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Abstract. In this paper, the notions of cyclic coupled Wardowski’s z-contraction and generalized Ciric type mappings in

complete metric space are discussed. Some coupled cyclic z-contractions of generalized Ciric type mappings are defined,

and existence results for coupled fixed point, coupled coincidence point, strong coupled fixed point, and coupled best

proximity point are established in the framework of complete metric space. An existence result for a coupled fixed point

for generalized Ciric-type cyclic coupled z-contractive multivalued mapping is established. Further, an application of

our result with regard to the existence of a system of functional equations is discussed.

1. Introduction

The exploration of coupled fixed points constitutes a prominent avenue within metric fixed

point theory [1–3]. This branch of study originated in 1987 with the pioneering effors of Guo and

Laksmikantham [4]. Nevertheless, it garnered widespread recognition and interest through the

subsequent contributions of Bhaskar and Lakshmikantham [5]. They brought forth the concept

of mixed monotone property which was later extended to mixed h̄-monotone property by Lak-

shmikantham and Ciric [6]. Following that, various extensions of theorems related to coupled

fixed points and coupled coincidence points were documented in diverse contexts. One may refer

the following papers [5] and the references therein. In the year 2003, Kirk et.al [7] introduced

the innovative concept of cyclic mapping, contributing a noteworthy addition to the field with
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their exploration and establishment of this novel idea. Blending it with the notion of coupled

fixed points, Choudhury and Maity [8] introduced the notion of coupled cyclic mappings and

established strong coupled fixed point results. Motivated by Choudhury and Maity, Udo-Utun [9]

define a cyclic Ciric operator and established strong coupled fixed point results. Henceforth, many

authors used the idea of coupling in different directions. Some of the works can be seen ( [10–12],

etc).

Wardowski [13] in 2012, brought forth a novel class of contraction called z-contraction and es-

tablished fixed point results for such contractions. Wardowski’s z-contraction was widely studied

extended in various set ups. Recently, in 2021, Ganvir et al. [14] defined cyclic z-contraction and

established a result for strong coupled fixed point.

In this paper, motivated by Ganvir et al. [14], we have blended the cyclic ciric operator and

z-contraction to define some generalized cyclic Ciric type z-contractive mappings. We have also

established some existence results for coupled and strong coupled fixed points, best proximity

points and coupled coincidence points for such contractions in the framework of complete metric

space. An application of our result with regard to the existence of a system of functional equations

has also been discussed.

2. Preliminaries

Next, we present some of the preliminary definitions.

Let F represents the family of all functions z : R+
→ R satisfying the following conditions:

(z1) z is strictly increasing.

(z2) For each sequence (δ[) of positive numbers, lim
[→∞

δ[ = 0 if and only if lim
[→∞
z(δ[) = −∞.

(z3) there exists k ∈ (0, 1) such that lim
[→∞

(δ[)
kz(δ[) = 0

Definition 2.1. [13] Let U : M →M be an operator defined on a metric space (M ,ρ). Then, U is said
to an z-contraction if there exists a positive real number τ such that for all `,λ ∈M ,

ρ(U (`), U (λ)) > 0 =⇒ τ+ z(ρ(U `, U λ)) ≤ z(ρ(`,λ)).

Definition 2.2. [8] Let A and O are two non-empty subsets of a set M . Then, a mapping U : M ×M →

M is said to be cyclic mapping or coupling with reference to the sets A and O if

(1) U (`,λ) ∈ O when ` ∈ A and λ ∈ O .
(2) U (`,λ) ∈ A when ` ∈ O and λ ∈ A .

Definition 2.3. [5] An element (`,λ) ∈ M ×M is called a coupled fixed point of the mapping U :

M ×M → M if U (`,λ) = ` and U (λ, `) = λ. If U (`, `) = `, then u is called strong coupled fixed
point.

Definition 2.4. [9] Let A and O are two nonempty subsets of a metric space (M ,ρ). Then, a mapping
U : M ×M →M is said to be cyclic coupled Ciric type mapping with reference to the sets A and O if U

is cyclic with reference to the sets A and O such that for some k ∈ (0, 1/2), the following inequality holds:
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For b, ` ∈ A and a,λ ∈ O , ρ(U (a, b), U (`,λ)) ≤ kM(a, `).
M(a, `) = max{ρ(a, `), 1

2 {ρ(a, U (a, b)) + ρ(`, U (`,λ))}, 1
2ρ(b, U (`,λ)), 1

2ρ(`, U (a, b))}.

Definition 2.5. [14] Let A and O be two nonempty subsets of a metric space (M ,ρ). Then, a mapping
U : M ×M →M is said to be cyclic z-contraction if

(1) U (`,λ) ∈ O for all ` ∈ A and λ ∈ O ; U (λ, `) ∈ A for all ` ∈ A and ` ∈ O ;

(2) a positive real number τ and a function F ∈ F exists such that for all (`,λ), (a, b) ∈ M ×M ,
ρ(U (a, b), U (`,λ)) > 0 =⇒ τ+ z(ρ(U `, U λ)) ≤ z(ρ(b,λ)).

3. Coupled fixed point results for single valued z-contractions of Ciric type

In this section, we proceed to articulate the definition of some cyclic Ciric z-type contractions

and establish coupled fixed point results for single valued operators.

Definition 3.1. Let A and O be two nonempty closed subsets of a metric space (M ,ρ) and letZ = A ∪O .
Let U : Z→Z be an operator. Then, U is said to be cyclic z-contraction of generalized Ciric type, if

(1) U is cyclic with respect to A and O ;

(2) a positive real number τ and a function F ∈ F exist such that for all ` ∈ A and λ ∈

O , ρ(U (`), U (λ)) > 0 =⇒ τ + z(ρ(U `, U λ)) ≤ z(M(`,λ)), where M(`,λ) =

max{ρ(`,λ),ρ(λ, U λ),ρ(`, U `), 1
2ρ(`, U λ), 1

2ρ(λ, U `)}.

Theorem 3.1. Let A and O be two nonempty and closed subsets of a complete metric space (M ,ρ). Let
Z = A ∪ O . Let U : Z → Z be a cyclic z-contraction of generalized Ciric type mapping. If U is
continuous, then U has a unique fixed point in A ∩O .

Proof. Let `0 ∈ Z. Starting with `0, define a sequence (`[) such that `[+1 = U `[, for [ ∈N.

Now,

z(ρ(`[+1, `[)) = z(ρ(U `[, U `[−1))

≤ z(M(`[, `[−1)) − τ (3.1)

Therefore

M(`[, `[−1) = max{ρ(`[, `[−1),ρ(`[, U `[),ρ(`[−1, U `[−1),
1
2
ρ(`[, U `[−1),

1
2
ρ(`[−1, U `[)}

= max{ρ(`[, `[−1),ρ(`[, `[+1)}.

Now, if ρ(`[, `[−1) < ρ(`[, `[+1), then (3.1) gives

z(ρ(`[+1, `[)) ≤ z(ρ(`[, `[+1)) − τ
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which is a contradiction. So, ρ(`[, `[−1) > ρ(`[, `[+1).

Therefore,

z(ρ(`[+1, `[)) ≤ z(ρ(`[, `[−1)) − τ

= z(ρ(U `[−1, U `[−2)) − τ

≤ z(M(`[−1, `[−2)) − 2τ

≤ z(ρ(`[, `[−1)) − τ

...

≤ z(ρ(`1, `0)) − [τ (3.2)

So, as [→∞, we get

lim
[→∞
z(ρ(`[+1, `[)) = −∞

=⇒ lim
[→∞

(ρ(`[+1, `[)) = 0.

Let δ[ = ρ(`[+1, `[). Also, by virtue of the properties of z, a real k ∈ (0, 1) exists such that

lim
[→∞

(δ[)
kz(δ[) = 0. Thus, from (3.2), we have

z(δ[) ≤ z(δ0) −mτ

=⇒(δ[)
kz(δ[) ≤ (δ[)

kz(δ0) −mτ(δ[)
k

=⇒(δ[)
kz(δ[) − (δ[)

kz(δ0) ≤ −mτ(δ[)
k.

Letting m tends to ∞, the above gives lim
[→∞

m(δ[)
k = 0. Therefore, a natural number N exists in a

manner that for all m ≥ N, [(δ[)k
≤ 1.

That is, for [ ≥ N, δ[ ≤ 1

[
1
k

.

Now, for n > [ ≥ N, we have

ρ(`[, `n) ≤ ρ(`[, `[+1) + ρ(`[+1, `[+2) + ... + ρ(`n−1, `n)

= δ[ + δ[+1 + ... + δn−1

≤

n−1∑
i=[

δi

≤

∞∑
i=[

δi

≤

∞∑
i=[

1

i
1
k

.

Since the series
∞∑

i=[

1

i
1
k

converges, ρ(`[, `n) → 0 as m → ∞. Thus, (`[) is a cauchy sequence in a

complete subspace Z. Therefore, (`[) converges to some % ∈ Z. Moreover, the sequence (`[) has

an infinitely many terms in each A and O . So, each A and O have subsequences of (`[) that
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converges to %. Hence, % ∈ A ∩O .

Now, using the continuity of U , % = lim
[→∞

`[+1 = lim
[→∞

U `[ = H%. Thus, % is a fixed point of U .

To see uniqueness, let us assume that ς is another fixed point of U .

Then, z(ρ(%, ς)) = z(ρ(U %, U ς)) ≤ z(M(%, ς)) − τ ≤ z(ρ(%, ς)) − τ,

which is a contradiction. Thus, U has a unique fixed point in A ∩O . �

Now, we define cyclic coupled z-contractive mapping of generalized Ciric type and establish a

coupled fixed point theorem.

Definition 3.2. Let A and O are two non-empty closed subsets of a metric space (M ,ρ) and U :

M ×M → M be a mapping defined on M . Then U is cyclic coupled F- contractive mapping of
generalized Ciric type, if

(1) U (`,λ) ∈ O for all ` ∈ A and λ ∈ O ; U (λ, `) ∈ A for all ` ∈ A and ` ∈ O .
(2) a positive real number τ and a function F ∈ F exist such that for all `,λ, a, b ∈M ,

ρ(U (a, b), U (`,λ)) > 0 =⇒ τ+ z(ρ(U (a, b), U (`,λ))) ≤ z(Mc(b,λ)), whereMc(b,λ) =

max{ρ(b,λ),ρ(b, U (a, b)),ρ(λ, U (`,λ)), 1
2ρ(b, U (`,λ)), 1

2ρ(λ, U (a, b))}.

Theorem 3.2. Let A and O be two nonempty and closed subsets of a complete metric space (M ,ρ). Let
U : M ×M →M be a cyclic coupled z-contractive mapping of generalized Ciric type. If U is continuous,
then U has a unique strong coupled fixed point in A ∩O .

Proof. Let `0 ∈ A and λ0 ∈ O such that `[+1 = U (λ[, `[) and λ[+1 = U (`[,λ[).

Then, (`[) ⊂ A and (λ[) ⊂ O .

Now,

z(ρ(`[, `[+1)) = z(ρ(U (λ[−1, `[−1), U (λ[, `[)))

≤ z(Mc(`[−1, `[)) − τ. (3.3)

Therefore

Mc(`[−1, `[) = max{ρ(`[−1, `[),ρ(`[, U (λ[, `[)),ρ(`[−1, U (λ[−1, `[−1)),

1
2
ρ(`[, U (λ[−1, `[−1)),

1
2
ρ(`[−1, U (λ[, `[))}

= max{ρ(`[−1, `[),ρ(`[, `[+1)}.

Now, if ρ(`[−1, `[) < ρ(`[, `[+1), then (3.3) gives

z(ρ(`[, `[+1)) ≤ z(ρ(`[, `[+1)) − τ,

which is a contradiction. So, ρ(`[−1, `[) > ρ(`[, `[+1).

Therefore,

z(ρ(`[, `[+1)) ≤ z(ρ(`[−1, `[)) − τ

= z(ρ(U (λ[−2, `[−2), U (λ[−1, `[−1))) − τ

≤ ...
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≤ z(Mc(`0, `1)) −mτ

= z(ρ(`[,λ[+1)) −mτ (3.4)

So, as [→∞, we get

lim
[→∞
z(ρ(`[+1, `[)) = −∞

=⇒ lim
[→∞

(ρ(`[+1, `[)) = 0

Let δ[ = ρ(`[+1, `[).

Also, by virtue of the properties of z, a real k ∈ (0, 1) exists such that lim
[→∞

(δ[)
kz(δ[) = 0.

Thus, from (3.4), we have

z(δ[) ≤ z(δ0) −mτ

=⇒(δ[)
kz(δ[) ≤ (δ[)

kz(δ0) − [τ(δ[)
k

=⇒(δ[)
kz(δ[) − (δ[)

kz(δ0) ≤ −[τ(δ[)
k

Letting [ tends to ∞, the above gives lim
[→∞

[(δ[)
k = 0. Therefore, a natural number N exists such

that for all [ ≥ N, [(δ[)k
≤ 1.

That is, for [ ≥ N, δ[ ≤ 1

[
1
k

.

Now, for n > [ ≥ N, we have

ρ(`[, `n) ≤ ρ(`[, `[+1) + ρ(`[+1, `[+2) + ... + ρ(`n−1, `n)

= δ[ + δ[+1 + ... + δn−1

≤

n−1∑
i=[

δi

≤

∞∑
i=[

δi

≤

∞∑
i=[

1

i
1
k

.

Since the series
∞∑

i=[

1

i
1
k

converges, ρ(`[, `n)→ 0 as [→∞. Thus, (`[) is a cauchy sequence. Therefore,

(`[) converges to some % ∈ A .

The same argument may be applied to obtain ζ ∈ O such that lim
[→∞

λ[ = ζ.

Now,

z(ρ(`[,λ[)) = z(ρ(U (λ[−1, `[−1), U (`[−1,λ[−1)))

≤ z(Mc(`[−1,λ[−1)) − τ. (3.5)
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Thus

Mc(`[−1,λ[−1) = max{ρ(`[−1,λ[−1),ρ(`[−1, U (λ[−1, `[−1)),ρ(λ[−1, U (`[−1,λ[−1)),

1
2
ρ(`[−1, U (`[−1,λ[−1)),

1
2
ρ(λ[−1, U (λ[−1, `[−1))}

= max{ρ(`[−1,λ[−1),ρ(`[−1, `[),ρ(λ[−1,λ[)}.

Here, three cases arise:

Case 1: Mc(`[−1,λ[−1) = ρ(`[−1, `[).

Then, (3.5) gives

z(ρ(`[,λ[)) ≤ z(ρ(`[−1, `[)) − τ ≤ ... ≤ z(ρ(`0, `1)) −mτ
That is, z(ρ(%, ζ))→ −∞ as [→∞.

Case 2: Mc(`[−1,λ[−1) = ρ(λ[−1,λ[).

Then, (3.5) gives

z(ρ(`[,λ[)) ≤ z(ρ(λ[−1,λ[)) − τ ≤ ... ≤ z(ρ(λ0,λ1)) −mτ
That is, z(ρ(%, ζ))→ −∞ as [→∞.

Case 3: Mc(`[−1,λ[−1) = ρ(`[−1,λ[−1).

Then,

z(ρ(`[,λ[)) ≤ z(ρ(`[−1,λ[−1)) − τ

= z(ρ(U (λ[−2, `[−2), U (`[−2,λ[−2))) − τ

≤ z(Mc(`[−2,λ[−2)) − 2τ

it is easy to see that

Mc(`[−2,λ[−2) = max{ρ(`[−2,λ[−2),ρ(`[−2, `[−1),ρ(λ[−2,λ[−1)}.

As seen in Case 1 and Case 2, ρ(`[−2, `[−1) and ρ(λ[−2,λ[−1) as maximums will eventually

give z(ρ(%, ζ))→ −∞ as [→∞.

While ρ(`[−2,λ[−2) as maximum will give

z(ρ(`[,λ[)) ≤ z(ρ(`[−2,λ[−2))−2τ ≤ z(Mc(`[−3,λ[−3))−3τ continuing the above argument

repeatedly, we will eventually get lim
[→∞
z(ρ(%, ζ)) = −∞.

Thus, in all the cases

lim
[→∞
z(ρ(%, ζ)) = −∞

=⇒ lim
[→∞

ρ(%, ζ) = 0

=⇒ % = ζ.

So, A ∩O , ∅. Now,

z(ρ(`[, U (`[−1,λ[−1)) = z(ρ(U (λ[−1, `[−1), U (`[−1,λ[−1)))

≤ z(Mc(`[−1,λ[−1)) − τ

....
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....

→ −∞ as [→∞

That is, U being continuous, letting [ tends to∞, we get

lim
[→∞
z(ρ(%, U (%, ζ)) = −∞.

This gives, ρ(%, U (%, ζ) = 0.

Thus, % = U (%, ζ) =⇒ % = U (%, %) as % = ζ. Hence, % is a strong coupled fixed point in A ∩O .

To see uniqueness, let us assume that ς is another strong coupled fixed point of U .

Then, z(ρ(%, ς)) = z(ρ(U (%, %), U (ς, ς))) ≤ z(Mc(%, ς)) − τ ≤ z(ρ(%, ς)) − τ,

leading to a contradiction. Hence, U has a unique strong coupled fixed point in A ∩O . �

Now, we define the generalized ciric type cyclic h̄-coupled z-contraction mapping.

Definition 3.3. Let A and O be two nonempty subsets of a metric space (M ,ρ). Let h̄ : M →M be a
mapping. Then, the mapping U : M ×M →M is considered to be generalized ciric type cyclic h̄-coupled
z-contraction mapping, if

(1) U (`,λ) ∈ h̄(O) for all ` ∈ A and λ ∈ O ; U (λ, `) ∈ h̄(A ) for all ` ∈ A and ` ∈ O ;

(2) a positive real number τ and a function F ∈ F exist such that for all `,λ, a, b ∈M ,
ρ(U (a, b), U (`,λ)) > 0 =⇒ τ + z(ρ(U (a, b), U (`,λ))) ≤ z(Mcc(h̄b, h̄λ)), where
Mcc(b,λ) = max{ρ(h̄b, h̄λ),ρ(h̄b, U (a, b)),ρ(h̄λ, U (`,λ)), 1

2ρ(h̄b, U (`,λ)), 1
2ρ(h̄λ, U (a, b))}.

Theorem 3.3. Let A and O be two nonempty and closed subsets of a complete metric space (M ,ρ). Let
h̄ : M → M be a continuous, sequentially convergent mapping such that A and O are invariant under
h̄. Let U : M ×M → M be a generalized ciric type cyclic h̄-coupled z-contraction mapping. If U is
continuous, then A ∩O , ∅ and U , h̄ have a coupled coincidence point in A ∩O .

Proof. Let `0 ∈ A and λ0 ∈ O such that h̄`[+1 = U (λ[, `[) and h̄λ[+1 = U (`[,λ[).

Then, (h̄`[) ⊂ A and (h̄λ[) ⊂ O .

Now,

z(ρ(h̄`[, h̄`[+1)) = z(ρ(U (λ[−1, `[−1), U (λ[, `[)))

≤ z(Mcc(h̄`[−1, h̄`[)) − τ. (3.6)

Therefore

Mcc(h̄`[−1, h̄`[) = max{ρ(h̄`[−1, h̄`[),ρ(h̄`[, U (λ[, `[)),ρ(h̄`[−1, U (λ[−1, `[−1)),

1
2
ρ(h̄`[, U (λ[−1, `[−1)),

1
2
ρ(h̄`[−1, U (λ[, `[))}

= max{ρ(h̄`[−1, h̄`[),ρ(h̄`[, h̄`[+1)}.

Now, if ρ(h̄`[−1, h̄`[) < ρ(h̄`[, h̄`[+1), then (3.6) gives

z(ρ(h̄`[, h̄`[+1)) ≤ z(ρ(h̄`[, h̄`[+1)) − τ, leading to a contradiction.
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So, ρ(h̄`[−1, h̄`[) > ρ(h̄`[, h̄`[+1).

Therefore,

z(ρ(h̄`[, h̄`[+1)) ≤ z(ρ(h̄`[−1, h̄`[)) − τ

= z(ρ(U (λ[−2, `[−2), U (λ[−1, `[−1))) − τ

≤ ...

= z(ρ(h̄`0, h̄`1)) − [τ. (3.7)

So, as [→∞, we get

lim
[→∞
z(ρ(h̄`[+1, h̄`[)) = −∞

=⇒ lim
[→∞

(ρ(`[+1, `[)) = 0.

Let δ[ = ρ(h̄`[+1, h̄`[).
Also, by virtue of the properties of z, a real k ∈ (0, 1) exists such that lim

[→∞
(δ[)

kz(δ[) = 0.

Thus, from (3.7), we have

z(δ[) ≤ z(δ0) − [τ

=⇒(δ[)
kz(δ[) ≤ (δ[)

kz(δ0) − [τ(δ[)
k

=⇒(δ[)
kz(δ[) − (δ[)

kz(δ0) ≤ −[τ(δ[)
k.

Letting m tends to ∞, the above gives lim
[→∞

[(δ[)
k = 0. Therefore, a natural number N exists such

that for all [ ≥ N, [(δ[)k
≤ 1.

That is, for [ ≥ N, δ[ ≤ 1

[
1
k

.

Now, for n > [ ≥ N, we have

ρ(h̄`[, h̄`n) ≤ ρ(h̄`[, h̄`[+1) + ρ(h̄`[+1, h̄`[+2) + ... + ρ(h̄`n−1, h̄`n)

= δ[ + δ[+1 + ... + δn−1

≤

n−1∑
i=[

δi

≤

∞∑
i=[

δi

≤

∞∑
i=[

1

i
1
k

.

Since the series
∑
∞

i=[
1

i
1
k

converges, ρ(h̄`[, h̄`n)→ 0 as [→∞. Thus, (h̄`[) is a cauchy sequence. So,

(h̄`[) is convergent which, in turn, implies that (`[) is convergent as h̄ is sequentially convergent.

Let (`[) converges to some % in A . Then, h̄ being continuous, (h̄`[) converges to h̄% in A .

Similarly, the same argument may be applied to obtain ζ ∈ O such that lim
[→∞

λ[ = ζ and lim
[→∞

h̄λ[ =
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h̄ζ. Now,

z(ρ(h̄`[, h̄λ[)) = z(ρ(U (λ[−1, `[−1), U (`[−1,λ[−1)))

≤ z(Mcc(`[−1,λ[−1)) − τ (3.8)

Now,

Mcc(h̄`[−1, h̄λ[−1) = max{ρ(h̄`[−1, h̄λ[−1),ρ(h̄`[−1, h̄`[),ρ(h̄λ[−1, h̄λ[)}.

So, three cases arise:

Case 1: Mcc(h̄`[−1, h̄λ[−1) = ρ(h̄`[−1, h̄`[).
Then, (3.8) gives

z(ρ(h̄`[, h̄λ[)) ≤ z(ρ(h̄`[−1, h̄`[)) − τ ≤ ... ≤ z(ρ(h̄`0, h̄`1)) − [τ.

That is, z(ρ(h̄%, h̄ζ))→ −∞ as [→∞.

Case 2: Mcc(h̄`[−1, h̄λ[−1) = ρ(h̄λ[−1, h̄λ[).
Then, (3.8) gives

z(ρ(h̄`[, h̄λ[)) ≤ z(ρ(h̄λ[−1, h̄λ[)) − τ ≤ ... ≤ z(ρ(h̄λ0, h̄λ1)) − [τ.

That is, z(ρ(h̄%, h̄ζ))→ −∞ as [→∞.

Case 3: Mcc(h̄`[−1, h̄λ[−1) = ρ(h̄`[−1, h̄λ[−1).

Then,

z(ρ(h̄`[, h̄λ[)) ≤ z(ρ(h̄`[−1, h̄λ[−1)) − τ

= z(ρ(U (λ[−2, `[−2), U (`[−2,λ[−2))) − τ

≤ z(Mcc(h̄`[−2, h̄λ[−2)) − 2τ.

It is easy to see that

Mcc(h̄`[−2, h̄λ[−2) = max{ρ(h̄`[−2, h̄λ[−2),ρ(h̄`[−2, h̄`[−1),ρ(h̄λ[−2, h̄λ[−1)}.

As seen in Case 1 and Case 2, ρ(h̄`[−2, h̄`[−1) and ρ(h̄λ[−2, h̄λ[−1) as maximums will even-

tually give

z(ρ(h̄%, h̄ζ))→ −∞ as [→∞.

While ρ(h̄`[−2, h̄λ[−2) as maximum will give

z(ρ(h̄`[, h̄λ[)) ≤ z(ρ(h̄`[−2, h̄λ[−2)) − 2τ ≤ z(Mcc(h̄`[−3, h̄λ[−3)) − 3τ.

Continuing the above argument repeatedly, we will eventually get

lim
[→∞
z(ρ(h̄%, h̄ζ)) = −∞.

Thus, in all the cases

lim
[→∞
z(ρ(h̄%, h̄ζ)) = −∞

=⇒ lim
[→∞

ρ(h̄%, h̄ζ) = 0

=⇒ h̄% = h̄ζ.
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So, A ∩O , ∅. Now,

z(ρ(h̄`[, U (`[−1,λ[−1)) = z(ρ(U (λ[−1, `[−1), U (`[−1,λ[−1)))

≤ z(Mcc(`[−1,λ[−1)) − τ

....

....

→ −∞ as [→∞.

That is, U being continuous, letting m tends to∞, we get

lim
[→∞
z(ρ(h̄%, U (%, ζ)) = −∞.

This gives, ρ(h̄%, U (%, ζ) = 0.

Thus, h̄% = U (%, ζ).

Similarly, we can get h̄ζ = U (ζ, %). Thus, (%, ζ) is a coupled coincidence point of h̄ andU . �

Theorem 3.4. In addition to hypothesis in Theorem 3.3, it is further postulated that the mapping h̄ is
injective. Then, U , h̄ have a unique strong coupled coincidence point.

Proof. As we have seen that h̄% = h̄ζ. This implies % = ζ, h̄ being injective. Hence, h̄% = U (%, %).

To see uniqueness, we may consider ς to be another strong coupled coincidence point of U and h̄.

Then, z(ρ(h̄%, h̄ς)) = z(ρ(U (%, %), U (ς, ς))) ≤ z(Mcc(h̄%, h̄ς)) − τ ≤ z(ρ(h̄%, h̄ς)) − τ,

which is a contradiction as τ > 0. Thus, U , h̄ have a unique strong coupled coincidence point. �

4. Coupled best proximity result for generalized Ciric type cyclic coupled z-contractive

mapping

In the subsequent steps of our discourse, we will proceed to articulate and define a mapping

of the cyclic coupled z-contractive type, thereby laying the foundation for the establishment of a

consequential coupled best proximity result. It is noteworthy to mention that the inception of the

concept concerning coupled best proximity can be attributed to the scholarly work presented by

Sintunavarat and Kumam [15] in 2012.

Definition 4.1. [15] Let A and O be two nonempty subsets of a metric space (M ,ρ) and letZ = A ∪O .
An element (`,λ) ∈ A ×O is called a coupled best proximity point of the mapping U : Z×Z → Z if
ρ(`, U (`,λ)) = ρ(A , O) = ρ(λ, U (λ, `)), where ρ(A , O) = inf{ρ(`,λ)|` ∈ A ,λ ∈ O}.

Definition 4.2. Let A and O are two non-empty subsets of a metric space (M ,ρ). Then, the mapping
U : M ×M →M is said to be generalized Ciric type cyclic coupled z-contractive mapping, if

(1) U (A ×O) ⊂ O and U (O ×A ) ⊂ A ;

(2) a positive real number τ and a function F ∈ F exists such that for all `,λ, a, b ∈M ,
ρ(U (a, b), U (`,λ)) − ρ(A , O) > 0 =⇒ τ + z(ρ(U (a, b), U (`,λ)) − ρ(A , O)) ≤

z(Mc(b,λ) − ρ(A , O)),

whereMc(b,λ) = max{ρ(b,λ),ρ(b, U (a, b)),ρ(λ, U (`,λ)), 1
2ρ(b, U (`,λ)), 1

2ρ(λ, U (a, b))}.
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In 2009, Suzuki et al. [16] introduced property UC as follows:

Definition 4.3. [16] Let A and O be two nonempty subsets of a metric space (M ,ρ). Then, (A , O) is
considered to satisfy property UC in the condition that the following holds:
if (`[),(z[) are sequences in A and sequence (λ[) in O such that lim

[→∞
ρ(`[,λ[) = ρ(A , O) , lim

[→∞
ρ(z[,λ[) =

ρ(A , O), then lim
[→∞

ρ(`[, z[) = 0.

To establish our result in this section, we will use the following lemma which was proved by

Neammanee et al. [17], in 2011.

Lemma 4.1. [17] Let A , O be a pair of nonempty subsets of a metric space (M ,ρ) satisfying property
UC. Let (`[) be a sequence in A . If there exists a sequence (λ[) in O such that ρ(`[,λ[) → ρ(A , O) and
ρ(`[+1,λ[)→ ρ(A , O), then (`[) is a cauchy sequence.

Now, we present our result.

Theorem 4.1. Let A and O be two nonempty, closed and bounded subsets of a complete metric space
(M ,ρ) the pair (A , O) satisfies property UC. Let U : M ×M →M be a generalized Ciric type cyclic
coupled z-contractive mapping. If U is continuous, then U has a coupled best proximity point.

Proof. Let `0 ∈ A and λ0 ∈ O such that `[+1 = U (λ[, `[) and λ[+1 = U (`[,λ[).

Then, (`[) ⊂ A and (λ[) ⊂ O .

Now,

z(ρ(`[, `[+1) − ρ(A , O)) = z(ρ(U (λ[−1, `[−1), U (λ[, `[)) − ρ(A , O))

≤ z(Mc(`[−1, `[) − ρ(A , O)) − τ. (4.1)

Therefore

Mc(`[−1, `[) = max{ρ(`[−1, `[),ρ(`[, U (λ[, `[)),ρ(`[−1, U (λ[−1, `[−1)),

1
2
ρ(`[, U (λ[−1, `[−1)),

1
2
ρ(`[−1, U (λ[, `[))}

= max{ρ(`[−1, `[),ρ(`[, `[+1)}.

Now, if ρ(`[−1, `[) < ρ(`[, `[+1), then (4.1) gives

z(ρ(`[, `[+1)− ρ(A , O)) ≤ z(ρ(`[, `[+1)− ρ(A , O))− τ, leading to a contradiction. So, ρ(`[−1, `[) >

ρ(`[, `[+1).

Therefore,

z(ρ(`[, `[+1) − ρ(A , O)) ≤ z(ρ(`[−1, `[) − ρ(A , O)) − τ

= z(ρ(U (λ[−2, `[−2), U (λ[−1, `[−1)) − ρ(A , O)) − τ

≤ ...

≤ z(Mc(`0, `1) − ρ(A , O)) − [τ

= z(ρ(`[,λ[+1) − ρ(A , O)) − [τ.
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So, as [→∞, we get

lim
[→∞
z(ρ(`[+1, `[) − ρ(A , O)) = −∞

Similarly, it can be shown that

lim
[→∞
z(ρ(λ[+1,λ[) − ρ(A , O)) = −∞.

Now,

z(ρ(`[,λ[) − ρ(A , O)) = z(ρ(U (λ[−1, `[−1), U (`[−1,λ[−1)) − ρ(A , O))

≤ z(Mc(`[−1,λ[−1) − ρ(A , O)) − τ (4.2)

Therefore

Mc(`[−1,λ[−1) = max{ρ(`[−1,λ[−1),ρ(`[−1, U (λ[−1, `[−1)),ρ(λ[−1, U (`[−1,λ[−1)),

1
2
ρ(`[−1, U (`[−1,λ[−1)),

1
2
ρ(λ[−1, U (λ[−1, `[−1))}

= max{ρ(`[−1,λ[−1),ρ(`[−1, `[),ρ(λ[−1,λ[)}.

Here, three cases arise:

Case 1. Mc(`[−1,λ[−1) = ρ(`[−1, `[).

Then, (4.2) gives

z(ρ(`[,λ[) − ρ(A , O)) ≤ z(ρ(`[−1, `[)ρ(A , O)) − τ ≤ ... ≤ z(ρ(`0, `1)) − [τ.

That is, z(ρ(`[,λ[) − ρ(A , O))→ −∞ as [→∞.

Case 2. Mc(`[−1,λ[−1) = ρ(λ[−1,λ[).

Then, (4.2) gives

z(ρ(`[,λ[) − ρ(A , O)) ≤ z(ρ(λ[−1,λ[) − ρ(A , O)) − τ ≤ ... ≤ z(ρ(λ0,λ1) − ρ(A , O)) − [τ.

That is, z(ρ(`[,λ[) − ρ(A , O))→ −∞ as [→∞.

Case 3. Mc(`[−1,λ[−1) = ρ(`[−1,λ[−1).

Then,

z(ρ(`[,λ[) − ρ(A , O)) ≤ z(ρ(`[−1,λ[−1) − ρ(A , O)) − τ

= z(ρ(U (λ[−2, `[−2), U (`[−2,λ[−2)) − ρ(A , O)) − τ

≤ z(M(`[−2,λ[−2) − ρ(A , O)) − 2τ.

Here, it is easy to see that

Mc(`[−2,λ[−2) = max{ρ(`[−2,λ[−2),ρ(`[−2, `[−1),ρ(λ[−2,λ[−1)}.

So, as seen in Case 1 and Case 2, ρ(`[−2, `[−1) and ρ(λ[−2,λ[−1) as maximums will eventually

give
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lim
[→∞
z(ρ(`[,λ[) − ρ(A , O)) = −∞.

While ρ(`[−2,λ[−2) as maximum will give

z(ρ(`[,λ[) − ρ(A , O)) ≤ z(ρ(`[−2,λ[−2) − ρ(A , O)) − 2τ

≤ z(Mc(`[−3,λ[−3) − ρ(A , O)) − 3τ.

Continuing the above argument repeatedly, we will eventually get

lim
[→∞
z(ρ(`[,λ[) − ρ(A , O)) = −∞.

Thus, in all the cases, we have

lim
[→∞
z(ρ(`[,λ[) − ρ(A , O)) = −∞

=⇒ lim
[→∞

(ρ(`[,λ[) − ρ(A , O)) = 0

=⇒ lim
[→∞

ρ(`[,λ[) = ρ(A , O)

Using similar arguments, it can be proved that lim
[→∞

ρ(`[+1,λ[) = ρ(A , O). Thus, using Lemma

(4.1), (`[) is a cauchy sequence in A as (A , O) satisfies property UC. Hence, there exists some

% ∈ A such that lim
[→∞

`[ = %, as A is closed.

Similarly, the same argument may be applied to obtain ζ ∈ O such that lim
[→∞

λ[ = ζ.

Now,

z(ρ(`[, U (`[,λ[) − ρ(A , O)) = z(ρ(U (λ[−1, `[−1), U (`[,λ[)) − ρ(A , O))

≤ z(Mc(`[−1,λ[) − ρ(A , O)) − τ

....

....

→ −∞ as [→∞.

So, as [→∞, using continuity of U , we get

lim
[→∞
z(ρ(%, U (%, ζ) − ρ(A , O)) = −∞

=⇒ lim
[→∞

(ρ(%, U (%, ζ) − ρ(A , O)) = 0

=⇒ρ(%, U (%, ζ)) = ρ(A , O).

Similarly we can get ρ(ζ, U (ζ, %)) = ρ(A , O) Thus, (%, ζ) is a coupled best proximity point of

U . �

5. Coupled fixed point for generalized Ciric type cyclic coupled z-contractive multivalued

mapping

Let (M ,ρ) be a metric space. Let P(M ) denotes the set of all non empty subsets of M and

CB(M ) denotes the set of all non empty closed and bounded subsets in M . Then, Hausdorff



Int. J. Anal. Appl. (2025), 23:97 15

metric induced by d, Ψ : CB(M ) ×CB(M )→ R, is defined by

Ψ(A , O) = max{sup
`∈A
D(`, O), sup

λ∈O
D(λ, A )},

where A , O ∈ CB(M ) and D(`, O) = inf{ρ(`,λ)|λ ∈ O}. In 1969, Nadler [18] used this concept

of Hausdorff metric and put forth the notion of multivalued contraction. A mapping U : M →

CB(M ) is a multivalued contraction if there exists L ∈ [0, 1) such that

Ψ(U `, U λ) ≤ Lρ(`,λ), f or all `, λ ∈M .

Here, we present the following multivalued contraction mapping which is in fact a blend of

z-contraction, cyclic ciric type contraction in multivalued version.

Definition 5.1. Let A and O be two nonempty subsets of a metric space (M ,ρ) and W = A ∪ O .
Then, the mapping U :W×W→ P(W) is said to be generalized Ciric type cyclic coupled z-contractive
multivalued mapping, if

(1) U (A ×O) ⊂ O and U (O ×A ) ⊂ A ;

(2) there exists F ∈ F with z(a + b) ≤ z(a) + z(b) and a positive real number τ such that for all
`,λ, a, b ∈ W,
Ψ(U (`,λ), U (a, b)) > 0 =⇒ τ+ z(Ψ(U (a, b), U (`,λ))) ≤ z(M[c(b, `)),

where,M[c(b,λ) = max{ρ(b,λ),D(b, U (a, b)),D(λ, U (`,λ)), 1
2D(b, U (`,λ)), 1

2D(λ, U (a, b))}.

Definition 5.2. Let (M ,ρ) be a metric space. Then, a subset A of M is called proximinal if for any
y ∈M , there exists uinA such that ρ(y, `) = D(y, A ).

Denote Pprox(M ) = {A ∈ P(M )| A is proximinal}.

Theorem 5.1. Let A and O be two non-empty, closed and bounded subsets of a complete metric space
(M ,ρ). Let U :W×W→ Pprox(W) be a Generalized Ciric type cyclic coupled z-contractive Multival-
ued mapping. If U is continuous, in that case, U has a coupled fixed point.

Proof. Let `0 ∈ A and λ0 ∈ O .

Then, U (λ0, `0) ∈ Pprox(W) and U (`0,λ0) ∈ Pprox(W).

This implies that there exists some `1 ∈ U (λ0, `0) ⊂ A and λ1 ∈ U (`0,λ0) ⊂ O such that

ρ(`0, `1) = D(`0, U (λ0, `0)) and ρ(λ0,λ1) = D(λ0, U (`0,λ0)).

Again, existence of `1 and λ1 implies the existence of U (λ1, `1) and U (`1,λ1) in Pprox(W).

This further implies the existence of some `2 ∈ U (λ1, `1) ⊂ A , λ2 ∈ U (`1,λ1) ⊂ O ,

and ρ(`1, `2) = D(`1, U (λ1, `1)), ρ(λ1, h̄λ2) = D(λ1, U (`1,λ1)).

Thus, continuing this process, we get sequences (`[) and (λ[) in A and O , respectively such that

`[+1 ∈ U (λ[, `[), λ[+1 ∈ U (`[,λ[),

and

ρ(`[, `[+1) = D(`[, U (λ[, `[)), ρ(λ[,λ[+1) = D(λ[, U (`[,λ[)).

Now, take `[ < U (λ[, `[).
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Then, D(`[, U (λ[, `[)) > 0.

So,

z(ρ(`[, `[+1)) = z(D(`[, U (λ[, `[)))

≤ z(Ψ(U (λ[−1, `[−1), U (λ[, `[)))

≤ z(M[c(`[−1, `[)) − τ. (5.1)

We have

M[c(`[−1, `[) = max{ρ(`[−1, `[),D(`[, U (λ[, `[)),D(`[−1, U (λ[−1, `[−1)),

1
2
D(`[, U (λ[−1, `[−1)),

1
2
D(`[−1, U (λ[, `[))}

= max{ρ(`[−1, `[),ρ(`[, `[+1)}.

Now, if ρ(`[−1, `[) < ρ(`[, `[+1), then (5.1) gives

z(ρ(`[, `[+1)) ≤ z(ρ(`[, `[+1)) − τ, which is a contradiction. So, ρ(`[−1, `[) > ρ(`[, `[+1).

Therefore,

z(ρ(`[, `[+1)) ≤ z(ρ(`[−1, `[)) − τ

= z(D(`[−1, U (λ[−1, `[−1))) − τ

≤ z(Ψ(U (λ[−2, `[−2), U (λ[−1, `[−1))) − τ

≤ z(M[c(`[−2, `[−1)) − 2τ

≤ ...

= z(ρ(`0, `1)) − [τ. (5.2)

So, as [→∞, we get

lim
[→∞
z(ρ(`[, `[+1)) = −∞

=⇒ lim
[→∞

(ρ(`[, `[+1)) = 0.

Let δ[ = ρ(`[, `[+1).

Also, by virtue of the properties of z, a real k ∈ (0, 1) exists such that lim
[→∞

(δ[)
kz(δ[) = 0.

Thus, from (5.2), we have

z(δ[) ≤ z(δ0) − [τ

=⇒(δ[)
kz(δ[) ≤ (δ[)

kz(δ0) − [τ(δ[)
k

=⇒(δ[)
kz(δ[) − (δ[)

kz(δ0) ≤ −[τ(δ[)
k.

Letting [ tends to ∞, the above gives lim
[→∞

m(δ[)
k = 0. Therefore, a natural number N exists such

that for all [ ≥ N, [(δ[)k
≤ 1.
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That is, for [ ≥ N, δ[ ≤ 1

[
1
k

.

Now, for n > [ ≥ N, we have

ρ(`[, `n) ≤ ρ(`[, `[+1) + ρ(`[+1, `[+2) + ... + ρ(`n−1, `n)

= δ[ + δ[+1 + ... + δn−1

≤

n−1∑
i=[

δi

≤

∞∑
i=[

δi

≤

∞∑
i=[

1

i
1
k

.

Since the series
∑
∞

i=[
1

i
1
k

converges, ρ(`[, `n) → 0 as [ → ∞. Thus, (`[) is a cauchy sequence.

Therefore, (`[) converges to some % ∈ A , A being closed.

Similarly, the same argument may be applied to obtain ζ ∈ O such that lim
[→∞

λ[ = ζ.

Now,

z(D(`[+1, U (`[,λ[)) ≤ z(ρ(`[+1, `[) + ρ(`[,λ[) +D(λ[, U (`[,λ[))

≤ z(ρ(`[+1, `[)) + z(ρ(`[,λ[)) + z(ρ(λ[,λ[+1))

= z(D(`[, U (λ[, `[))) + z(ρ(`[,λ[)) + z(ρ(λ[,λ[+1))

≤ z(Ψ(U (λ[−1, `[−1), U (λ[, `[))) + z(ρ(`[,λ[)) + z(ρ(λ[,λ[+1))

≤ z(M[c(`[−1, `[)) + z(ρ(`[,λ[)) + z(ρ(λ[,λ[+1)) − τ

≤ ...

≤ z(ρ(`0, `1)) + z(ρ(`[,λ[)) + z(ρ(λ[,λ[+1)) − [τ.

So, as [→∞, using continuity of U , we get

lim
[→∞
z(D(%, U (%, ζ)) = −∞

=⇒ lim
[→∞

(D(%, U (%, ζ)) = 0

=⇒% ∈ U (%, ζ).

Similarly, we can get ζ ∈ U (ζ, %) Which prooves, (%, ζ) is a coupled fixed point of U . �

6. Application

The theory of Fixed point finds wide applications in the field of mathematical optimization

where in dynamic programming turns out to be notably useful tool. Moreover, Finding solutions

to system of functional equations often appears while studying dynamic programming problems.

Here, in this section, our focus centers on examining the existence of a bounded solution for a
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given system of functional equations-a crucuial facet that holds prominence in the realm of papers

dedicated to dynamic programming problem [19].

Consider the following system of functional equations:

a(κ) = sup
s∈D

[Θ(κ, s) + Ψ(κ, s, a(η(κ, s)), b(η(κ, s)))], t ∈ W

b(κ) = sup
s∈D

[Θ(κ, s) + Ψ(κ, s, b(η(κ, s)), a(η(κ, s)))], t ∈ W,
(6.1)

where W is a state space, D is a decision space, η : W×D → W, Θ : W×D → R and

Ψ :W×D×R×R→ R.

Let the set of all bounded real valued functions defined onW is denoted by B(W) and for any

a ∈ B(W), ‖a‖ = supt∈W |a(κ)|.
Clearly, B(W) endowed with sup metric,

ρ(a, b) = supt∈W |a(κ) − b(κ)|, for all a, b ∈ B(W), is complete.

Let A and O be nonempty closed subsets of B(W) such that M = A ∪O . Define a mapping

U : M ×M →M by

U (a, b)(κ) = sup
s∈D

[Θ(κ, s) + Ψ(κ, s, a(η(κ, s)), b(η(κ, s)))] (6.2)

for all t ∈ W and a, b ∈M .

Also, letMc(b,λ) = max{ρ(b,λ),ρ(b, U (a, b)),ρ(λ, U (`,λ)), 1
2ρ(b, U (`,λ)), 1

2ρ(λ, U (a, b))}.

Theorem 6.1. Let U : M ×M →M defined by (6.2) be a continuous mapping such that the following
holds:

(1) Θ :W×D→ R and Ψ :W×D×R×R→ R are continuous and bounded.
(2) there exists τ > 0 such that |Ψ(κ, s, a, b) − Ψ(κ, s, `,λ)| ≤ e−τMc(b,λ) for all a, b, `,λ ∈ M ,

κ ∈ W and s ∈ D.

Then, the system (6.1) has a unique bounded solution in A ∩O .

Proof. For any b(κ) ∈ A and a(κ) ∈ O , the system (6.1) implies

U (a, b)(κ) = sup
s∈D

[Θ(κ, s) + Ψ(κ, s, a(η(κ, s)), b(η(κ, s)))] ds

=a(κ) ∈ O

and U (b, a)(κ) = sup
s∈D

[Θ(κ, s) + Ψ(κ, s, b(η(κ, s)), a(η(κ, s)))] ds

=b(κ) ∈ A .

Now, consider any arbitrary λ > 0, t ∈ W and a, b, `,λ ∈M , then there exists s1, s2 ∈ D such that

U (a, b)(κ) < Θ(κ, s1) + Ψ(κ, s1, a(η(κ, s1)), b(η(κ, s1))) + λ (6.3)

U (`,λ)(κ) < Θ(κ, s2) + Ψ(κ, s2, `(η(κ, s2)),λ(η(κ, s2))) + λ (6.4)

U (a, b)(κ) ≥ Θ(κ, s2) + Ψ(κ, s2, a(η(κ, s2)), b(η(κ, s2))) (6.5)

U (`,λ)(κ) ≥ Θ(κ, s1) + Ψ(κ, s1, `(η(κ, s1)),λ(η(κ, s1))). (6.6)
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So, using (6.3) and (6.6),

U (a, b)(κ) −U (`,λ)(κ) < Ψ(κ, s1, a(η(κ, s1)), b(η(κ, s1))) −Ψ(κ, s1, `(η(κ, s1)),λ(η(κ, s1))) + λ

≤ |Ψ(κ, s1, a(η(κ, s1)), b(η(κ, s1))) −Ψ(κ, s1, `(η(κ, s1)),λ(η(κ, s1)))|+ λ

≤ e−τMc(b,λ) + λ.

That is, U (a, b)(κ) −U (`,λ)(κ) ≤ e−τMc(b,λ) + λ.

Similarly, using (6.4) and (6.5), we get

U (`,λ)(κ) −U (a, b)(κ) ≤ e−τMc(b,λ) + λ.

Thus, |U (a, b)(κ) −U (`,λ)(κ)| ≤ e−τMc(b,λ) + λ.

Since λ is arbitrary,

ρ(U (a, b)(κ) −U (`,λ)(κ)) ≤ e−τMc(b,λ).

Now, taking natural logarithm on both side, we get

ln(ρ(U (a, b) −U (`,λ))) ≤ ln(e−τMc(b,λ)).

That is, ln(ρ(U (a, b) −U (`,λ))) ≤ ln(Mc(b,λ)) − τ.

Thus, the mapping U is a cyclic coupled z-contractive mapping of generalized Ciric type with

z(δ) = ln δ. As the necessary conditions of Theorem 3.1 are all being fulfilled. So, U has a strong

coupled fixed point, say %, in A ∩O .

That is, U (%, %) = %.

Hence, (%, %) is the unique solution of the given system of functional equations (6.1). �

7. Conclusion

Cyclic coupled z-contractive mappings of generalized Ciric type have been defined and results

for existence of strong coupled fixed point coupled coincidence point, coupled best proximity

points have been established and proved. A Generalized Ciric type cyclic coupled z-contractive

Multivalued mapping was also defined and an existence result for coupled fixed point has been

established. We have also explored the application of our result concerning the existence of solution

of a system of functional equations.
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