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Abstract. In this paper, stability properties of an HIV infection model with saturation functional response, logistic

proliferation term of susceptible CD4+T cells, cure rate of infected CD4+T cell, virus absorption effect, intracellular

delay, and maturation delay are investigated. According to our mathematical analysis, the basic reproduction number

R0 of the model completely determines its stability features. Using the characteristic equation of the model, we establish

that the infection-free equilibrium point and the infected equilibrium point are locally asymptotically stable when R0 ≤ 1

and R0 > 1, respectively. By means of appropriate Lyapunov functionals and LaSalle’s invariance principle for delay

models, if R0 ≤ 1, we study the global asymmetric stability of the infection-free equilibrium point of the model. When

R0 > 1, we establish the occurrence of Hopf bifurcations and determine conditions for the permanence of the model.

Finally, numerical simulations are also presented to confirm the analytical results.

1. Introduction

The human immunodeficiency virus, also known as HIV, targets and weakens the immune

system of the body and making it more challenging to fight off infections and diseases. HIV causes

acquired immunodeficiency syndrome (AIDS) when it substantially compromises the human

immune system [42]. Mathematical modeling is a promising approach to study the population

dynamics between target cells and virus particles. Moreover, viral models are helpful in improving

our knowledge of diseases and different medication therapy approaches for treating them. The

mathematical proofs of stability of the basic virus dynamics model proposed by Bangham and

Nowak in [23] has been established by Korobenikov in [18]. The HIV virus v, infected cells y,
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and healthy CD4+T cells x are all included in this model, which describes the immune system

and its interaction with HIV. Based on the basic idea of HIV pathogenesis, some improvements or

expansions have been taken into consideration in the recent literature ( [25], [29], [40]).

The HIV dynamic models in ( [6], [23]) and some references therein) took into account the

bilinear infection incidence rate between free virus and uninfected CD4+T cells. However the

true incidence rate is frequently nonlinear over the whole range of v and x, a nonlinear infection

rate (sigmoidal function) was proposed by Roland [30] and Yumei [49]. Perelson et al. included

intracellular latency in their presentation of the biology of the HIV life cycle in [26]. The term

“intracellular delay" refers to the time interval between a virus’s entry into a target cell and

the start of HIV virions production by the infected cells. Numerous modeling investigations were

sparked by this study ( [20], [24], [25]). Researchers in ( [21], [46], [47]) and some references therein)

have included a saturation infection rate in the HIV infection model with the intracellular delay

and studied the stability properties of the models. In addition, some authors used the Beddington-

DeAngelis functional response ( [12], [20], [25], [29], [48]) which was proposed by Beddington [4]

and DeAngelis [7] in place of the bilinear incidence rate and investigated the stability of the models.

Li-Ming et al. investigated the HIV-1 infection model in [20] adding Beddington-DeAngelis

functional response and intracellular time delay. The authors demonstrated the permanency and

the global asymptotic stability of the equilibrium of this model. Biologically, when HIV enters

the human body, it binds to CD4+T receptors on the surface of CD4+T cells and infects the cells.

The virus then uses the cells’ machinery to replicate itself and spread to other CD4+T cells. This

process may eventually result in a decrease in CD4+T cell counts, which can impair immunity and

give rise to a variety of opportunistic infections and diseases. This process in known as absorption

effect of HIV. Therefore, some authors have considered the HIV infection models together with

absorption effect, intracellular delay and different nonlinear functional responses ( [25], [29], [31]).

The virus has no metabolic processes of its own and cannot reproduce without a host cell.

Generally, viruses go through different stages in their life cycle, which include various processes

such as attachment to host cells, entry into cells, replication, assembly and release from cells. But,

viruses that are just released cannot attack CD4+T cells and require some maturation time. Hence,

maturity of a virus is a consideration of its ability to effectively infect and replicate in host cells.

Therefore, we can increase the biological sense of the mathematical model by including maturation

delay into the model. Hence, researches have applied the absorption effect and intracellular

delay along with the maturation delay to their mathematical models and studied the stability of

the models ( [27], [31]). Rathnayaka et al. in [31] investigated the HIV-1 dynamics model by

incorporating the Beddington-DeAngelis incidence rate, intracellular and maturation time delay

into the model. The authors demonstrated the global asymptotic stability of the equilibrium points

and permanency of this model.
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In order to investigate the development of medication resistance, Rong et al. [34] developed a

model that included anti-retroviral effects. Three groups of CD4+T cells were taken into consider-

ation by them: productively infected cells, uninfected cells, and infected cells in the eclipse phase.

The idea is based on the finding that a virus may not fully reverse transcribe its RNA into DNA

when it infects a CD4+T cell that is at rest [50]. The reverse transcription can be completed if the

cell is activated soon after infection. However, the un-integrated virus that is present in the resting

cell may become progressively decay over time, and incomplete DNA transcripts are labile and de-

grade rapidly [51]. As a result, some infected cells that are at rest turn back into uninfected ones [8].

By using the above viral behavior concept, Prashant and Chandra [35], proposed a mathematical

dynamics model of CD4+T cells and HIV during the primary infection and analyzed the stability

of infected state. Zhou et al. introduced an HIV infection model with a cure rate in [52], and they

investigated the global asymptotic stability of all equilibrium points of the model. In [43], Kaifa et

al. presented and enhanced the HBV mathematical model, which included a standard incidence

function and cure rate. They also examined the stability of the model’s equilibrium point. Sun

and Min [36] modified the HIV-1 dynamic model with the cure rate proposed by Rong [34] by

including a saturated infection rate, and analyzed the local and global asymmetric stability of

the equilibrium of the model. Moreover, the authors performed numerical simulations to verify

their theoretical calculations using clinical data from the Stanford University HIV Drug Resistance

Database.

Some authors studied virus dynamics models that included more general nonlinear infection

rates with delays ( [13], [22], [33]). Recently, Alexander [33] studied a viral infection model with

intracellular state-dependent delay and general incidence rate of the form f (x, v). The author

used the Lyapunov functionals technique to analyze the stability of the proposed model and it

was further verified by using the Beddington–DeAngelis functional response and Crowley–Martin

incidence rate. The authors in ( [14], [53]) studied the global stabilities of virus dynamics models

by incorporating the more general form incidence functions f (y, v)x, f (x, y, v)v along with the cure

rate of infected cells.

The authors of ( [15], [37]), show that the generation rate of CD4+T cells in the body slows

down as the number of CD4+T cell increases. Therefore, a further refinement of the basic viral

model is considered by including the logistic growth term that characterizes the growth rate of

the uninfected CD4+T cell. Perelson et al. [28] improved the basic virus dynamics model by

incorporating the logistic proliferation of the susceptible CD4+T cells into the model in form

γx(t)
(
1− x(t)

Xmax

)
, where γ represent the growth rate of healthy CD4+T cells population and Xmax

represents the x(t) population density at which the expansion of cells stops. Some researchers

developed the basic model by incorporating the full logistic proliferation term for healthy CD4+T

cells ( [2], [3], [5], [9]). In [1], Eric et al. studied a model of HCV with the saturation incident rate

with intracellular delay and full Logistic proliferation term. The authors of the paper confirmed the

global and local stability of the system and the occurrence of a Hopf bifurcation in the model. Eric
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et al. [2], further developed the above mathematical model by adding the cure rate into the model

and established the local and global stability of the system and the occurrence of a Hopf bifurcation

in the model. Wang et al. [44], presented a delay HIV dynamics model with immune response

by incorporating the logistic growth of target cells and they study local and global stability of the

model and the occurrence of a Hopf bifurcation.

Inspired by the aforementioned research endeavors, we propose a following novel delayed HIV

dynamics model with saturation functional response, absorption effect, cure rate and two time

delays.

ẋ(t) = λ+ γx(t)
(
1−

x(t)
Xmax

)
−
βx(t)v(t)
1 + bv(t)

− dx(t) + δy(t),

ẏ(t) = e−pτ βx(t− τ)v(t− τ)
1 + bv(t− τ)

− (p + δ)y(t),

v̇(t) = ke−uσy(t− σ) − uv(t) −
βx(t)v(t)
1 + bv(t)

.

(1.1)

The concentration of susceptible host cells, infected host cells (which can form new viruses),

and free virus are denoted by x(t), y(t) and v(t), and their decline rates are d, p and u respectively

(naturally, p ≥ d ( [18], [35]). Generate rate of the susceptible host cell is indicated by the parameter

λ. During virus replication, free-virus and uninfected cells generate infected cells at a rate β. Non-

cytolytic mechanisms may cure infected cells at a steady rate δ. New viral particles are produced by

infected cells at a rate k (k > β [18]). The incidence rate of infection is considered by the saturation

infection rate βx(t)v(t)
1+bv(t) for positive constant b. The intracellular time delay denoted by τ ≥ 0 and the

surviving probability from t − τ to t is denoted by e−pτ. The maturity delay is denoted by σ ≥ 0,

and the surviving probability from t− σ to t is denoted by a term e−uσ. All parameters are taken as

non-negative constants for biological relevance.

Consider ξ = max{τ, σ} and C([−ξ, 0],R3
+]) be the Banach space of continuous functions that

map the interval [−ξ, 0] to R3
+ with sup norm, where

R3
+ = {(x(t), y(t), v(t)) ∈ R3 : x(t) ≥ 0, y(t) ≥ 0 and v(t) ≥ 0}, (1.2)

Consider the following biologically plausible history of the host for model (1.1):

x(θ) = ψ1(θ), y(θ) = ψ2(θ), v(θ) = ψ3(θ), and

ψi(θ) ≥ 0 for i = 1, 2, 3.
(1.3)

where θ ∈ [−ξ, 0] and ψ = (ψ1(θ),ψ2(θ),ψ3(θ))T
∈ C.

The remaining sections of manuscript are arranged as follows. In Section 2, we discuss the

limitations of the solution of model (1.1) and the positivity of the solution. The threshold parameter

R0 (i.e R0(τ, σ)) of model (1.1) was derived, and the presence of the equilibrium point in relation

to the R0(τ, σ) was examined in Section 3. We examined the local asymptotic stability and global

asymptotic stability of the infection-free and infected equilibriums in Section 4. Additionally, we

determined the circumstances under which the model’s Hopf bifurcation would occur. In Section 5,
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we examine the permanence of the model. To corroborate our analytical results, we have included

some numerical simulations in Section 6. The work is concluded with a brief remarks in Section 7.

2. Boundedness and Positivity of Solutions

We know that the initial values of the variables in the model are non-negative. Consequently, in

this section we show that every solution of model (1.1) is ultimately non-negative and bounded.

Theorem 2.1. Let (x(t), y(t), v(t)) be the solution of model (1.1) with initial condition (1.3), then x(t), y(t),
and v(t) are positive for all t ≥ 0, where x(0) > 0, y(0) ≥ 0, and v(0) ≥ 0.

Proof. From the second equation of model (1.1), we have

y(t) = y(0)e−(p+δ)t + βe−pτ
∫ t

0

e−(p+δ)(t−η)x(η− τ)v(η− τ)
1 + bv(η− τ)

dη. (2.1)

Let t ∈ [0, ξ], then we have η− ξ ∈ [−ξ, 0] for all η ∈ [0, ξ]. Then by (1.3) and (2.1), we have y(t) ≥ 0

for t ∈ [0, ξ]. Next we need to prove that x(t) is positive for t ∈ [0, ξ]. If it is not true, let t1 ≤ ξ be

the initial value of t satisfying x(t) > 0 such that t ∈ [0, t1) and x(t1) = 0. Then, from the first and

third equations of model (1.1), we get

ẋ(t) = λ+ δy(t) > 0, and

v̇(t) = ke−uσy(t− σ) − uv(t).
(2.2)

Then, the first equation of (2.2), giving us contradiction, as it implies there exist some ε1 ∈ [0, t1)

such that x(t) < 0 for t ∈ (t1 − ε1, t1). This is contradiction with x(t) > 0 for t ∈ [0, ξ], hence x(t) > 0

for any t ∈ [0, ξ]. From the second equation of (2.2), we obtain

v(t) = e−utv(0) + ke−uσ
∫ t

0
e−u(t−η)y(η− σ)dη. (2.3)

Let t ∈ [0, ξ]. Then, we have η − ξ ∈ [−ξ, 0] for all η ∈ [0, ξ]. Then from the initial condition (1.3)

and (2.3), we have v(t) ≥ 0 for t ∈ [0, ξ]. We may now reiterate this argument to demonstrate

the positivity of x(t), y(t), and v(t) on the interval [ξ, 2ξ] and then on the consecutive interval

[nξ, (n + 1)ξ] for n ≥ 2. As a result, every solution in model (1.1) is positive. �

Theorem 2.2. Any positive solution (x(t), y(t), v(t)) of model (1.1) with the initial condition (1.3), is
bounded by a positive constant M for all t ≥ 0. Further

Γ = {(x(t), y(t), v(t)) ∈ R3
+ : x(t), y(t), v(t) ≤M, for t ≥ 0}, (2.4)

is the positive invariant set of (1.1).

Proof. For each non-negative solution (x(t), y(t), v(t)) of (1.1) with condition (1.3), define a func-

tional as

h1(t) = x(t) + y(t) + β

∫ t

t−τ

e−p(t−η)x(η)v(η)
1 + bv(η)

dη. (2.5)
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Taking the derivative of h1(t) along (1.1) and simplifying, we have

dh1(t)
dt

≤ λ+
γXmax

4
− dx(t) − py(t) − βp

∫ t

t−τ

e−p(t−η)x(η)v(η)
1 + bv(η)

dη.

Then, from equation (2.5), we have

dh1(t)
dt

≤ λ+
γXmax

4
− qh1(t), where q1 = min{d, p}. (2.6)

Hence, lim supt→+∞ h(t) ≤ 4λ+γXmax
4q1

= M0. Now, we define

h2(t) = y(t) + v(t) + β

∫ t

t−τ

e−p(t−η)x(η)v(η)
1 + bv(η)

dη+ k
∫ t

t−σ
e−u(t−η)y(η)dη. (2.7)

Taking the derivative of h2(t) along (1.1) and simplifying, we get

h2(t) ≤ ky(t) − py(t) − uv(t) − pβ
∫ t

t−τ

e−p(t−η)x(η)v(η)
1 + bv(η)

dη

− ku
∫ t

t−σ
e−u(t−η)y(η)dη.

Then, from equation (2.7), we have

dh2(t)
dt

≤ ky(t) − q2h2(t), where q2 = min{u, p}. (2.8)

Then, we can obtain lim supt→+∞ h2(t) ≤
kM0
q2

. Let M = max{M0, kM0
q2
}. Hence, the solutions

(x(t), y(t), v(t)) of (1.1) are uniformly bounded. Therefore, Γ is a positive invariant set and solutions

of the model are attracted to a subset of Γ. �

3. Equilibrium Points and Reproduction Number

Biology requires that the body cannot contain a negative number of uninfected cells in the

absence of virus, this just easy to show that the infection-free equilibrium of model (1.1) is

EIF(x0, y0, v0) ≡ (x0, 0, 0), where

x0 =
γ− d +

√
(γ− d)2 + 4λγX−1

max

2γX−1
max

. (3.1)

It is obvious that population needs to be reduced if it ever reaches Xmax. Hence, we can enforce

the constraint dXmax > λ. Then, from equation (3.1), we get that x0 ≤ Xmax.

By applying the next generation matrix method [41], we can determine the basic reproduction

number R0 of model (1.1), which is denoted by

R0(τ, σ) =
kβx0e−pτ−uσ

(p + δ)(u + βx0)
, (3.2)
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which is useful us to determine whether or not viruses are cleared over time. If R0(τ, σ) > 1, we

can show that the infected equilibrium of model (1.1) is EIE = (x1, y1, v1), where

x1 =
Xmax

2γ

[
A1 +

√
A2

1 + B1

]
, y1 =

βx0uv1e−pτ

u(p + δ)R0(τ, σ) + (R0(τ, σ) − 1)(p + δ)βx0
,

v1 =
g(x1)[u(p + δ)R0(τ, σ) + βx0(R0(τ, σ) − 1)(p + δ)]

uβx0[p + δ(1− e−pτ)]
,

where

g(x) = λ+ γx
(
1−

x
Xmax

)
− dx, A1 = (γ− d) −

[p + (1− e−pτ)δ]β

b(p + δ)
, and

B1 =
4γ

Xmax

[
uβx0[p + (1− e−pτ)δ]

b[u(p + δ)R0(τ, σ) + βx0(R0(τ, σ) − 1)(p + δ)]
+ λ

]
.

4. Stability Analysis

In this section, we analyze the local and global stability of EIF and EIE using the Routh Hurwitz

criterion, the appropriate Lyapunov functionals, and LaSalle’s invariance principle.

4.1. Local stability of the infection-free equilibrium.

Theorem 4.1. If R0(τ, σ) < 1, the infection-free equilibrium EIF is locally asymptotically stable. If
R0(τ, σ) > 1, EIF is unstable, and if R0(τ, σ) = 1, EIF is linearly stable.

Proof. At the infection-free equilibrium state, the characteristic equation of model (1.1) can be

obtained as follows.(
s + d− γ+

2γx0

Xmax

) (
s2 + (u + βx0 + p + δ)s + (p + δ)(u + βx0)

−βkx0e−uσ−sσ−pτ−sτ) = 0. (4.1)

Then, from the first factor of equation (4.1), we have s = γ − d −
2γx0

Xmax
= −

( γx0

Xmax
+
λ
x0

)
, is

a negative root and the other roots of (4.1) can be obtained by the following lateral polynomial

equation.

s2 + (u + βx0 + p + δ)s + (p + δ)(u + βx0) − βkx0e−uσ−sσ−pτ−sτ = 0. (4.2)

Then, equation (4.2) can be simplified as

s2 + (u + βx0 + p + δ)s + (p + δ)(u + βx0)(1−R0(τ, σ)e−sσ−sτ) = 0. (4.3)

Hence, it is clear that, if R0(τ, σ) , 1, s = 0 is not a solution of (4.2) for any τ, σ ≥ 0.

When τ = 0 and σ = 0, the equation (4.3) becomes

s2 + (u + βx0 + p + δ)s + (p + δ)(u + βx0)(1−R0(0, 0)) = 0. (4.4)

It is obvious that, if R0(0, 0) < 1, (u + βx0 + p + δ) > 0 and (p + δ)(u + βx0)(1 − R0(0, 0)) > 0.

Hence, by Routh-Hurwitz criterion, all roots of (4.4) have negative real parts. This implies that, if

R0(0, 0) < 1, EIF is locally asymptotically stable when τ = 0 and σ = 0.
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Now suppose τ, σ > 0 and s = iω1 (ω1 > 0) be a solution of equation (4.2). Then, by substituting

s = iω1 into (4.2) and separating the imaginary and real components, we have

−ω2
1 + (p + δ)(u + βx0) = kx0βe−uσ−pτ cosω1(τ+ σ), (4.5)

ω1(u + p + δ+ βx0) = −kx0βe−uσ−pτ sinω1(τ+ σ). (4.6)

By squaring and adding (4.5) and (4.6), we obtain

ω4
1 +

[
(p + δ)2 + (u + βx0)

2
]
ω2

1 + (p + δ)2(u + βx0)
2
− (kx0βe−uσ−pτ)2 = 0. (4.7)

Equation (4.7) can be further simplified as

ω4
1 +

[
(p + δ)2 + (u + βx0)

2
]
ω2

1 + (p + δ)2(u + βx0)
2(1−R2

0(τ, σ)) = 0. (4.8)

Let z = ω2
1, A2 = (p + δ)2 + (u + βx0)2 and B2 = (p + δ)2(u + βx0)2(1 − R2

0(τ, σ)). Then equation

(4.8) becomes

z2 + A2z + B2 = 0. (4.9)

It is clear that A2 > 0 and B2 > 0 if R0(τ, σ) < 1. Hence, the roots of equation (4.9) are negative. This

implies that equation (4.2) cannot have roots such that s = iω1(ω1 > 0) for all τ, σ ≥ 0. Therefore,

if R0(τ, σ) < 1, all the roots of (4.1) have negative real parts. Thus, using the Theorem 3.4.1 in [19],

EIF is locally asymptotically stable.

Further, if R0(τ, σ) > 1, we assume that the left-hands side of (4.3) is

f1(s, σ, τ) = s2 + (u + βx0 + p + δ)s + (p + δ)(u + βx0)(1−R0(τ, σ)e−sσ−sτ). (4.10)

Then, for R0(τ, σ) > 1, we obtain

f1(0, σ, τ) = (p + δ)(u + βx0)(1−R0(τ, σ)) < 0 and

lim
s→+∞

f1(s, σ, τ)→ +∞.

Hence, it is clear that, if R0(τ, σ) > 1, f1(s, σ, τ) = 0 has at least one positive root. Therefore, when

R0(τ, σ) > 1, EIF is unstable.

When R0(τ, σ) = 1, equation (4.3) becomes

s2 + (u + βx0 + p + δ)s + (p + δ)(u + βx0)(1− e−sσ−sτ) = 0. (4.11)

It is clear, s = 0 is a simple root of (4.11) and we can show that any other root of (4.11) is negative.

Supposed that s = q1 + iq2 satisfy (4.11) for any q1, q2 > 0 and τ, σ > 0. Then, substituting this root

into (4.11) and separating its real and imaginary parts, we obtain

q2
1 − q2

2 + q1(u + p + δ+ βx0) + (p + δ)(u + βx0)

= (p + δ)(u + βx0)e−q1(σ+τ) cos q2(σ+ τ),

2q1q2 + q2(u + p + δ+ βx0)

= −(p + δ)(u + βx0)e−q1(σ+τ) sin q2(σ+ τ).

(4.12)
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By squaring the first and second equation of (4.12), we can obtain the following inequality

[q2
1 − q2

2 + q1(u + p + δ+ βx0) + (p + δ)(u + βx0)]
2

+[2q1q2 + q2(u + p + δ+ βx0)]
2
≤ [(p + δ)(u + βx0)]

2.
(4.13)

It is clear that inequality (4.13) is never satisfied and leads to a contradiction. This implies that the

any root of (4.11) has negative real part except s = 0: �

4.2. Global stability of the infection-free equilibrium. Here, we employ the analytical technique

outlined in ( [10], [11]) to demonstrate the global stability of the EIF of model (1.1) using the relevant

Lyapunov functional and LaSalle’s invariant principle.

Define

G =
{
ψ = (ψ1,ψ2,ψ3)

T
∈ C([−ξ, 0],R3

+) : x0 ≥ ψ1 ≥ 0
}
⊂ C+ := C([−ξ, 0],R3

+).

Theorem 4.2. If R0(τ, σ) ≤ 1, the infection-free equilibrium EIF is globally asymptotically stable in C+ for
any τ, σ ≥ 0.

Proof. If R0(τ, σ) ≤ 1, from Theorem 4.1, we know that EIF is locally asymptotically stable. There-

fore, we only need to prove that EIF of C+ is globally attractive when R0(τ, σ) ≤ 1. We prove

Theorem 4.2 under the following two cases.

Case I: Let ke−pτ−uσ > p+ δ. To investigate the global stability of EIF in G, we define the following

Liapunov functional,

L(ψ) = ψ1(0) − x0 − x0 ln
ψ1(0)

x0
+ k1ψ2(0) + k2ψ3(0) + k2ke−uσI1 + k1βe−pτJ1, (4.14)

where

I1 =

∫ 0

−σ
ψ2(θ)dθ, J1 =

∫ 0

−τ

ψ1(θ)ψ3(θ)

1 + bψ3(θ)
dθ,

k1 =
ke−uσ

ke−uσ−pτ − (p + δ)
, and k2 =

p + δ

ke−uσ−pτ − (p + δ)
.

Let zt = zt(ψ) = (xt, yt, vt)T be the solution of model (1.1) with any ψ ∈ C+, which is defined as

zt(θ) = z(t + θ),θ ∈ [−ξ, 0]. From Theorem 2.2, it is easy to see that ψ is bounded and it follows

ω(ψ) ⊂ G which is compact, where ω(φ) is the ω-limit set of φ for model (1.1). Therefore, for any

φ ∈ ω(ψ), we have

w(φ) =

(
λ

x0φ1(0)
+

γ

Xmax
,

δ

φ1(0)
(x0 −φ1(0)),

(p + δ)(u + βx0)(1−R0(τ, σ))
ke−uσ−pτ − (p + δ)

)
≥

 λx2
0

+
γ

Xmax
,
αδ
x0

,
(p + δ)(u + βx0)(1−R0(τ, σ))

ke−uσ−pτ − (p + δ)

 ≡ w0.

Hence, if R0(τ, σ) ≤ 1 and α ∈ G, then w0 ≥ 0.

Let h(φ) =
(
(x0 −φ1(0))2,φ2(0),φ3(0)

)T
. Then w0h(φ) = 0, implies that φ(0) = EIF.
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Taking the derivative of L along the solution zt of model (1.1) for t ≥ τ and t ≥ σ, we have

L̇(zt) =

(
1−

x0

x(t)

)
[g(x(t)) − g(x0)] + (x(t) − x0)

δy(t)
x(t)

+

(
βx0

1 + bv(t)
− k2u

)
v(t), (4.15)

where g(x0) = 0. Then equation (4.15), can be simplify as

L̇(zt) = −
( γx0

Xmax
+ d− γ

) (x(t) − x0)2

x(t)
−
γ(x(t) − x0)2

Xmax
−

(
δx0

x(t)
− δ

)
y(t)

+

(
βx0

1 + bv(t)
− k2u

)
v(t),

= −

(
λ

x0x(t)
+

a
Xmax

)
(x(t) − x0)

2
−

(
δx0

x(t)
− δ

)
y(t)

+

(
βx0

1 + bv(t)
− k2u

)
v(t),

L̇(zt) ≤ −

(
λ

x0x(t)
+

a
Xmax

)
(x(t) − x0)

2
−

(
δx0

x(t)
− δ

)
y(t)

−
(p + δ)(u + βx0)(1−R0(τ, σ))

ke−uσ−pτ − (p + δ)
v(t),

= −w(zt)h(zt).

Therefore, according to Theorem 3.1 in [10], EIF is globally attractive in C+.

Case II: When ke−pτ−uσ
≤ p + δ, we define a Lyapunov functional as

L2(t) = epτy(t) + v(t) + ke−uσ
∫ 0

−σ
y(t + θ)dθ+ β

∫ 0

−τ

x(t + θ)v(t + θ)

1 + αv(t + θ)
dθ. (4.16)

Then, for t ≥ 0, taking the derivative of L2(t) through the solutions of model (1.1), equation (4.16)

can be derived as

L̇2(t) = epτ (ke−uσ−pτ
− (p + δ)) − uv(t).

It is clear that, if ke−pτ−uσ
≤ p+ δ, for all t ≥ 0, L̇2(t) ≤ 0. This implies that EIF is stable. The equality

is valid if and only if y = v = 0, for all t ≥ 0. Next we show that EIF is globally attractive. We

define the subset

E =
{
(ψ1,ψ2,ψ3)

T
∈ C+

| L̇2(ψ1,ψ2,ψ3) = 0
}

.

Assume that M is the largest invariant subset of E. Then for any (ψ1,ψ2,ψ3)T
∈ M, consider

(xt, yt, vt)T be the solution of (1.1) with condition (1.3), where

xt = x(t + θ), yt = y(t + θ), vt = v(t + θ), for − ξ ≤ θ ≤ 0, and t ≥ 0, ξ = max{τ, σ}.

By the invariance of the subset M, for all t ∈ R, (xt, yt, vt)T
∈M ⊂ E. Hence, for any t ≥ 0, y(t) = 0

and v(t) = 0. By the invariance of the subset M, it further implies that yt = ψ2 = 0 and vt = ψ3 = 0

for any t ∈ R. Therefore, from the first equation of (1.1) and the invariance of the subset M, we

obtain, for any t ≥ 0, x(t) = x0. This shows that M = {E0}. Hence, from Lasalle’s invariance
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principle, EIF is globally asymptotically stable when R0(τ, σ) ≤ 1. The proof is completed. Next

we study the stability of EIE of model (1.1). �

4.3. Stability of the infected equilibrium and bifurcation analysis. In this section, we examine

the effect of time delay for the stability of EIE and bifurcation of model (1.1). At EIE, the characteristic

equation of model (1.1) can be represented as(
s + d− γ+

2γx1

Xmax
+

βv1

1 + bv1

) (
(s + p + δ)

(
s + u +

βx1

(1 + bv1)2

)
−

kβx1e−uσ−sσ−pτ−sτ

(1 + bv1)2

)
+ δ

(
−βv1e−pτ−sτ

1 + bv1

(
s + u +

βx1

(1 + bv1)2

)
+
β2x1v1e−pτ−sτ

(1 + bv1)3

)
+

βx1

(1 + bv1)2

(
kβv1e−pτ−sτ−uσ−sσ

1 + bv1
−

βv1

1 + bv1
(s + p + δ)

)
= 0. (4.17)

Let h = d− γ+
γx1

Xmax
. Then, equation (4.17) can be simplified as the following form.

f2(s, τ, σ) = s3 + a2s2 + a1s + a0 + (b1s + b0)e−sτ−sσ + (c1s + c0)e−sτ = 0, (4.18)

where,

a2 = p + δ+ u +
βx1

(1 + bv1)2 + h +
γx1

Xmax
+

βv1

1 + bv1
,

a1 = (p + δ)

(
u +

βx1

(1 + bv1)2

)
+

(
h +

γx1

Xmax
+

βv1

1 + bv1

)
(p + δ+ u)

+
βx1

(1 + bv1)2

(
h +

γx1

Xmax

)
,

a0 = u(p + δ)

(
h +

γx1

Xmax
+

βv1

1 + bv1

)
+ (p + δ)

(
h +

γx1

Xmax

) βx1

(1 + bv1)2 ,

b1 = −(p + δ)

(
u

1 + bv1
+

βx1

(1 + bv1)2

)
,

b0 = −
(
h +

γx1

Xmax

)
(p + δ)

(
u

1 + bv1
+

βx1

(1 + bv1)2

)
,

c1 =
−δβv1e−pτ

1 + bv1
and c0 =

−δβv1ue−pτ

1 + bv1
.

Case I: When τ = σ = 0, equation (4.18) is reduced as

f2(s, 0, 0) = s3 + a2s2 + A3s + B3 = 0, (4.19)

and if h ≥ 0 (equivalently d− γ(1− x1
Xmax

) ≥ 0), we get a2 > 0, and

A3 =
(
h +

γx1

Xmax

) (
p + δ+ u +

βx1

(1 + bv1)2

)
+ (p + u)

βv1

1 + bv1

+ (δ+ p)
ubv1

1 + bv1
> 0,
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B3 =
pβuv1

1 + bv1
+ u(p + δ)

(
h +

γx1

Xmax

) bv1

1 + bv1
> 0,

C3 =

(
p + δ+ h +

βx1

(1 + bv1)2 +
βv1

1 + bv1
+

γx1

Xmax

)
×[

(p + u)βv1

1 + bv1
+

(
h +

γx1

Xmax

) (
p + δ+ u +

βx1

(1 + bv1)2

)]
+

(
p + δ+ u +

βx1

(1 + bv1)2

) [
(p + δ)ubv1

1 + bv1
+ u

(
h +

γx1

Xmax

)]
+

βuv1

1 + bv1

(
u +

(p + δ)bv1

1 + bv1

)
where, A3 = a1 + b1 + c1, B3 = a0 + b0 + c0, and C3 = a2A3 − B3 > 0. According to the Routh-

Hurwitz criterion, it follows that any root of (4.19) has negative real parts. Hence, EIE of model (1.1)

is locally asymptotically stable. Accordingly, the above result can be stated as following theorem.

Theorem 4.3. If R0(0, 0) > 1 and d−γ(1− x1
Xmax

) ≥ 0, the infected equilibrium EIE of model (1.1) is locally
asymptotically stable for τ = σ = 0.

Case II: When τ > 0 and σ = 0, R0(τ, 0) > 1 implies that τ < τ̂1, where

τ̂1 =
1
p

ln
βkx0

(p + δ)(u + βx0)
. (4.20)

In overword, the values of τ need to be in [0, τ̂1) to satisfy R0(τ, 0) > 1.

Further, if τ > 0 and σ = 0, equation (4.18) can be written as

f3(s, τ, 0) = s3 + a2s2 + a1s + a0 + [(b1 + c1)s + (b0 + c0)] e−sτ = 0. (4.21)

We will now investigate the possibility of equation (4.21) having purely imaginary roots s =

iω2(ω2 > 0). By substituting s = iω2 into (4.21) and separating the real and imaginary parts, we

have

−ω3
2 + a1ω2 = −ω2(b1 + c1) cosω2τ+ (b0 + c0) sinω2τ, (4.22)

−a2ω
2
2 + a0 = −ω2(b1 + c1) sinω2τ− (b0 + c0) cosω2τ. (4.23)

By squaring equations (4.22) and (4.23) and adding the resulting equations together, we obtain

ω6
2 + (a2

2 − 2a1)ω
4
2 + (a2

1 − 2a0a2 − (b1 + c1)
2)ω2

2 + a2
0 − (b0 + c0)

2 = 0. (4.24)

Then, from equation (4.24), we have

z3
2 + (a2

2 − 2a1)z2
2 + (a2

1 − 2a0a2 − (b1 + c1)
2)z2 + a2

0 − (b0 + c0)
2 = 0, (4.25)

where, z2 = ω2
2. Hence, if d − γ(1 − x1

Xmax
) ≥ 0, by direct calculation, we have a2

2 − 2a1 > 0, a2
1 −

2a0a2 − (b1 + c1)
2 > 0, a2

0 − (b0 + c0)2 > 0. Hence, equation (4.25) does not have positive roots for

ω2
2. This suggests that all roots of equation (4.24) have negative real parts. Thus, the infected

equilibrium of model (1.1) is locally asymptotically stable from the theorem 3.4.1 in [19]. Thus,

from the above theoretical calculation, we can state the following theorem.
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Theorem 4.4. Supposed R0(τ, 0) > 1 (i.e τ < τ̂1), if d − γ(1 − x1
Xmax

) ≥ 0, the infected equilibrium
EIE(x1, y1, v1) of model (1.1) is locally asymptotically stable for τ > 0 and σ = 0.

4.3.1. Hopf Bifurcation from the infected equilibrium when maturation delay zero. Theorem 4.4 stated that

if some conditions are satisfied, EIE of model (1.1) are locally asymptotically stable independently

of delay term τ. If the conditions in Theorem 4.4 are not satisfied, the stability of EIE depends

on the delay term τ and the infectious equilibrium may become unstable as the delay changes,

leading to oscillations. Consequently, τ can be treated as a bivariate parameter and the solutions

of equation (4.25) as a function of intracellular delay.

Let s(τ) = η2(τ) + iω2(τ) be the solution of (4.25) and for some initial value of bifurcation

parameter τ̂2,0, we have η2(τ̂2,0) = 0 and ω2(τ̂2,0) = ω̂0 (To avoid loss of normality, assume

ω̂0 > 0).

Then from equations (4.22) and (4.23) we have

τ̂2,n =
1
ω̂0

arccos

 (b1 + c1)ω̂4
0 + (a2(b0 + c0) − a1(b1 + c1))ω̂2

0 − a0(b0 + c0)

(b0 + c0)2 + (b1 + c1)2ω̂2
0


+

2nπ
ω̂0

, n = 0, 1, . . . (4.26)

Then, to establish the Hopf bifurcation of system (1.1) at τ = τ̂2,0, we have to show that
Re s(τ)

dτ

∣∣∣∣∣∣
s=iω̂0

> 0. Differentiating equation (4.21) with respect to τ, we obtain

ds(τ)
dτ

=
s[(b1 + c1)s + (b0 + c0)]e−sτ

3s3 + 2a2s + a1 + (b1 + c1)e−sτ − τe−sτ[(b1 + c1)s + (b0 + c0)]
. (4.27)

Equation (4.27) can be written as(
ds(τ)

dτ

)−1

=
3s3 + 2a2s2 + a1s + (b1 + c1)se−sτ

s2e−sτ[(b1 + c1)s + (b0 + c0)]
−
τ
s

. (4.28)

Using equation (4.21), we can rewrite equation (4.28) as(
ds(τ)

dτ

)−1

=
2s3 + a2s2

− a0

−s2(s3 + a2s2 + a1s + a0)
−

b0 + c0

s2[(b1 + c1)s + (b0 + c0)]
−
τ
s

. (4.29)

Thus, sign
{

dRe s(τ)
dτ

}
s=iω̂0

= sign

Re
(

ds(τ)
dτ

)−1


s=iω̂0

= sign

Re
[

2s3 + a2s2
− a0

−s2(s3 + a2s2 + a1s + a0)

]
s=iω̂0

−Re
[

b0 + c0

s2[(b1 + c1)s + (b0 + c0)]

]
s=iω̂0

−Re
[
τ
s

]
s=iω̂0

 .
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= sign

−2ω̂3
0(a1ω̂0 − ω̂3

0) − (a0 + a2ω̂2
0)(a0 − a2ω̂2

0)

ω̂2
0

[
(a1ω̂0 − ω̂3

0)
2 + (a0 − a2ω̂2

0)
2
]

+
(b0 + c0)2

ω̂2
0

[
(b1 + c1)2ω̂2

0 + (b0 + c0)2
] .

Using Equations (4.22) and (4.23), the above equation can be further simplified as

sign
{

dRe s(τ)
dτ

}
s=iω̂0

= sign

2ω̂6
0 + (a2

2 − 2a1)ω̂4
0 − a2

0 + (b0 + c0)2

ω̂2
0

[
(a1ω̂0 − ω̂3

0)
2 + (a0 − a2ω̂2

0)
2
]  . (4.30)

Using equation (4.24), equation (4.30) can be further simplified as

sign
{

dRe s(τ)
dτ

}
s=iω̂0

= sign

3ω̂4
0 + 2(a2

2 − 2a1)ω̂2
0 + (a2

1 − 2a0a2 − (b1 + c1)
2)

(a1ω̂0 − ω̂3
0)

2 + (a0 − a2ω̂2
0)

2

 . (4.31)

Assume that the left-hands side of equation (4.25) is

g(z) = z3 + (a2
2 − 2a1)z2 + (a2

1 − 2a0a2 − (b1 + c1)
2)z + a2

0 − (b0 + c0)
2. (4.32)

Thus, we have
dg(z)

dz
= 3z2 + 2(a2 − 2a1)z + (a2

1 − 2a0a2 − (b1 + c1)
2). (4.33)

As ω̂0 is the largest positive simple root of equation (4.24), according to the lemma 3.3.2 in [45], we

have
dg(z)

dz

∣∣∣∣∣∣
z=ω̂2

0

= 3ω̂4
0 + 2(a2

2 − 2a1)ω̂
2
0 + a2

1 − 2a0a2 − (b1 + c1)
2 > 0.

Therefore,

Re s(τ)
dτ

∣∣∣∣∣∣
s=iω̂0

=

dg(ω̂2
0)

dz

(a1ω̂0 − ω̂3
0)

2 + (a0 − a2ω̂2
0)

2
> 0. (4.34)

Thus, by the above theoretical calculation, we can state the following theorem.

Theorem 4.5. Let R0(τ, 0) > 1. If d− τ(1− x1
Xmax

) < 0 is satisfied, and the largest simple root of equation
(4.24) is ω̂0, then infected equilibrium EIE(x1, y1, v1) of model (1.1) is asymptotically stable when τ < τ̂2,0

and unstable when τ > τ̂2,0, with a Hopf bifurcation occurring when τ = τ̂2,0.

Case III: When σ > 0 and τ = 0, R0(0, σ) > 1, implies that σ < σ̂1, where

σ̂1 =
1
u

ln
βkx0

(p + δ)(u + βx0)
. (4.35)

In other words, σ ∈ [0, σ̂1) is satisfy that R0(0, σ) > 1.

Further, if σ > 0 and τ = 0, equation (4.18) can be written as

f4(s, 0, σ) = s3 + a2s2 + (a1 + c1)s + (a0 + c0) + (b1s + b0)e−sσ = 0. (4.36)
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We will now investigate the possibility of equation (4.36) having purely imaginary roots s = iω3.

Substituting s = iω3 into (4.36) and separate the imaginary and real parts, we get.

−ω3
3 + (a1 + c1)ω3 = −b1ω3 cosω3σ+ b0 sinω3σ, (4.37)

−a2ω
2
3 + (a0 + c0) = −b1ω3 sinω3σ− b0 cosω3σ. (4.38)

By squaring equation (4.37) and (4.38) and adding the resulting equations together, we get

ω6
3 + (a2

2 − 2(a1 + c1))ω
4
3 + ((a1 + c1)

2
− 2a2(a0 + c0) − b2

1)ω
2
3 + (a0 + c0)

2
− b2

0 = 0 (4.39)

Let z3 = ω2
3, A4 = a2

2 − 2(a1 + c1), C4 = C41C42, where C41 = a0 + c0 − b0 and C42 = a0 + c0 + b0

and H2 : B4 = (a1 + c1)
2
− 2a2(a0 + c0) − b2

1. Then equation (4.39) can be written as

z3
3 + A4z2

3 + B4z3 + C4 = 0 (4.40)

By the direct calculation, if h ≥ 0, it is easy to show that A4 > 0, C41 > 0, C42 > 0. Hence, equation

(4.40) does not have positive real roots for ω2
3. This suggests that all roots of equation (4.39) have

negative real components, i.e., the infected equilibrium EIE of model (1.1) is locally asymptotically

stable. Therefore, the aforementioned result can be expressed using the following theorem.

Theorem 4.6. Suppose R0(0, σ) > 1 (i.e σ < σ̂1), if H2 is true and d − γ
(
1− x1

Xmax

)
≥ 0 hold, then the

infected equilibrium EIE(x1, y1, v1) of model (1.1) is locally asymptotically stable for σ > 0 and τ = 0.

4.3.2. Hopf Bifurcation from the infected equilibrium when intracellular delay zero. According to Theo-

rem 4.6, if some conditions are satisfied, infected equilibrium EIE of model (1.1) is locally asymp-

totically stable. However, if the criteria of Theorem 4.6 are not met and C4 < 0 is preserved, the

stability of EIE depends on the delay σ and when delay changes, the infectious equilibrium may

become unstable and leading to oscillation. Thus, σ can be treated as a bifurcation parameter and

the solutions of (4.40) as a function of σ.

Let s(σ) = η3(σ) + iω3(σ) be the solution of (4.40) and for some initial value of bifurcation

parameter σ̂2,0, we have η3(σ̂2,0) = 0 and ω3(σ̂2,0) = ω̂1 (In order not to lose generality, we can

assume ω̂1 > 0).

Then, from equations (4.37) and (4.38), we get

σ̂2,n =
1
ω̂1

arccos

b1ω̂4
1 + (b0a2 − b1(a1 + c1))ω̂2

1 − b0(a0 + c0)

b2
0 + b2

1ω̂
2
1


+

2nπ
ω̂1

, n = 1, 2, ... (4.41)

Then, to establish the Hopf bifurcation of model (1.1) at σ = σ̂2,0, we have to show that
Re s(σ)

dσ

∣∣∣∣∣∣
s=iω̂1

> 0. Differentiating equation (4.36) with respect to σ, we obtain

(
ds(σ)

dσ

)−1

=
3s2 + 2a2s + (a1 + c1) + b1e−sσ

s(b1s + b0)e−sσ −
σ
s

. (4.42)
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Using equation (4.36), equation (4.42) can be written as(
ds(σ)

dσ

)−1

=
2s3 + a2s2

− (a0 + c0)

−s2[s3 + a2s2 + (a1 + c1)s + (a0 + c0)]
−

b0

s2(b1s + b0)
−
σ
s

. (4.43)

Thus, sign
{

dRe s(σ)
dσ

}
s=iω̂1

= sign

Re
(

ds(σ)
dσ

)−1


s=iω̂1

= sign

Re
[

2s3 + a2s2
− (a0 + c0)

−s2[s3 + a2s2 + (a1 + c1)s + (a0 + c0)]

]
s=iω̂1

−Re
[

b0

s2(b1s + b0)

]
s=iω̂1

−Re
[
σ
s

]
s=iω̂1

 ,

= sign

−2ω̂3
1((a1 + c1)ω̂1 − ω̂3

1) − ((a0 + c0) − a2ω̂2
1)((a0 + c0) + a2ω̂2

1)

ω̂2
1

[
((a1 + c1)ω̂1 − ω̂3

1)
2 + ((a0 + c0) − a2ω̂2

1)
2
]

+
b2

0

ω̂2
1(b

2
1ω̂

2
1 + b2

0)

 .

Using Equations (4.37) and (4.38), the last equation can be further simplified as

sign
{

dRe s(σ)
dσ

}
s=iω̂1

= sign

 2ω̂6
1 + (a2

2 − 2(a1 + c1))ω̂4
1 − (a0 + c0)2 + b2

0

ω̂2
1

[
((a1 + c1)ω̂1 − ω̂3

1)
2 + ((a0 + c0) − a2ω̂2

1)
2
] . (4.44)

Using equation (4.39), equation (4.44) can be simplified as

sign
{

dRe s(σ)
dσ

}
s=iω̂1

= sign

3ω̂4
1 + 2(a2

2 − 2(a1 + c1))ω̂2
1 + ((a1 + c1)

2
− 2a2(a0 + c0) − b2

1)

((a1 + c1)ω̂1 − ω̂3
1)

2 + ((a0 + c0) − a2ω̂2
1)

2

 ,

= sign

 3ω̂4
1 + 2A4ω̂2

1 + B4

((a1 + c1)ω̂1 − ω̂3
1)

2 + ((a0 + c0) − a2ω̂2
1)

2

 .

Therefore, we have

sign
{

dRe s(σ)
dσ

}
s=iω̂1

= sign{3ω̂4
1 + 2A4ω̂

2
1 + B4}.

It is clear that A4 > 0, B4 > 0. Hence, we have,
Re s(σ)

dσ

∣∣∣∣∣∣
s=iω̂1

> 0. Thus, the transverse condition

for Hopf bifurcation is verified and from the above analytical result, we can confirm the following

theorem.

Theorem 4.7. Let R0(0, σ) > 1, if H2 hold, d − γ
(
1− x1

Xmax

)
< 0 satisfied and ω̂1 is the positive root of

equation (4.39), then the infected equilibrium EIE(x1, y1, v1) of model (1.1) is locally asymptotically stable
when σ < σ̂2 and unstable σ > σ̂2, with a Hopf bifurcation occurring when σ = σ̂2.
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Case IV: When τ > 0 and σ > 0, stability and bifurcation analysis of the infected equilibrium

EIE. Here, we consider τ as the bifurcation parameter.

By substituting s = iω4 (ω4 > 0) in equation (4.18) and separating the imaginary and real parts,

we get

a1ω4 −ω
3
4 = b0 sinω4(τ+ σ) − b1ω4 cosω4(τ+ σ) + c0 sinω4τ− c1ω4 cosω4τ. (4.45)

a0 − a2ω
2
4 = −b0 cosω4(τ+ σ) − b1ω4 sinω4(τ+ σ) − c0 cosω4τ− c1ω4 sinω4τ. (4.46)

By squaring equation (4.45) and (4.46) and adding the resulting equations, we get

A1(ω4) + A2(ω4) cos(ω4σ) + A3(ω4) sin(ω4σ) = 0. (4.47)

where,

A1(ω4) = ω6
4 + (a2

2 − 2a1)ω
4
4 + (a2

1 − 2a0a2 − b2
1 − c2

1)ω
2
4 + (a2

0 − b2
0 − c2

0),

A2(ω4) = −2(b0c0 + b1c1ω
2
4),

A3(ω4) = 2(b0c1 − b1c0)ω4.

(H3):there are finite positive roots ω4k, k = 1, 2, . . . , l for equation (4.47).

For some critical value of bifurcation parameter τ, from equations (4.45) and (4.46), we have

τn
2k =

1
ω4k

arccos

A4(ω3
4k − a1ω4k) + A5(a2ω2

4k − a0)

A2
4 + A2

5

+ 2nπ
ω4k

, n = 0, 1, 2, . . . (4.48)

where,

A4 = c1ω4k + b1ω4k cos(ω4kσ) − b0 sin(ω4kσ),

A5 = c0 + b1ω4k sin(ω4kσ) + b0 cos(ω4kσ).

Let τ̂3 = min
{
τ0

2k

}
and ω4k(τ̂3) = ω̂2. Then, to establish the Hopf bifurcation of model (1.1) at τ̂3,

we need to show that
Re s(τ)

dτ

∣∣∣∣∣∣
s=iω̂2

, 0.

Differentiating equation (4.18) with respect to τ, we get

ds
dτ

=
s(c1s + c0)e−sτ + s(b1s + b0)e−sτ−sσ

3s2 + 2a2s + a1 + b1e−sτ−sσ − (b1s + b0)(τ+ σ)e−sτ−sσ + A6
, (4.49)

where A6 = (c1 − τ(c1s + c0))e−sτ. Using (4.18), equation (4.49) can be written as

(
ds
dτ

)−1

=
2s3 + a2s2

− a0

−s2(s3 + a2s2 + a1s + a0)
+

(b0 + σs(b1s + b0))e−sτ−sσ

s2(s3 + a2s2 + a1s + a0)

+
c0e−sτ

s2(s3 + a2s2 + a1s + a0)
−
τ
s

. (4.50)
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Thus, sign
{

dRe s(τ)
dτ

}
s=iω̂2

= sign

Re
(

ds(τ)
dτ

)−1


s=iω̂2

= sign
Re

[
2s3 + a2s2

− a0

−s2(s3 + a2s2 + a1s + a0)

]
s=iω̂2

+Re
[
(b0 + σs(b1s + b0))e−sτ−sσ

s2(s3 + a2s2 + a1s + a0)

]
s=iω̂2

+ Re
[

c0e−sτ

s2(s3 + a2s2 + a1s + a0)

]
s=iω̂2

 ,

= sign

 d13 + d23 + d33

ω2
4

[
(a1ω4 −ω3

4)
2 + (a0 − a2ω2

4)
2
] .

Therefore, we have

sign
{

dRe s(τ)
dτ

}
s=iω̂2

= sign {d13 + d23 + d33} ,

where

d13 = 2ω6
4 + (a2

2 − 2a1)ω
3
4 − a2

0,

d23 = (a1ω4 −ω
3
4)

[
(b0 − σb1ω

2
4) sinω4(τ+ σ) + σb0ω4 cosω4(τ+ σ)

]
− (a0 − a2ω

2
4)

[
(b0 − σb1ω

2
4) cosω4(τ+ σ) + σb0ω4 sinω4(τ+ σ)

]
,

d33 = c0

[
(a1ω4 −ω

3
4) sinω4τ− (a0 − a2ω

2
4) cosω4τ

]
.

Hence, considering the Hypothesis (H4)

sign
{

dRe s(τ)
dτ

}
s=iω̂2

= sign

Re
(

ds(τ)
dτ

)−1


s=iω̂2

= sign {d13 + d23 + d33} , 0.

Thus, the above theoretical calculation can be stated as the following theorem.

Theorem 4.8. Let R0(τ, σ) > 1 and τ > 0, σ > 0, if (H3, H4) hold and ω̂2 is the first positive root of
equation (4.47), then infected equilibrium EIE of model (1.1) is locally asymptotically stable when τ < τ̂3

and unstable τ > τ̂3, Hopf bifurcation occurs when τ = τ̂3.

5. Permanence

Permanence or uniform persistence, as used in biology, is referring to the ability of certain

biological traits or characteristics to remain consistent or persistent over time within a population

or species. It implies that specific features or properties are maintained relatively unchanged

across generations or within individuals throughout their lifespan. Hence, permanence of HIV

highlights the complex nature of the virus and its ability to establish a chronic infection within the

human body when R0(τ, σ) > 1 and its further recalled that infection-free state is unstable.

The solution of model (1.1) is known to exist and is bounded in Γ, which means that model (1.1)

is dissipative. We concur with the approaches and strategies used in [1] and [20] to demonstrate
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the uniform persistence of model (1.1), and we state the conditions of Theorem 5.1.1 of [38] as

follows.

Theorem 5.1. Let R0(τ, σ) > 1, then, for any τ, σ ≥ 0, model (1.1) is uniformly persistent in Γ if there exist
ϑ > 0 (independent of initial value) such that any solution (x(t), y(t), v(t)) of the model with condition
(1.3) satisfy

lim inf
t→+∞

x(t) ≥ ϑ, lim inf
t→+∞

y(t) ≥ ϑ and lim inf
t→+∞

v(t) ≥ ϑ.

Proof. We begin by introducing the theory for infinite dimensional systems from Hale [16]. Sup-

posed that X be complete matric space with matric d. Let Q(t) be defined the family of solutions

operators corresponding to model (1.1) for t ≥ 0. Then Q(t) : X→ X be a C0− semigroup on X. i.e

Q(0) = I (the identity operator on X), Q(t + s) = Q(t)Q(s) for t, s ≥ 0. Q is continuous.

Define, X0 = {(u1, u2, u3) ∈ X : u2(θ) > 0, u3(θ) > 0, θ ∈ [−ξ, 0], ξ = max{τ, σ}} and X0 =

X \X0 = {(u1, u2, u3) ∈ X : u2(θ) = 0 or u3(θ) = 0,θ ∈ [−ξ, 0]}, ξ = max{τ, σ}}. Then, according to

the Theorem 2.1 and 2.2, the matric space X is the closure of the open set X0 such that X = X0
∪X0.

Here X0 is the boundary of X0 and X0 ⊂ X, X0
⊂ X, X0 ∩X0 = ∅ and from the Theorem 2.2, X0 is

positively invariant. Further, Q(t) is a C0− semigroup on X satisfies

Q(t) : X0
→ X0, Q(t) : X0 → X0. (5.1)

Let Qρ(t) = Q(t)|X0 and define Gρ as global attractor for Qρ(t). Further, ω− limit set is defined as

ω(%) = {%1 ∈ X|there exists a sequence tn →∞ as n→∞ with Q(tn)%→ %1 as n→∞}.

Lemma 5.1. Let Q(t) satisfies (5.1) and we have following

(i) there is a t0 ≥ 0 such that Q(t) is compact for all t > t0.
(ii) Q(t) is point dissipative in X.

(iii) Ḡρ = ∪x∈Gρω(x) is isolated and there exist an acyclic covering N̄. Then N̄ = ∪k
i=1Ni, where each Ni

pairwise disjoint, compact, isolated invariant set for Qρ and also an isolated invariant set for Q.
(iv) ωs(Ni) ∩ X0 = ∅, for i = 1, 2, 3, . . . , n, where ωs is the attracting set or stable set of a compact

invariant set which is defined as ωs(Ni) = {x1|x1 ∈ X,ω(x1) , ∅,ω(x1) ⊂ Ni}.

Then X0 is a uniform repeller with respect to X0. It implies that, there exists an ε > 0 such that

lim inf
t→+∞

d(Q(t)x, X0) ≥ ε.

for any x ∈ X0, where d is the distance of Q(t)x from X0.

It is clear that bounded of solution of system (1.1) does not depend on (1.3). Therefore, any

bounded set D in X, the positive orbit Γ+(D) = ∪t>0Q(t)D through D ∈ X is bounded in X.

Therefore, Q(t) is asymptotically smooth and for any nonempty bounded and closed set D ∈ X
for which Q(t)D ⊂ B, there is a compact set D0 ⊂ B such that D0 attracts D [16, 17]. Let us define a

subset of X as

Mδ1 = {% ∈ X : Q(t)% satisfy system (1.1) and Q(t)% ∈ X0,∀t ≥ 0},
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and we claim that Mδ1 = {x0, 0, 0}. Assume any Q(t) ∈ Mδ1 for t ≥ 0. Then, first we show that

y(t) = v(t) = 0 for all t ≥ 0. By using contradiction, we continue to prove this claim. Assume that,

there exist t0 > 0 such that either (i). y(t0) > 0, v(t0) = 0. or (ii). y(t0) = 0, v(t0) > 0. For case (i),

from the third equation of system (1.1), we have

dv(t)
dt

∣∣∣∣∣∣
t=t0

> 0.

This suggests that v(t) is increasing at t = t0. Then, there exists a sufficient small constant ε0 > 0

such that v(t) > 0 for all t ∈ (t0, t0 + ε0). Since, y(t0) > 0, we can find arbitrary small constant

ε1(0 < ε1 < ε0) such that y(t) > 0 for all t ∈ (t0, t0 + ε1). This implies that both y(t) > 0 and v(t) > 0

for all t ∈ (t0, t0 + ε1). This is contradiction. Similarly, we can use the second equation of system

(1.1) for case (ii) as x(t) > 0 for all t ∈ X0.

Let Ḡρ = ∪x∈Gρω(x), where Gρ be the global attractor of Q(t) restricted to X0. That is Qρ(t) =
Q(t)|X0 . Now we need to show that Ḡρ = {EIF}. In fact Ḡρ ⊆ Mδ1 and in the set X0, from the first

equation of system (1.1), we have

ẋ(t) =
−γ

Xmax
(x− x0)(x− x̂), (5.2)

where, x̂ =
Xmax

2γ

[
(γ− d) −

√
(γ− d)2 + 4λγX−1

max

]
. By integrating equation (5.2), we have

x(t) =
x0 − x̂e−

(x0−x̂)γt
Xmax +c

1− e−
(x0−x̂)γt

Xmax +c
, (5.3)

where beginning conditions can be used to determine the constant c, and lim
t→∞

x(t) = x0. Thus, it is

clear that {EIF} is isolated invariant and a compact set in X. Therefore, the covering is simply {EIF},

which is an acyclic, it suggests that there is not an orbit in X that joins EIF to itself. Moreover, from

Theorem 2.2, Q(t) is point dissipative in X. Therefore, the conditions from (i) − (iii) of lemma 5.1

be satisfied.

Next, we need to prove that ωs(EIF) ∩ X0 = ∅, where ωs(EIF) is the attracting (stable) set of

a compact invariant set EIF. To prove this result by contrary, we assume any positive solution

(x(t), y(t), v(t)) ∈ X0 such that

lim
t→∞

x(t)→ x0, lim
t→∞

y(t)→ 0, and lim
t→∞

v(t)→ 0.

Then, there exists a positive constant t1 = t1(ε2) such that

x0 − ε2 < x(t) < x0 + ε2, 0 < y(t) < ε2, and 0 < v(t) < ε2, for all t > t1,

and the sufficiently small ε2 > 0. Then, for the chosen constant ε2, from the last two equations of

system (1.1), for t > t1 + τ and t1 > t1 + σ, we have

ẏ(t) ≥
e−pτβ(x0 − ε2)v(t− τ)

1 + bε2
− (p + δ)y(t),

v̇(t) ≥ ke−uσy(t− σ) − uv(t) −
β(x0 + ε2)v(t)

1 + bε2
.

(5.4)
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It is clear that, the right-hand side of first and second equations increase with respect to the

delay variable v(t− τ) and y(t− σ), respectively. These properties provide the system (5.4) with a

quasi-monotone structure [20, 29].

Now, we take the following differential system into consideration and apply the comparison

principle:

ẇ1(t) =
e−pτβ(x0 − ε2)w2(t− τ)

1 + bε2
− (p + δ)w1(t),

ẇ2(t) = ke−uσw1(t− σ) − uw2(t) −
β(x0 + ε2)w2(t)

1 + bε2
, t ≥ t1 − ξ,

(5.5)

with initial condition w1(t) = y(t) and w2(t) = v(t), for all t ∈ [t1, t1 + ξ], where ξ = max{τ, σ}. It

is obvious that, all solution (w1(t), w2(t)) of system (5.5) are non-negative.

Then, we use the notations of Theorem 5.1.1 of [38] and define ( f1(t,φ2), f2(t,φ3)) =

(y(t,φ2), v(t,φ3)) and (g1(t,φ2), g2(t,φ3)) = (w1(t,φ2), w2(t,φ3)) in order to validate the crite-

ria of Theorem 5.1.1 of [38].

From Theorem 2.2, we know that (y(t), v(t)) is bounded ; As a result, it is clear that for

systems (5.4) and (5.5), ( f1(t,φ2), f2(t,φ3)) and (g1(t,φ2), g2(t,φ3)) are continuous, and Lipschitz

on each compact subset of X and ( f1(t,φ2), f2(t,φ3)) satisfies the criterion (Q):whenever ψ ≤ φ

and ψi(0) ≤ φi(0) for some i, then fi(ψ) ≤ fi(ψ). Therefore, system (5.4) satisfy the all necessary

conditions of Theorem 5.1.1 of [38]. Thus, by the comparison principle in [38], since we have

presumed that (y(t), v(t)) → (0, 0) as t → ∞, the solutions (w1(t), w2(t)) of system (5.5) is also

converge to (0, 0) with the aforementioned initial conditions.

Define

L3(t) = w1(t) +
e−pτβ(x0 − ε2)

u(1 + bε2) + β(x0 + β2)
w2(t) +

e−pτβ(x0 − ε2)

1 + bε2

∫ t

t−τ
w2(η)dη

+
kβe−uσ−pτ(x0 − ε2)

u(1 + bε2) + β(x0 + ε2)

∫ t

t−σ
w1(η)dη. (5.6)

From the solutions (w1(t), w2(t))→ (0, 0) as t→∞, then we have

lim
t→∞

L3(t)→ 0. (5.7)

By taking the derivative of L3(t) along the solution of (5.5), we obtain

L̇3(t) =
[

ke−uσ−pτβ(x0 − ε2)

u(1 + bε2) + β(x0 + ε2)
− (p + δ)

]
w1(t). (5.8)

Since R0(τ, σ) > 1, it is possible to select a sufficiently small constant ε2, such that

ke−uσ−pτβ(x0 − ε2)

u(1 + bε2) + β(x0 + ε2)
− (p + δ) = (R0(τ, σ) − 1)(p + δ)w1(t) > 0, for all t > 0.

Hence, it is clear that L3(t) goes to a positive number or infinity when t→∞. This is a contradiction

with equation (5.7). Thus, we have ωs(EIF)∩X0 = ∅. Therefore, by applying Lemma 5.1, for some
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constant ζ1 > 0, we obtain

lim inf
t→+∞

y(t) > ζ1, and lim inf
t→+∞

v(t) > ζ1.

Further, from equation (2.8), for any ε3 > 0, there exist t3 > 0, such that v(t) ≤
kM0

q3
+ ε3 for all

t ≥ t3. Hence, from the first equation of the system (1.1), we have

dx(t)
dt
≥ λ+ γx(t)

(
1−

x(t)
Xmax

)
− dx(t) − βx(t)

(
kM0

q3
+ ε3

)
. (5.9)

Since, ε3 is sufficiently small constant, from equation (5.9), we obtain

lim inf
t→∞

x(t) ≥
Xmax

2γ

γ− d−
βkM0

q3
+

√(
γ− d−

βkM0

q3

)2

+
4λγ
Xmax

 = ζ2. (5.10)

Hence, the proof of Theorem 5.1 is completed, and incorporating this result with Theorem 2.2, it is

clear that system (1.1) is permanent. �

6. Numerical Simulations

In this section, we provide some numerical simulations of cases that support our theoretical

results that were obtained in Sections 3 and 4 using the sets of parameter values described in the

literature that were similar to those in ( [2, 31, 40, 44, 52] and references therein).

When we consider the set of parameter values:

λ = 5,γ = 0.8, d = 0.01, β = 0.00024, δ = 0.01, b = 0.001, p = 0.5, k = 600,

u = 3, Xmax = 1200, τ = 2.0 and σ = 1.5, (6.1)

we obtain R0(2, 1.5) = 0.4183 < 1, infection free equilibrium EIF = (1191.2957, 0, 0) and the values

of ke−uσ−pτ
− (p + δ) = 1.9421 > 0. Hence, by Theorem 4.2 the infection-free equilibrium EIF is

globally asymptotically stable. Figure 1 shows the time series of solutions of model (1.1) with three

different initial conditions ψ(100, 50, 80),ψ(200, 80, 90) and ψ(400, 100, 120).

When the set of parameter values:

λ = 5,γ = 0.03, d = 0.04, β = 0.000024, δ = 0.01, b = 0.0001, p = 0.5, k = 600,

u = 3, Xmax = 1500, τ = 0.1 and σ = 0, (6.2)

we obtain R0(0.1, 0) = 2.7597 > 1, d − γ(1 − x1
Xmax

) = 0.01253 ≥ 0 and τ̂1 = 1
p ln βkx0

(p+δ)(u+βx0)
=

2.13036 > τ. Then the conditions of Theorem 4.4 are satisfied and solution trajectory converges to

the infected equilibrium EIE(126.30907, 6.49594, 1298.02786). The graphs (a), (b) and (c) in Figure

2 show the stability of the solution trajectories for the three τ values and the graph (d) of Figure 2

shows the solution trajectory in phase diagram of model (1.1) which illustrate the stability of EIE

with four initial conditions ψ(20, 50, 50),ψ(50, 50, 50), ψ(70, 50, 50) and ψ(90, 50, 50).
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When we consider the set of parameter values:

λ = 10, d = 0.02,γ = 0.8, β = 0.00024, δ = 0.01, b = 0.0001, p = 0.5, k = 600,

u = 3, Xmax = 1500, τ = 1.2 and σ = 0, (6.3)

we have R0(1.2, 0) = 68.1553 > 1, EIE(34.7462, 39.6594, 7919.5973), d − γ(1 − x1
Xmax

) = −0.7615 < 0

and the constant coefficient of equation (4.24), a2
0 − (b0 + c0)2 = −0.14635 and the largest positive

simple root ω̂0 = 0.2209. Then τ̂2 = 7.9253. Hence, infected equilibrium EIE of model (1.1)

asymptotically stable when τ < τ̂2 = 7.9253. Therefore the conditions of Theorem 4.5 are satisfied.

The graphs (a), (b) and (c) in Figure 3 show the stability of the solution trajectories for the two τ

values τ = 1.2, 1.6 and the graph (d) of Figure 3 shows the solution trajectory in phase diagram of

model (1.1) which illustrate the stability of EIE with two initial conditionsψ(10, 20, 40),ψ(50, 10, 30).

When we consider the parameter values:

λ = 10, d = 0.02,γ = 0.8, β = 0.00024, δ = 0.01, b = 0.00001, p = 0.5, k = 600,

u = 3, Xmax = 1500, τ = 2 and σ = 0, (6.4)

we have R0 = 45.6859, EIE(30.3410, 24.1041, 4809.6719), d − γ(1 − x1
Xmax

) = −0.7638 < 0 and the

constant coefficient of equation (4.24) , a2
2 − (b0 + c0)2 = −0.880064 and the largest positive simple

root ω̂0 = 0.4896. Then we have τ̂2 = 1.3891. Therefore, the conditions of Theorem 4.5 are satisfied

and the infected equilibrium point EIE of model (1.1) unstable when τ > τ̂2 = 1.3891. Hence, The

Hopf bifurcation occurs when τ = τ̂2 = 1.3891, and it is numerically confirmed by the Figure 4.

The graph (d) of Figure 4 shows the phase trajectory of model (1.1) after Hopf bifurcation occurs

by considering two initial conditions ψ(80, 45, 7000) and ψ(30, 24, 3500). Then, it is clear that the

solution trajectory starting from EIE converges to a limit cycle. This implies that the EIE becomes

unstable and we have a stable limit cycle under the condition of Theorem 4.5.

When we consider the parameter values:

λ = 5, d = 0.04,γ = 0.03, β = 0.00024, δ = 0.01, b = 0.0001, p = 2, k = 600, u = 3,

Xmax = 1500, τ = 0 and σ = 0.1, (6.5)

we have R0(0, 0.1) = 5.3349, d − γ(1 − x1
Xmax

) = 0.01117 > 0. Therefore, the condition of Theorem

4.6 is satisfied. Then, the solution trajectory of model (1.1) converges to the infected equilibrium

EIE(58.6017, 2.1726, 320.45205) as shown in Figure 5. The graphs (a), (b) and (c) in Figure 5 show

the stability of the solution trajectories of model (1.1) for the three σ values σ = 0.1, 0.2, 0.5 and the

graph (d) of Figure 5 shows the solution trajectory in phase diagram of model (1.1) which illustrate

the stability of EIE with two initial conditions ψ(20, 50, 1000), ψ(80, 10, 20).

When we consider the parameter values:

λ = 5, d = 0.04,γ = 0.8, β = 0.00024, δ = 0.01, b = 0.0001, p = 0.5, k = 600, u = 3,

Xmax = 1500, τ = 0 and σ = 0.2, (6.6)
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then, R0(0, 0.2) = 66.3455, EIE(31.4488, 56.7473, 6219.0653), the condition H2 = 1.96358, d − γ(1 −
x1

Xmax
) = −0.743227 < 0 and the largest simple root ω̂1 = 0.3555. Then σ̂2 = 2.3911. Therefore,

the conditions of Theorem 4.7 are satisfied. Hence, the infected equilibrium EIE of model (1.1)

is asymptotically stable when σ < σ̂2 = 2.3911. The graphs (a), (b) and (c) in Figure 6 show the

stability of the solution trajectories for the three σ values σ = 0.05, 0.2, 0.3 and the graph (d) of

Figure 6 shows the solution trajectory in phase diagram of system (1.1) which illustrate the stability

of EIE with two initial conditions ψ(20, 20, 10), ψ(80, 10, 20).

When we consider the parameter values:

λ = 5, d = 0.01,γ = 0.8, β = 0.00024, δ = 0.01, b = 0.00001, p = 0.5, k = 600,

u = 3, Xmax = 1500, τ = 0 and σ = 0.9, (6.7)

we have R0(0, σ) = 8.4084, EIE = (165.2645, 241.9847, 3211.4044), d − γ(1 − x1
Xmax

) = −0.7019 < 0.

The largest positive simple root ω̂1 = 0.51689, and σ̂2 = 0.24984. Therefore, the conditions of

Theorem 4.7 are satisfied. Hence, the infected equilibrium EIE of model (1.1) is unstable when

σ > σ̂2 = 0.24984 and Hopf bifurcation occurs when σ = σ̂2 = 0.24984. This result numerically

confirmed by Figure 7. The graph (d) of Figure 7 shows the phase trajectory of model(1.1) after

Hopf bifurcation occurs by considering two initial conditions ψ(30, 50, 800) and ψ(160, 240, 3000).

It is clear that the solution trajectory starting from EIE converges to a limit cycle since the condition

of Theorem 4.7 are satisfied. This implies that the EIE is unstable and we have a stable limit cycle.

When we consider the parameter values:

λ = 5, d = 0.01,γ = 0.8, β = 0.00024, δ = 0.01, b = 0.0001, p = 0.5, k = 600, u = 3,

Xmax = 1200, τ = 1.39 and σ = 0.9, (6.8)

we have R0(1.39, 0.9) = 3.4334, EIE = (333.1895, 191.9272, 2514.3369), H4 = 0.5240 > 0, ω̂2 =

0.3048(H3), and τ̂3 = 1.8553. Hence, the conditions of Theorem 4.8 are satisfied. Therefore, the

infected equilibrium EIE of model (1.1) is asymptotically stable for τ < τ̂3 = 1.8553. The graphs

(a), (b) and (c) in Figure 8 show the stability of solution trajectories of model (1.1) for the three τ

values keeping σ = 0.9 constant. Graph (d) in Figure 8 shows the trajectory in the phase diagram

of model (1.1), which illustrate the stability of infected equilibrium EIE with the initial condition

ψ(300, 80, 100).

When we consider the parameter values:

λ = 5, d = 0.01,γ = 0.8, β = 0.00024, δ = 0.01, b = 0.00001, p = 0.5, k = 600,

u = 3, Xmax = 1200, τ = 1.2 and σ = 0.9, (6.9)

we have R0(1.2, 0.9) = 3.7756, EIE = (302.5752, 199.0686, 2614.0378), H4 = 0.9543 > 0, ω̂2 = 0.3561

(H3), and τ > τ̂3 = 0.8491. Thus, the conditions of Theorem 4.8 are satisfied. Therefore, the

infected equilibrium EIE of model (1.1) is unstable when τ > τ̂3 = 0.8491 and σ = 0.9, and Hopf

bifurcation occurs when τ = τ̂3. This results numerically confirmed by the Figure 9. Graph (d) of

Figure 9 shows the phase trajectory of model (1.1) after Hopf bifurcation occurs by considering two
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initial conditions ψ(302, 199, 2614) and ψ(300, 80, 100) when τ = 1.2 and σ = 0.9. It is clear that

the solution trajectory starting from EIE converges to a limit cycle since the condition of Theorem

4.8 are satisfied. This implies that the EIE is unstable and we have a stable limit cycle.

Model (1.1) has a process from stability to oscillation and then returns to stability when τ changes

from 0 to 7 (σ = 0.25) as shown in Figure 11. The infected steady state is asymptotically stable at

the left end of the τ range, up to τ = 0.25001, although virulence decreases. Recurrent oscillations

are produced when the infected steady state becomes unstable due to the time delay, which rises

as τ. The infected steady state once more becomes asymptotically stable and the virulence level

falls as τ increases from τ = 5.95001. These findings suggest that the dynamics of the model are

impacted by the time delays.

Figure 1. Dynamics of model (1.1) for the set of parameters in (6.1). Then,

R0 = 0.41835 and solution trajectory converges to the equilibrium point

EIF(1191.2957, 0, 0).
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Figure 2. Dynamics of model (1.1) for the set of parameters in (6.2). The infected

equilibrium EIE of model (1.1) is asymptotically stable when τ > 0 and σ = 0.

Figure 3. For the parameters in (6.3), the infected equilibrium of model (1.1) is

asymptotically stable when 0 < τ < τ̂2 = 7.9253. and σ = 0.
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Figure 4. Dynamics of model (1.1) after Hopf bifurcation occurs for parameter

values (6.4) with σ = 0 and τ = τ̂2 = 1.3891. Here EIE is unstable and have a stable

limit cycle.

Figure 5. For the parameter values (6.5), the solution trajectory of model (1.1) is

converge to the infected equilibrium EIE when τ = 0 and σ > 0.
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Figure 6. Dynamics of the system for the parameters values (6.6) with σ =

0.05, 0.2, 0.3. Here positive infected equilibrium EIE is asymptotically stable when

σ < σ̂2 = 2.39116 and τ = 0.

Figure 7. Dynamics of model (1.1) after Hopf bifurcation occurs for the parameter

values (6.7) with σ = σ̂2 = 0.2498 and τ = 0. EIE is unstable and have a stable limit

cycle.
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Figure 8. Dynamics of model (1.1) for the parameters in (6.8). Here, positive

infected equilibrium EIE is asymptotically stable when 0 < τ < τ̂3 and σ > 0.

Figure 9. Dynamics of model (1.1) after Hopf bifurcation occurs for the parameter

values in (6.9) with τ = τ̂3 = 0.8491 and σ > 0.
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Figure 10. Dynamics of R0(τ, σ) vs. τ(σ = 0.5), σ(τ = 0.5) and δ for the parameter

values (6.1).

(a) τ vs. x(t) when σ = 0.25. (b) τ vs. y(t) when σ = 0.25.

(c) τ vs. v(t) when σ = 0.25.

Figure 11. Bifurcation diagram of model (1.1) for the parameter values in (6.1), time

delay τ varying from 0 to 7, and σ = 0.25.
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7. Conclusion

In this paper, we have proposed and analysed a delayed HIV dynamics model with saturation

functional response, virus absorption effect, cure rate of the infected cell, intracellular time delay

and maturation time delay. We showed that there are two equilibrium points in this model, the

infection-free equilibrium point and the infected equilibrium point. Further, we showed that the

stability properties are completely determined by the basic reproduction number R0(τ, σ) of the

model. If R0(τ, σ) ≤ 1, by examining the characteristic equation at the infection-free equilibrium

point and considering the appropriate Lyapunov functional and LaSalle’s invariance principle, we

investigated that infection-free equilibrium EIF of the model is locally and globally asymptotically

stable for any τ, σ ≥ 0. The results are shown in Theorem 4.1 and Theorem 4.2 respectively. In this

instance, it is biologically implied that the virus can be eliminated from the body by activating the

body’s immune system or by providing external medical treatment. That is, the host will not be

infected and will recover within a certain period of time.

On the other hand, if R0(τ, σ) > 1, the infection-free equilibrium is unstable and infected

equilibrium becomes a steady chronic infection or a periodic orbit. In Theorems 4.3, 4.4, 4.6 and

4.8, we established the necessary conditions to guarantee the locally asymptotically stability of

infected equilibrium of model (1.1) under the four cases of delay τ and σ. In these conditions,

the immune system or medications are unable to manage the host getting infected, resulting in a

chronic and persistent infection. It has been further demonstrated in Theorem 5.1 that, uniform

persistence takes place when the basic reproduction number exceeds unit. Moreover, we showed

that the commencement of damped oscillation takes place via a Hopf bifurcation. In theorems 4.5,

4.7 and 4.8 respectively, we showed that when the models present with intracellular time delay,

maturation delay, and both delays, the model exhibits the Hopf bifurcation based on the delay

terms under certain conditions.

As a viral infection control measure, it is crucial to examine the rate at which infected cells revert

to their uninfected form. We plot δ versus R0(τ, σ) for certain maturation and intracellular delays,

varying the values of δ from 0 to 8 as shown in graph (d) in Figure 10. We observed that if δ = 0,

then R0(0.3, 0.9) = 6.0397, and if the value of the infected cells’ cure rate rises, then R0(τ, σ) falls

below one. Therefore, the relevant conclusion of model (1.1) is that viral infection can be eliminated

if δ becomes larger. Furthermore, we can observe that intracellular time delay and maturation time

delay play an important role in reducing the basic reproductive number in model (1.1). The graphs

(a), (b) and (c) in Figure 10 show that, assuming all the other parameter remains constant, we can

choose sufficiently large enough τ and σ values to satisfy the condition R0(τ, σ) ≤ 1. It shows that

increasing τ and σ values can control the virus load in the model. Therefore, our research findings

may contribute to the development of new therapeutic approaches to control viral infections and

improve the understanding of viral pathogenesis.
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