Global Strong Solutions for a One-Dimensional Bilayer Shallow Water Model With a Rigid-Lid Assumption
Main Article Content
Abstract
In this paper, we examine a one-dimensional viscous bilayer shallow water model under the rigid-lid assumption. Each layer is described by the one-dimensional shallow water equations. The work presented in [Discrete and Continuous Dynamical Systems Series B18(1), (2011), 361-383] established the stability of a similar model in the two-dimensional case. The primary focus of this study is to demonstrate the existence of global strong solutions for the proposed model within a periodic domain.
Article Details
References
- E. Audusse, A Multilayer Saint-Venant Model: Derivation and Numerical Validation, Discrete Contin. Dyn. Syst. - B 5 (2005), 189–214. https://doi.org/10.3934/dcdsb.2005.5.189.
- F. Boyer, P. Fabrie, Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models, Springer, New York, 2012. https://doi.org/10.1007/978-1-4614-5975-0.
- D. Bresch, B. Desjardins, Existence of Global Weak Solutions for a 2D Viscous Shallow Water Equations and Convergence to the Quasi-Geostrophic Model, Commun. Math. Phys. 238 (2003), 211–223. https://doi.org/10.1007/s00220-003-0859-8.
- D. Bresch, B. Desjardins, On the Existence of Global Weak Solutions to the Navier–Stokes Equations for Viscous Compressible and Heat Conducting Fluids, J. Math. Pures Appl. 87 (2007), 57–90. https://doi.org/10.1016/j.matpur.2006.11.001.
- D. Bresch, M. Renardy, Well-Posedness of Two-Layer Shallow-Water Flow between Two Horizontal Rigid Plates, Nonlinearity 24 (2011), 1081–1088. https://doi.org/10.1088/0951-7715/24/4/004.
- A. Bressan, G. Crasta, B. Piccoli, Well-Posedness of the Cauchy Problem for n × n Systems of Conservation Laws, Mem. Amer. Math. Soc. 146 (2000), 1–134. https://hdl.handle.net/11573/48741.
- C. Burtea, B. Haspot, Existence of Global Strong Solution for the Navier-Stokes-Korteweg System in One Dimension for Strongly Degenerate Viscosity Coefficients, Pure Appl. Anal. 4 (2022), 449–485. https://doi.org/10.2140/paa.2022.4.449.
- C. Burtea, B. Haspot, Existence of Global Strong Solution for Korteweg System in One Dimension for Strongly Degenerate Viscosity Coefficients, Preprint (2022). https://hal.science/hal-03046994v1.
- J. Glimm, Solutions in the Large for Nonlinear Hyperbolic Systems of Equations, Commun. Pure Appl. Math. 18 (1965), 697–715. https://doi.org/10.1002/cpa.3160180408.
- B. Haspot, Global Existence of Strong Solution for Viscous Shallow Water System with Large Initial Data on the Irrotational Part, J. Differ. Equ. 262 (2017), 4931–4978. https://doi.org/10.1016/j.jde.2017.01.010.
- B. Haspot, Existence of Global Strong Solution for the Compressible Navier–Stokes Equations with Degenerate Viscosity Coefficients in 1D, Math. Nachr. 291 (2018), 2188–2203. https://doi.org/10.1002/mana.201700050.
- M.J. Kang, A.F. Vasseur, Global Smooth Solutions for 1D Barotropic Navier–Stokes Equations with a Large Class of Degenerate Viscosities, J. Nonlinear Sci. 30 (2020), 1703–1721. https://doi.org/10.1007/s00332-020-09622-z.
- O.A. Ladyženskaja, V.A. Solonnikov, N.N. Ural’ceva, O.A. Ladyženskaja, Linear and Quasi-Linear Equations of Parabolic Type, American Mathematical Society, Providence, (1968).
- J.L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, Dunod, (1969).
- B. Di Martino, P. Orenga, M. Peybernes, On a Bi-Layer Shallow Water Model With Rigid-Lid Hypothesis, Math. Models Methods Appl. Sci. 15 (2005), 843–869. https://doi.org/10.1142/S0218202505000583.
- B. Di Martino, C. Giacomoni, P. Orenga, Analysis of Some Shallow Water Problems With Rigid-Lid Hypothesis, Math. Models Methods Appl. Sci. 11 (2001), 979–999. https://doi.org/10.1142/S0218202501001203.
- A. Mellet, A. Vasseur, Existence and Uniqueness of Global Strong Solutions for One-Dimensional Compressible Navier–Stokes Equations, SIAM J. Math. Anal. 39 (2008), 1344–1365. https://doi.org/10.1137/060658199.
- T. Ngom, M. Sy, Derivation and Stability Study of a Rigid Lid Bilayer Model, Discrete Contin. Dyn. Syst. - B 16 (2011), 361–383. https://doi.org/10.3934/dcdsb.2011.16.361.
- R. Brahima, Z. Julien, B. Mohamed Bassirou, Z. Yacouba, Z. Jean De Dieu, On the Existence of Global Strong Solutions to 1D Bilayer Shallow Water Model, Electron. J. Math. Anal. Appl. 12 (2024), 1–12. https://doi.org/10.21608/ejmaa.2023.193654.1006.
- J.D.D. Zabsonré, C. Lucas, A. Ouedraogo, Strong Solutions for a 1D Viscous Bilayer Shallow Water Model, Nonlinear Anal.: Real World Appl. 14 (2013), 1216–1224. https://doi.org/10.1016/j.nonrwa.2012.09.012.