emphasizing their practical use.

Article Details

References

  1. C. Berge, Graphs and Hypergraphs, North-Holland, Amsterdam, 1973.
  2. F. Klimm, C.M. Deane, G. Reinert, Hypergraphs for Predicting Essential Genes Using Multiprotein Complex Data, J. Complex Netw. 9 (2021), cnaa028. https://doi.org/10.1093/comnet/cnaa028.
  3. D. Gunopulos, H. Mannila, R. Khardon, H. Toivonen, Data Mining, Hypergraph Transversals, and Machine Learning (Extended Abstract), in: Proceedings of the Sixteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, ACM, Tucson Arizona USA, 1997: pp. 209–216. https://doi.org/10.1145/263661.263684.
  4. B. Molnar, Applications of Hypergraphs in Informatics: A Survey and Opportunities for Research, Ann. Univ. Sci. Budapest., Sect. Comput. 42 (2014), 261–282.
  5. E.V. Konstantinova, V.A. Skorobogatov, Application of Hypergraph Theory in Chemistry, Discr. Math. 235 (2001), 365–383. https://doi.org/10.1016/S0012-365X(00)00290-9.
  6. H. Shi, Y. Zhang, Z. Zhang, et al. Hypergraph-Induced Convolutional Networks for Visual Classification, IEEE Trans. Neural Netw. Learn. Syst. 30 (2019), 2963–2972. https://doi.org/10.1109/TNNLS.2018.2869747.
  7. A. Amini, N. Firouzkouhi, A. Gholami, et al. Soft Hypergraph for Modeling Global Interactions via Social Media Networks, Expert Syst. Appl. 203 (2022), 117466. https://doi.org/10.1016/j.eswa.2022.117466.
  8. C. Ding, Z. Zhao, C. Li, Y. Yu, Q. Zeng, Session-Based Recommendation with Hypergraph Convolutional Networks and Sequential Information Embeddings, Expert Syst. Appl. 223 (2023), 119875. https://doi.org/10.1016/j.eswa.2023.119875.
  9. L. Nagy, T. Ruppert, A. Löcklin, J. Abonyi, Hypergraph-Based Analysis and Design of Intelligent Collaborative Manufacturing Space, J. Manuf. Syst. 65 (2022), 88–103. https://doi.org/10.1016/j.jmsy.2022.08.001.
  10. D. Tocchi, C. Sys, A. Papola, F. Tinessa, F. Simonelli, V. Marzano, Hypergraph-Based Centrality Metrics for Maritime Container Service Networks: A Worldwide Application, J. Transp. Geogr. 98 (2022), 103225. https://doi.org/10.1016/j.jtrangeo.2021.103225.
  11. L.A. Zadeh, Fuzzy Sets, Inf. Control 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X.
  12. S. A. Edalatpanah, F. Smarandache, Introduction to the Special Issue on Advances in Neutrosophic and Plithogenic Sets for Engineering and Sciences: Theory, Models, and Applications, Comput. Model. Eng. Sci. 134 (2023), 817–819. https://doi.org/10.32604/cmes.2022.024060.
  13. A. Rosenfeld, Fuzzy Groups, J. Math. Anal. Appl. 35 (1971), 512–517. https://doi.org/10.1016/0022-247X(71)90199-5.
  14. M. Sitara, M. Akram, M. Yousaf Bhatti, Fuzzy Graph Structures with Application, Mathematics 7 (2019), 63. https://doi.org/10.3390/math7010063.
  15. Hyung Lee-Kwang, Keon-Myung Lee, Fuzzy Hypergraph and Fuzzy Partition, IEEE Trans. Syst. Man Cybern. 25 (1995), 196–201. https://doi.org/10.1109/21.362951.
  16. A. Kaufmann, Introduction a la Thiorie des Sous-Ensemble Flous, Masson, Paris, 1977.
  17. M. Akram, A. Luqman, Fuzzy Hypergraphs and Related Extensions, Springer, Singapore, 2022. https://doi.org/10.1007/978-981-15-2403-5.
  18. M. Akram, H.S. Nawaz, Implementation of Single-Valued Neutrosophic Soft Hypergraphs on Human Nervous System, Artif. Intell. Rev. 56 (2023), 1387–1425. https://doi.org/10.1007/s10462-022-10200-w.
  19. M. Akram, S. Shahzadi, A. Rasool, M. Sarwar, Decision-Making Methods Based on Fuzzy Soft Competition Hypergraphs, Complex Intell. Syst. 8 (2022), 2325–2348. https://doi.org/10.1007/s40747-022-00646-4.
  20. J. Abonyi, T. Czvetkó, Hypergraph and Network Flow-Based Quality Function Deployment, Heliyon 8 (2022), e12263. https://doi.org/10.1016/j.heliyon.2022.e12263.
  21. P.M. Dhanya, P.B. Ramkumar,C. Nirmaljith, J. Paul, Fuzzy Hypergraph Modeling, Analysis and Prediction of Crimes, Int. J. Comput. Digit. Syst. 11 (2022), 649–661. https://doi.org/10.12785/ijcds/110152.
  22. M. Hamidi, F. Smarandache, Single-Valued Neutrosophic Directed (Hyper)Graphs and Applications in Networks, J. Intell. Fuzzy Syst. 37 (2019), 2869–2885. https://doi.org/10.3233/JIFS-190036.
  23. M. Hamidi, A. Borumand Saeid, Achievable Single-Valued Neutrosophic Graphs in Wireless Sensor Networks, New Math. Nat. Comput. 14 (2018), 157–185. https://doi.org/10.1142/S1793005718500114.
  24. X. Ma, T. Zhao, Q. Guo, X. Li, C. Zhang, Fuzzy Hypergraph Network for Recommending Top-K Profitable Stocks, Inf. Sci. 613 (2022), 239–255. https://doi.org/10.1016/j.ins.2022.09.010.
  25. H.S. Nawaz, M. Akram, J.C.R. Alcantud, An Algorithm to Compute the Strength of Competing Interactions in the Bering Sea Based on Pythagorean Fuzzy Hypergraphs, Neural Comput. Appl. 34 (2022), 1099–1121. https://doi.org/10.1007/s00521-021-06414-8.
  26. A. Zareie, R. Sakellariou, Centrality Measures in Fuzzy Social Networks, Inf. Syst. 114 (2023), 102179. https://doi.org/10.1016/j.is.2023.102179.
  27. F. Smarandache, Extension of Hypergraph to n-Superhypergraph and to Plithogenic n-Superhypergraph, and Extension of Hyper Algebra to n-Ary (Classical-/Neutro-/Anti-) Hyperalgebra, Neutrosophic Sets Syst. 33 (2020), 290–296.
  28. M. Hamidi, F. Smarandache, E. Davneshvar, Spectrum of Superhypergraphs via Flows, J. Math. 2022 (2022), 9158912. https://doi.org/10.1155/2022/9158912.
  29. F. Smarandache, Introduction to the n-SuperHyperGraph-the most general form of graph today, Neutrosophic Sets Syst. 48 (2022), 482–785. https://ssrn.com/abstract=4317064.
  30. M. Hamidi, F. Smarandache, M. Taghinezhad, Decision Making Based on Valued Fuzzy Superhypergraphs, Comput. Model. Eng. Sci. 138 (2024), 1907–1923. https://doi.org/10.32604/cmes.2023.030284.
  31. X. Shi, S. Kosari, Certain Properties of Domination in Product Vague Graphs With an Application in Medicine, Front. Phys. 9 (2021), 680634. https://doi.org/10.3389/fphy.2021.680634.
  32. S. Kosari, Y. Rao, H. Jiang, et al. Vague Graph Structure with Application in Medical Diagnosis, Symmetry 12 (2020), 1582. https://doi.org/10.3390/sym12101582.
  33. Z. Kou, S. Kosari, M. Akhoundi, A Novel Description on Vague Graph with Application in Transportation Systems, J. Math. 2021 (2021), 4800499. https://doi.org/10.1155/2021/4800499.
  34. Z. Shao, S. Kosari, M. Shoaib, H. Rashmanlou, Certain Concepts of Vague Graphs With Applications to Medical Diagnosis, Front. Phys. 8 (2020), 357. https://doi.org/10.3389/fphy.2020.00357.
  35. Z. Shao, S. Kosari, H. Rashmanlou, M. Shoaib, New Concepts in Intuitionistic Fuzzy Graph with Application in Water Supplier Systems, Mathematics 8 (2020), 1241. https://doi.org/10.3390/math8081241.
  36. X. Shi, S. Kosari, A.A. Talebi, S.H. Sadati, H. Rashmanlou, Investigation of the Main Energies of Picture Fuzzy Graph and Its Applications, Int. J. Comput. Intell. Syst. 15 (2022), 31. https://doi.org/10.1007/s44196-022-00086-5.
  37. S. Lei, H. Guan, J. Jiang, Y. Zou, Y. Rao, A Machine Proof System of Point Geometry Based on Coq, Mathematics 11 (2023), 2757. https://doi.org/10.3390/math11122757.
  38. Y. Rao, M.A. Binyamin, A. Aslam, M. Mehtab, S. Fazal, On the Planarity of Graphs Associated with Symmetric and Pseudo Symmetric Numerical Semigroups, Mathematics 11 (2023), 1681. https://doi.org/10.3390/math11071681.
  39. S. Kosari, H. Jiang, A. Khan, M. Akhoundi, Properties of Connectivity in Vague Fuzzy Graphs With Application in Building University, J. Multiple-Valued Logic Soft Comput. 41 (2023), 463–482.
  40. W.A. Khan, W. Arif, H. Rashmanlou, S. Kosari, Interval-Valued Picture Fuzzy Hypergraphs with Application towards Decision Making, J. Appl. Math. Comput. 70 (2024), 1103–1125. https://doi.org/10.1007/s12190-024-01996-7.
  41. M. Alqahtani, M. Kaviyarasu, A. Al-Masarwah, M. Rajeshwari, Application of Complex Neutrosophic Graphs in Hospital Infrastructure Design, Mathematics 12 (2024), 719. https://doi.org/10.3390/math12050719.
  42. M. Kaviyarasu, M. Aslam, F. Afzal, M.M. Saeed, A. Mehmood, S. Gul, The Connectivity Indices Concept of Neutrosophic Graph and Their Application of Computer Network, Highway System and Transport Network Flow, Sci. Rep. 14 (2024), 4891. https://doi.org/10.1038/s41598-024-54104-x.
  43. W.F.A. AL-Omeri, M. Kaviyarasu, M. Rajeshwari, Identifying Internet Streaming Services Using Max Product of Complement in Neutrosophic Graphs, Int. J. Neutrosophic Sci. 23 (2024), 257–272. https://doi.org/10.54216/IJNS.230123.
  44. W.F. Al-Omeri, On Mixed b-Fuzzy Topological Spaces, Int. J. Fuzzy Logic Intell. Syst. 20 (2020), 242–246. https://doi.org/10.5391/IJFIS.2020.20.3.242.