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ABSTRACT. The traditional calculation of Z-scores for outlier detection is highly sensitive to extreme data points, 

making it unsuitable under conditions of uncertainty. In this study, we propose a novel approach to modify the Z-

score method using neutrosophic statistics. Key statistical measures, including the median, neutrosophic standard 

deviation, and median absolute deviation, will be computed based on neutrosophic random variables. An extensive 

simulation study will evaluate the impact of varying uncertainty levels on the adaptation of Z-scores for outlier 

detection and their effectiveness in identifying outliers. Comparative analysis of Z-scores derived from different 

methods will also be performed. The proposed methodology will be applied to neutrosophic GG25 gray cast iron 

data, demonstrating its practical utility. We hypothesize that uncertainty levels will significantly affect Z-score 

computations and, consequently, outlier detection in the dataset. 

 

1. Introduction 

In statistical analysis, an outlier refers to a data point that significantly deviates from the rest of 

the dataset. These anomalies often arise from measurement variations or experimental errors. 

Outliers can skew descriptive statistics, such as the mean, potentially misleading analysts and 

decision-makers about the dataset's true characteristics. Identifying and addressing outliers is 

crucial in statistical analysis, often necessitating their elimination or adjustment to align with 

the dataset's typical values. The Z-score method is a traditional tool for spotting outliers, 

measuring how many standard deviations a data point is from the mean. It calculates this by 

dividing the difference between the data point and the mean by the standard deviation. 

Conventionally, data points with a Z-score beyond the range of -3 to 3 are considered outliers. 
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However, this method is sensitive to outliers itself, as the mean can be distorted by extreme 

values. To mitigate this, an adjusted Z-score formula has been introduced, relying on the 

median—a more robust central tendency measure—rather than the mean. This revised formula, 

which considers the distance between data points and the median relative to the standard 

deviation, deems data points as outliers if their Z-score falls outside the -3.5 to 3.5 ranges. This 

method, known as a more robust approach for outlier detection, addresses the vulnerability of 

the traditional Z-score to extreme values [1]. [2] conducted a survey on outlier detection 

methods. [3] utilized the Z-score method to identify outliers in high-dimensional data. [4] 

employed an enhanced Z-score method for outlier detection. [5] introduced a method for 

detecting univariate outliers tailored for nurse researchers. [6] presented expedited approaches 

for outlier detection. [7] applied the Z-score method to detect outliers in time series signal 

strength data. [8] developed an approach for detecting outliers in surface water temperature 

data. [9] proposed a method for outlier detection in groundwater data. [10] conducted a review 

on outlier detection in geotechnical data. More detail can be seen in [11].   

Neutrosophic statistics is a mathematical framework utilized for analyzing data gathered 

amidst uncertainty. This discipline focuses on handling imprecise, fuzzy, and interval data, 

encompassing their collection, analysis, and interpretation. Introduced by [12], neutrosophic 

statistics extends beyond classical statistics by offering additional insights, notably the degree of 

indeterminacy, which classical statistics often fails to provide. Recent studies, such as the work 

by [13], have demonstrated the efficacy of neutrosophic statistics compared to interval statistics. 

[14] and [15] introduced the method to analysis the neutrosophic data. [16] presented the 

neutrosophic Dixon’s test to detect outliers in the data. [17] presented the outliers method in 

neutrosophic. [18] and [19] presented the exponential distribution and Rayleigh distribution 

using the neutrosophic statistics. [20] presented the application of neutrosophic correlation 

coefficient. [21] presented the analysis of covariance using the neutrosophic statistics. [22] 

applied the neutrosophic logistic model for fuzzy data.   

The existing Z-score methods within classical statistics are commonly employed for outlier 

detection in uncertain data. Despite an extensive literature review, there appears to be a dearth 

of research regarding the application of the Z-score method within neutrosophic statistics. To 

address this gap, this paper aims to introduce the design of the Z-score method within the 

framework of neutrosophic statistics. We will conduct a comprehensive simulation study to 

investigate how varying degrees of uncertainty influence outlier detection using the proposed 

method. Additionally, we will provide comparative analyses and practical demonstrations of 

the proposed approach using neutrosophic datasets. It is anticipated that the proposed method 

for outlier detection will exhibit improved performance in situations characterized by 

uncertainty. 
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2. The Proposed Method 

Suppose that 𝑋𝑁 = 𝑋𝐿 + 𝑋𝐿𝐼𝑁; 𝐼𝑁𝜖[𝐼𝐿 , 𝐼𝑈] be a neutrosophic random variable and is based on two 

parts. The first random variable 𝑋𝐿 denotes the random variable for the determinate part of 

neutrosophic data and 𝑋𝐿𝐼𝑁 be the indeterminate part of the neutrosophic number and 

𝐼𝑁𝜖[𝐼𝐿, 𝐼𝑈] be the indeterminacy. Suppose that 𝑋𝐿 follows the normal distribution with mean 𝜇 

and variance 𝜎2. Note that the proposed neutrosophic random variable 𝑋𝑁𝜖[𝑋𝐿 , 𝑋𝑈] reduces to 

𝑋𝐿 if 𝐼𝐿=0. Note here that 𝐼𝑁
2 = 𝐼𝑁. The neutrosophic expectation of the proposed neutrosophic 

random variable is given by 

𝐸(𝑋𝑁) = 𝐸(𝑋𝐿 + 𝑋𝐿𝐼𝑁) = 𝜇 + 𝜇𝐼𝑁            (1) 

The neutrosophic expectation of the proposed neutrosophic random variable is given by 

𝑉𝑎𝑟(𝑋𝑁) = 𝑉𝑎𝑟(𝑋𝐿 + 𝑋𝐿𝐼𝑁) = (1 + 𝐼𝑁)2 𝜎2        (2) 

Note that when 𝐼𝐿=0, the expectation and variance of the proposed neutrosophic random 

variable converge to those of classical statistics. Let 𝑥1𝑁, 𝑥2𝑁, … , 𝑥𝑛𝑁 represent a neutrosophic 

random sample of size 𝑛. The neutrosophic mean �̅�𝑁 is computed as follows 

�̅�𝑁 =
(1+𝐼𝑁)𝑥1𝐿+(1+𝐼𝑁)𝑥2𝐿+..,(1+𝐼𝑁)𝑥𝑛𝐿

𝑛
=

(1+𝐼𝑁) ∑ 𝑥𝑖𝐿
𝑛
𝑖=1

𝑛
= (1 + 𝐼𝑁)�̅�𝑖𝐿        (3) 

The neutrosophic sample variance 𝑠𝑁
2  is calculated by 

𝑠𝑁
2 =

∑ (𝑥𝑖𝑁−�̅�𝑖𝑁)2𝑛
𝑖=1

𝑛−1
=

∑ ((1+𝐼𝑁)𝑥𝑖𝐿−(1+𝐼𝑁)�̅�𝑖𝐿)
2𝑛

𝑖=1

𝑛−1
=

∑ (𝑥𝑖𝐿−�̅�𝑖𝐿)2(1+𝐼𝑁)2𝑛
𝑖=1

𝑛−1
      (4) 

The sample standard deviation is given by 

𝑠𝑁 = (1 + 𝐼𝑁)√
∑ (𝑥𝑖𝐿−�̅�𝑖𝐿)2𝑛

𝑖=1

𝑛−1
          (5) 

The mean absolute deviation (meanAD) quantifies variability by representing the average 

distance between values and their mean. Extending this concept, we define the neutrosophic 

mean absolute deviation (NmeanAD) as 

NmeanAD =
∑|((1+𝐼𝑁)(𝑥𝑖𝐿−�̅�𝑖𝐿))|

𝑛
         (6) 

The median absolute deviation (MAD) is used to measure the dispersion in the data. It is known 

as the robust statistic as it is not affected by the extreme value as compare to standard deviation. 

Extending this concept, we define the neutrosophic median absolute deviation (NMAD) as     

𝑁𝑀𝐴𝐷 = 𝑀𝑒𝑑𝑖𝑎𝑛(|((1 + 𝐼𝑁)(𝑥𝑖𝐿 − �̃�𝐿))|)        (7) 

where �̃�𝐿 is the median of lower part of the neutrosophic data.  

We will present the modification of the Z-score using the neutrosophic idea. In this modified Z-

score, we will incorporate the idea of neutrosophy and the proposed test will be based on the 

median instead of mean. It is expected that the proposed test will be robust than the existing Z-

score under classical statistics. We also expect the proposed test will be less affected by the 

outlier as compared to the existing test. In addition, the existing Z-score cannot be applied 

under uncertain environment. Depending on the value of MAD, the proposed Z-score will be 

given as 
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𝑧𝑁 =
0.6745∗(𝑋𝑁−�̃�𝑁)

𝑁𝑀𝐴𝐷
           (8) 

The proposed method is implemented in the following steps 

Step-1: specify 𝐼𝑁 and compute �̃�𝐿  

Step-2: Compute 𝑁𝑀𝐴𝐷 using Eq. (7). 

Step-3: Compute 𝑧𝑁 using Eq. (8).   

Note the proposed Z-score reduces to the Z-score under classical statistics when there is no 

imprecise value in the data. 

3. Simulation 

In this section, we will perform the simulation study and we will generate the values of Z-score 

using the proposed method for various values of �̃�𝐿 and 𝐼𝑁. We will study the effect of the 

degree of indeterminacy on the generation of Z-score for the detecting of the outlier in the data. 

We will present the values of Z-score using the proposed method for various 𝐼𝑁 in Tables 1-4. 

The values of Z-score when �̃�𝐿=16 are shown in Table 1. The values of Z-score when �̃�𝐿=17.5 are 

shown in Table 2. The values of Z-score when �̃�𝐿=23 are shown in Table 3. The values of Z-score 

when �̃�𝐿=25 are shown in Table 4. From these tables, it can be seen that there is decreasing 

trends in the values of Z-score as the values of 𝐼𝑁 increases. For example, for Table 1 (the first 

row), it can be seen that the value of Z-score is -0.766 when 𝐼𝑁=0.1 and the value of Z-score is -

0.422 when 𝐼𝑁=1. The behavior in the values of Z-score for various values of 𝐼𝑁 when �̃�𝐿=16 is 

shown in Figure 1. The behavior in the values of Z-score for various values of 𝐼𝑁 when �̃�𝐿=25 is 

shown in Figure 2. From Figures 1-2, it can be seen that there is significant effect of the degree of 

indeterminacy on the generation of Z-score.  

Table 1: Modified Z-score when �̃�𝐿=16 for various values of 𝐼𝑁 

𝐼𝑁 = 0 𝐼𝑁 = 0.1 𝐼𝑁 = 0.2 𝐼𝑁 = 0.3 𝐼𝑁 = 0.4 𝐼𝑁 = 0.5 𝐼𝑁 = 0.6 𝐼𝑁 = 0.7 𝐼𝑁 = 0.8 𝐼𝑁 = 0.9 𝐼𝑁 = 1 

-0.843 -0.766 -0.703 -0.649 -0.602 -0.562 -0.527 -0.496 -0.468 -0.444 -0.422 

-0.759 -0.690 -0.632 -0.584 -0.542 -0.506 -0.474 -0.446 -0.422 -0.399 -0.379 

-0.759 -0.690 -0.632 -0.584 -0.542 -0.506 -0.474 -0.446 -0.422 -0.399 -0.379 

-0.675 -0.613 -0.562 -0.519 -0.482 -0.450 -0.422 -0.397 -0.375 -0.355 -0.337 

-0.337 -0.307 -0.281 -0.259 -0.241 -0.225 -0.211 -0.198 -0.187 -0.178 -0.169 

-0.169 -0.153 -0.141 -0.130 -0.120 -0.112 -0.105 -0.099 -0.094 -0.089 -0.084 

-0.084 -0.077 -0.070 -0.065 -0.060 -0.056 -0.053 -0.050 -0.047 -0.044 -0.042 

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.253 0.230 0.211 0.195 0.181 0.169 0.158 0.149 0.141 0.133 0.126 

0.506 0.460 0.422 0.389 0.361 0.337 0.316 0.298 0.281 0.266 0.253 

0.675 0.613 0.562 0.519 0.482 0.450 0.422 0.397 0.375 0.355 0.337 

0.843 0.766 0.703 0.649 0.602 0.562 0.527 0.496 0.468 0.444 0.422 

0.843 0.766 0.703 0.649 0.602 0.562 0.527 0.496 0.468 0.444 0.422 

1.096 0.996 0.913 0.843 0.783 0.731 0.685 0.645 0.609 0.577 0.548 

2.529 2.299 2.108 1.946 1.807 1.686 1.581 1.488 1.405 1.331 1.265 
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Table 2: Modified Z-score when �̃�𝐿=17.5 for various values of 𝐼𝑁 

𝐼𝑁 = 0 𝐼𝑁 = 0.1 𝐼𝑁 = 0.2 𝐼𝑁 = 0.3 𝐼𝑁 = 0.4 𝐼𝑁 = 0.5 𝐼𝑁 = 0.6 𝐼𝑁 = 0.7 𝐼𝑁 = 0.8 𝐼𝑁 = 0.9 𝐼𝑁 = 1 

-0.862 -0.784 -0.718 -0.663 -0.616 -0.575 -0.539 -0.507 -0.479 -0.454 -0.431 

-0.787 -0.715 -0.656 -0.605 -0.562 -0.525 -0.492 -0.463 -0.437 -0.414 -0.393 

-0.787 -0.715 -0.656 -0.605 -0.562 -0.525 -0.492 -0.463 -0.437 -0.414 -0.393 

-0.712 -0.647 -0.593 -0.548 -0.509 -0.475 -0.445 -0.419 -0.396 -0.375 -0.356 

-0.412 -0.375 -0.343 -0.317 -0.294 -0.275 -0.258 -0.242 -0.229 -0.217 -0.206 

-0.262 -0.238 -0.219 -0.202 -0.187 -0.175 -0.164 -0.154 -0.146 -0.138 -0.131 

-0.187 -0.170 -0.156 -0.144 -0.134 -0.125 -0.117 -0.110 -0.104 -0.099 -0.094 

6.183 5.621 5.152 4.756 4.416 4.122 3.864 3.637 3.435 3.254 3.091 

-0.112 -0.102 -0.094 -0.086 -0.080 -0.075 -0.070 -0.066 -0.062 -0.059 -0.056 

0.112 0.102 0.094 0.086 0.080 0.075 0.070 0.066 0.062 0.059 0.056 

0.337 0.307 0.281 0.259 0.241 0.225 0.211 0.198 0.187 0.178 0.169 

0.937 0.852 0.781 0.721 0.669 0.625 0.586 0.551 0.520 0.493 0.468 

0.637 0.579 0.531 0.490 0.455 0.425 0.398 0.375 0.354 0.335 0.319 

0.637 0.579 0.531 0.490 0.455 0.425 0.398 0.375 0.354 0.335 0.319 

0.862 0.784 0.718 0.663 0.616 0.575 0.539 0.507 0.479 0.454 0.431 

2.136 1.942 1.780 1.643 1.526 1.424 1.335 1.256 1.187 1.124 1.068 

  

 

 

Table 3: Modified Z-score when �̃�𝐿=23 for various values of 𝐼𝑁 

𝐼𝑁 = 0 𝐼𝑁 = 0.1 𝐼𝑁 = 0.2 𝐼𝑁 = 0.3 𝐼𝑁 = 0.4 𝐼𝑁 = 0.5 𝐼𝑁 = 0.6 𝐼𝑁 = 0.7 𝐼𝑁 = 0.8 𝐼𝑁 = 0.9 𝐼𝑁 = 1 

-1.529 -1.390 -1.274 -1.176 -1.092 -1.019 -0.956 -0.899 -0.849 -0.805 -0.764 

-1.439 -1.308 -1.199 -1.107 -1.028 -0.959 -0.899 -0.846 -0.799 -0.757 -0.719 

-1.439 -1.308 -1.199 -1.107 -1.028 -0.959 -0.899 -0.846 -0.799 -0.757 -0.719 

-0.809 -0.736 -0.675 -0.623 -0.578 -0.540 -0.506 -0.476 -0.450 -0.426 -0.405 

-0.989 -0.899 -0.824 -0.761 -0.707 -0.660 -0.618 -0.582 -0.550 -0.521 -0.495 

0.090 0.082 0.075 0.069 0.064 0.060 0.056 0.053 0.050 0.047 0.045 

-0.719 -0.654 -0.600 -0.553 -0.514 -0.480 -0.450 -0.423 -0.400 -0.379 -0.360 

6.925 6.295 5.771 5.327 4.946 4.617 4.328 4.073 3.847 3.645 3.462 

-0.630 -0.572 -0.525 -0.484 -0.450 -0.420 -0.393 -0.370 -0.350 -0.331 -0.315 

0.630 0.572 0.525 0.484 0.450 0.420 0.393 0.370 0.350 0.331 0.315 

-0.090 -0.082 -0.075 -0.069 -0.064 -0.060 -0.056 -0.053 -0.050 -0.047 -0.045 

0.630 0.572 0.525 0.484 0.450 0.420 0.393 0.370 0.350 0.331 0.315 

0.270 0.245 0.225 0.208 0.193 0.180 0.169 0.159 0.150 0.142 0.135 

0.270 0.245 0.225 0.208 0.193 0.180 0.169 0.159 0.150 0.142 0.135 

0.540 0.491 0.450 0.415 0.385 0.360 0.337 0.317 0.300 0.284 0.270 

2.068 1.880 1.724 1.591 1.477 1.379 1.293 1.217 1.149 1.089 1.034 
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Table 4: Modified Z-score when �̃�𝐿=25 for various values of 𝐼𝑁 

𝐼𝑁 = 0 𝐼𝑁 = 0.1 𝐼𝑁 = 0.2 𝐼𝑁 = 0.3 𝐼𝑁 = 0.4 𝐼𝑁 = 0.5 𝐼𝑁 = 0.6 𝐼𝑁 = 0.7 𝐼𝑁 = 0.8 𝐼𝑁 = 0.9 𝐼𝑁 = 1 

-1.602 -1.456 -1.335 -1.232 -1.144 -1.068 -1.001 -0.942 -0.890 -0.843 -0.801 

-1.518 -1.380 -1.265 -1.167 -1.084 -1.012 -0.949 -0.893 -0.843 -0.799 -0.759 

-1.518 -1.380 -1.265 -1.167 -1.084 -1.012 -0.949 -0.893 -0.843 -0.799 -0.759 

-0.927 -0.843 -0.773 -0.713 -0.662 -0.618 -0.580 -0.546 -0.515 -0.488 -0.464 

-1.096 -0.996 -0.913 -0.843 -0.783 -0.731 -0.685 -0.645 -0.609 -0.577 -0.548 

-0.084 -0.077 -0.070 -0.065 -0.060 -0.056 -0.053 -0.050 -0.047 -0.044 -0.042 

-0.422 -0.383 -0.351 -0.324 -0.301 -0.281 -0.263 -0.248 -0.234 -0.222 -0.211 

6.323 5.749 5.270 4.864 4.517 4.216 3.952 3.720 3.513 3.328 3.162 

1.686 1.533 1.405 1.297 1.204 1.124 1.054 0.992 0.937 0.888 0.843 

0.422 0.383 0.351 0.324 0.301 0.281 0.263 0.248 0.234 0.222 0.211 

-0.253 -0.230 -0.211 -0.195 -0.181 -0.169 -0.158 -0.149 -0.141 -0.133 -0.126 

0.422 0.383 0.351 0.324 0.301 0.281 0.263 0.248 0.234 0.222 0.211 

0.084 0.077 0.070 0.065 0.060 0.056 0.053 0.050 0.047 0.044 0.042 

0.084 0.077 0.070 0.065 0.060 0.056 0.053 0.050 0.047 0.044 0.042 

0.337 0.307 0.281 0.259 0.241 0.225 0.211 0.198 0.187 0.178 0.169 

1.771 1.610 1.475 1.362 1.265 1.180 1.107 1.042 0.984 0.932 0.885 

  

 

 

 

 

 

Figure 1: Z score when �̃�𝐿=16 
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Figure 2: Z score when �̃�𝐿=25 

 

4. Effect on Detecting Outliers     

Now, we will discuss the effect of degree of indeterminacy on the detecting the outlier in the 

data. We will generate Z-score using the method under the classical statistics, modified Z-score 

using the classical statistics and the proposed Z-score using the neutrosophic statistics. For the 

easy reference, we express, the Z-score under the classical statistics as follows 

𝑍 =
(𝑋−𝜇)

𝜎
            (9) 

where 𝜇 and 𝜎 are the mean and standard deviation of the data. The Z-score using the modified 

Z-score is expressed by 

𝑧𝑁 =
0.6745∗(𝑋−�̃�)

𝑀𝐴𝐷
           (10) 

where �̃� and 𝑀𝐴𝐷 are the median and median absolute deviation of the data. Note here that 

according to the existing method under classical statistics, if the value of Z-score beyond -3 and 

3 is declared as the outlier. According to [1], for the modified case, if the value of Z-score 

beyond -3.5 and 3.5 is declared as the outlier.  

Figure 3 is presented here to illustrate the outlier detection methods employed in our analysis. 

Z-scores were computed using three distinct methods, and the results are depicted in Figure 3. 

Notably, the Z-score values derived from our proposed method were calculated under the 

condition where 𝐼𝑁 equals 0.5. Examination of Figure 3 reveals that while both the proposed 

method within the framework of neutrosophic statistics and a modified approach within 

classical statistics identify observation 8 as an outlier, the proposed method suggests that a 

point closer to the upper limit is also noteworthy, in contrast to the modified Z-score computed 

using classical statistics. Moreover, this same point falls within the specified limits when 
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employing Z-score calculations based on classical statistics alone. The visual representation in 

Figure 3 highlights the influence of indeterminacy on outlier identification within the dataset. 

Consequently, relying solely on existing outlier detection methods in the presence of 

uncertainty may lead decision-makers astray. 

 

 

Figure 3: Z score when �̃�𝐿=23 and 𝐼𝑁=0.50 

 

5. Comparative Study  

In this section, we aim to compare the efficacy of three distinct methods for generating Z-scores 

and explore the impact of varying degrees of indeterminacy on their computation. As 

previously outlined, we will juxtapose the proposed method for generating Z-scores, tailored 

for outlier detection, with both a modified Z-score approach and the conventional method 

rooted in classical statistics. For our proposed method, we will maintain a fixed value of 𝐼𝑁 at 

0.1. The Z-score values are shown in Table 5. Subsequently, Z-scores were computed using 

these methods and plotted in Figure 4. Upon inspection of Figure 4, it becomes apparent that 

the Z-scores derived from our proposed method under conditions of uncertainty diverge from 

those generated by the modified Z-score method and the classical statistics-based approach. 

Specifically, the Z-score curve obtained from the classical statistics-based method appears lower 

compared to the other two curves. Additionally, the Z-score curve stemming from our 

proposed method under uncertainty exhibits a lower trajectory compared to the modified Z-

score curve under classical statistics. This analysis unequivocally demonstrates that Z-scores 

computed under neutrosophic statistics manifest distinct characteristics from those computed 

using the other two methodologies. Consequently, the influence of indeterminacy on Z-score 

generation significantly impacts outlier identification within the dataset. In essence, this study 
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concludes that decisions regarding outliers diverge when employing neutrosophic statistics as 

opposed to traditional methods rooted in classical statistics. 

Table 5: Comparisons between Z-score when 𝐼𝑁 = 0.1 

Z score using classical 

statistics 

Modified Z-

score   

Z score using neutrosophic 

statistics  

-1.529 -0.89941 -1.390 

-1.439 -0.85358 -1.308 

-1.439 -0.85358 -1.308 

-0.809 -0.53277 -0.736 

-0.989 -0.62443 -0.899 

0.090 -0.07447 0.082 

-0.719 -0.48694 -0.654 

6.925 3.408581 6.295 

-0.630 -0.44111 -0.572 

0.630 0.200505 0.572 

-0.090 -0.16613 -0.082 

0.630 0.200505 0.572 

0.270 0.017186 0.245 

0.270 0.017186 0.245 

0.540 0.154675 0.491 

2.068 0.933779 1.880 

  

 

Figure 4: Comparisons between Z-scores for various methods when 𝐼𝑁=0.1 

-2

-1

0

1

2

3

4

5

6

7

8

1 3 5 7 9 11 13 15

Z score

Sample number

Z score using classical
statistics

Modified Z-score

Z score using
neutrosophic statistics



10 Int. J. Anal. Appl. (2025), 23:144 

 

6 Application using GG25 Gray Cast Iron Data 

This section delves into the application of our proposed method using the GG25 gray cast iron 

dataset obtained from [23]. It's worth noting that [23] initially presented the fuzzy GG25 gray 

cast iron data, which we have compiled and displayed in Table 6. Analysis of this neutrosophic 

data reveals the inadequacy of existing methods rooted in classical statistics for outlier detection 

within the GG25 gray cast iron dataset. Conversely, our proposed method demonstrates 

suitability for this task. The median values derived from the GG25 gray cast iron data indicate a 

lower bound of 4 and an upper bound of 4.01, with a degree of indeterminacy calculated at 

0.0025. Utilizing this information, we computed Z-score values employing our proposed 

method and illustrated them in Figure 5. Notably, examination of Figure 5 indicates that the Z-

score values fall comfortably within the specified limits. Consequently, based on our analysis, 

we conclude that no outliers are detected within the GG25 gray cast iron dataset utilizing the 

proposed method. In summary, our proposed approach suggests the absence of outliers within 

the GG25 gray cast iron data. 

 

Table 6: The real data 

[4.149,4.159] [4.219,4.229] [4.243,4.253] [4.359,4.369] 

[3.957,3.967] [3.999,4.009] [3.948,3.958] [3.990,4.000] 

[3.886,3.896] [4.001,4.011] [3.713,3.723] [3.759,3.769] 

[3.817,3.827] [4.081,4.091] [4.348,4.358] [4.225,4.235] 

  

 

 

Figure 5: Z score using the real data 

 

-4

-3

-2

-1

0

1

2

3

4

1 2 3 4 5 6 7 8 9 10111213141516
Z score

Observations

Z score of the
proposed method

LL=-3.5

UL=3.5



Int. J. Anal. Appl. (2025), 23:144 11 

 

7. Concluding Remakes 

This paper introduces several statistical techniques within the framework of neutrosophic 

statistics. Specifically, we explore the application of the median absolute deviation and the Z-

score method for generating imprecise values in uncertain environments. Furthermore, we 

conduct an extensive simulation study examining the impact of various median values, as well 

as a simulation method to identify outliers within datasets. Additionally, we provide a real-

world example from the field of chemistry to illustrate practical applications. Through these 

investigations, it becomes evident that the computation of Z-scores is notably influenced by the 

level of uncertainty present. Consequently, our study suggests that the proposed method holds 

promise for outlier detection in uncertain datasets. However, it's important to note that the 

proposed method is limited to scenarios where data uncertainty exists, such as interval, 

imprecise, or fuzzy data. Moving forward, future research could explore the application of the 

proposed method with different sampling schemes. Additionally, there are various aspects of 

the proposed method that warrant further investigation and could serve as avenues for future 

research. 
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