Global Strong Solutions for a One-Dimensional Bilayer Shallow Water Model With a Rigid-Lid Assumption

Main Article Content

Roamba Brahima, Zongo Yacouba, Zongo Julien, Zabsonré Jean de Dieu

Abstract

In this paper, we examine a one-dimensional viscous bilayer shallow water model under the rigid-lid assumption. Each layer is described by the one-dimensional shallow water equations. The work presented in [Discrete and Continuous Dynamical Systems Series B18(1), (2011), 361-383] established the stability of a similar model in the two-dimensional case. The primary focus of this study is to demonstrate the existence of global strong solutions for the proposed model within a periodic domain.

Article Details

References

  1. E. Audusse, A Multilayer Saint-Venant Model: Derivation and Numerical Validation, Discrete Contin. Dyn. Syst. - B 5 (2005), 189–214. https://doi.org/10.3934/dcdsb.2005.5.189.
  2. F. Boyer, P. Fabrie, Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models, Springer, New York, 2012. https://doi.org/10.1007/978-1-4614-5975-0.
  3. D. Bresch, B. Desjardins, Existence of Global Weak Solutions for a 2D Viscous Shallow Water Equations and Convergence to the Quasi-Geostrophic Model, Commun. Math. Phys. 238 (2003), 211–223. https://doi.org/10.1007/s00220-003-0859-8.
  4. D. Bresch, B. Desjardins, On the Existence of Global Weak Solutions to the Navier–Stokes Equations for Viscous Compressible and Heat Conducting Fluids, J. Math. Pures Appl. 87 (2007), 57–90. https://doi.org/10.1016/j.matpur.2006.11.001.
  5. D. Bresch, M. Renardy, Well-Posedness of Two-Layer Shallow-Water Flow between Two Horizontal Rigid Plates, Nonlinearity 24 (2011), 1081–1088. https://doi.org/10.1088/0951-7715/24/4/004.
  6. A. Bressan, G. Crasta, B. Piccoli, Well-Posedness of the Cauchy Problem for n × n Systems of Conservation Laws, Mem. Amer. Math. Soc. 146 (2000), 1–134. https://hdl.handle.net/11573/48741.
  7. C. Burtea, B. Haspot, Existence of Global Strong Solution for the Navier-Stokes-Korteweg System in One Dimension for Strongly Degenerate Viscosity Coefficients, Pure Appl. Anal. 4 (2022), 449–485. https://doi.org/10.2140/paa.2022.4.449.
  8. C. Burtea, B. Haspot, Existence of Global Strong Solution for Korteweg System in One Dimension for Strongly Degenerate Viscosity Coefficients, Preprint (2022). https://hal.science/hal-03046994v1.
  9. J. Glimm, Solutions in the Large for Nonlinear Hyperbolic Systems of Equations, Commun. Pure Appl. Math. 18 (1965), 697–715. https://doi.org/10.1002/cpa.3160180408.
  10. B. Haspot, Global Existence of Strong Solution for Viscous Shallow Water System with Large Initial Data on the Irrotational Part, J. Differ. Equ. 262 (2017), 4931–4978. https://doi.org/10.1016/j.jde.2017.01.010.
  11. B. Haspot, Existence of Global Strong Solution for the Compressible Navier–Stokes Equations with Degenerate Viscosity Coefficients in 1D, Math. Nachr. 291 (2018), 2188–2203. https://doi.org/10.1002/mana.201700050.
  12. M.J. Kang, A.F. Vasseur, Global Smooth Solutions for 1D Barotropic Navier–Stokes Equations with a Large Class of Degenerate Viscosities, J. Nonlinear Sci. 30 (2020), 1703–1721. https://doi.org/10.1007/s00332-020-09622-z.
  13. O.A. Ladyženskaja, V.A. Solonnikov, N.N. Ural’ceva, O.A. Ladyženskaja, Linear and Quasi-Linear Equations of Parabolic Type, American Mathematical Society, Providence, (1968).
  14. J.L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, Dunod, (1969).
  15. B. Di Martino, P. Orenga, M. Peybernes, On a Bi-Layer Shallow Water Model With Rigid-Lid Hypothesis, Math. Models Methods Appl. Sci. 15 (2005), 843–869. https://doi.org/10.1142/S0218202505000583.
  16. B. Di Martino, C. Giacomoni, P. Orenga, Analysis of Some Shallow Water Problems With Rigid-Lid Hypothesis, Math. Models Methods Appl. Sci. 11 (2001), 979–999. https://doi.org/10.1142/S0218202501001203.
  17. A. Mellet, A. Vasseur, Existence and Uniqueness of Global Strong Solutions for One-Dimensional Compressible Navier–Stokes Equations, SIAM J. Math. Anal. 39 (2008), 1344–1365. https://doi.org/10.1137/060658199.
  18. T. Ngom, M. Sy, Derivation and Stability Study of a Rigid Lid Bilayer Model, Discrete Contin. Dyn. Syst. - B 16 (2011), 361–383. https://doi.org/10.3934/dcdsb.2011.16.361.
  19. R. Brahima, Z. Julien, B. Mohamed Bassirou, Z. Yacouba, Z. Jean De Dieu, On the Existence of Global Strong Solutions to 1D Bilayer Shallow Water Model, Electron. J. Math. Anal. Appl. 12 (2024), 1–12. https://doi.org/10.21608/ejmaa.2023.193654.1006.
  20. J.D.D. Zabsonré, C. Lucas, A. Ouedraogo, Strong Solutions for a 1D Viscous Bilayer Shallow Water Model, Nonlinear Anal.: Real World Appl. 14 (2013), 1216–1224. https://doi.org/10.1016/j.nonrwa.2012.09.012.