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Abstract. Topological indices are numerical descriptors that describe the chemical structures of chemical compounds

using their molecular graphs. Recent advancements in topological indices have seen the emergence of neighborhood

indices and entire topological indices, offering distinct perspectives on molecular structure. Neighborhood indices

emphasize local atomic environments, while entire indices provide a comprehensive view by considering interactions

between atoms, bonds, and their combinations. To achieve a more balanced and informative representation, we intro-

duce ’entire neighborhood indices’. By integrating the localized focus of neighborhood indices within the framework

of entire indices, these new descriptors offer a more complete picture of molecular structure and are expected to signif-

icantly enhance the accuracy of predictions for various molecular properties. In this paper, we introduce a new version

of Zagreb topological indices named first, second, and modified entire neighborhood topological indices; denoted by

NMε
1, NMε

2, and MNMε
1, respectively. The structure-property regression analysis is used to investigate and compute the

chemical significant of these newly introduced indices for the prediction of the physico-chemical properties of octane

isomers and benzenoid hydrocarbons benchmark datasets. We analays and calculate the specific formulae of the entire

neighborhood indices for several important graph families such as path, regular, cycle, complete, bipartite, book, gear

and helm graph. Furthermore, we determine the exact value of these new indices for some types of bridge graphs and

Sierpiński graphs.

1. Introduction

Let Γ(V, E) be a finite, undirected, and simple graph, where V and E denote the vertex and

edge sets respectively. The number of vertices [edges] is called the order [size] of the graph. Two
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vertices v and u are adjacent, or neighbors, if there is an edge between them and the set of all

neighbors of v is called an open neighborhood of v, N(v). For any vertex v ∈ V, the degree d(v)
of the vertex v is defined to be the number of edges that incident to it; that is d(v) = |N(v)|.
Also, for any edge e ∈ E, the degree d(e) of the edge e is the number of edges adjacent to e in

the graph; that is, d(e) = d(u) + d(v) − 2, where u and v are endpoints of e. The symbols Pn, Kn,

Wn, Cn, Sn, and Ka,b denote the path, complete, wheel, cycle, star, and complete bipartite graph of

order n, respectively. The line graph L(Γ) of a simple graph Γ is the graph whose vertices are in

one-to-one correspondence with edges of Γ, and two vertices of L(Γ) are adjacent if and only if the

corresponding edges of Γ are adjacent. The number of the edges in the line graph L(Γ) is equal

m(L(Γ)) =
1
2

[ n∑
i=1

d2
i

]
−m,

where, |V(Γ)| = n, |E(Γ)| = m, and di = d(vi), for all 1 ≤ i ≤ n. A subdivision of Γ is a graph

obtained from the graph Γ by subdivision some or all of its edges by adding new vertices on those

edges. The Cartesian product of two graphs Γ and Λ, Γ × Λ or Γ�Λ, is a graph has vertex set

V(Γ ×Λ) = V(Γ) ×V(Λ) in which two vertices (u1, v1) and (u2, v2) are adjacent in Γ ×Λ if and

only if either u1 = u2 and v1 is adjacent to v2 in Λ or u1 is adjacent to u2 in Γ and v1 = v2. For more

details about definitions and terminologies, we refer the reader to [1–3].

Topological indices are numerical values that correspond to chemical structures using their

molecular graph. These invariants present the most useful tools to study and predict the physico-

chemical properties and biological activities of the chemical compounds that are used directly in

quantitative structure-property relationships (QSPR) and quantitative structure-activity relation-

ships (QSAR) [4].

The journey of exploring topological indices begins in 1947 when H. Wiener introduced the

Wiener index [5]. This index is a distance based topological index defined to be the sum of the

distance between all pairs of vertices of a graph which has applicability to predict the boiling

points of paraffin. Then, several other distance-based indices were proposed such as Harary [6],

Szeged [7], hyper wiener [8], and Mostar [9].

One of the most widely used topological descriptors in QSPR/QSAR analysis and play a crucial

role is degree-based topological indices which is another important branch in this field. The earliest

indices based on degrees were presented in 1972 by I. Gutman and Trinajstić [10], namely the first

and second Zagreb topological indices defined as

M1(Γ) =
∑

v∈V(Γ)

d2(v) =
∑

uv∈E(Γ)

[d(u) + d(v)],

and

M2(Γ) =
∑

uv∈E(Γ)

[d(u) · d(v)].

The Zagreb indices have applicability to relate the π-electron energy of molecules. The Randić

index was introduced by Randić in 1975 [11], and is useful to capture the branching structure of
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carbon skeletons and exhibit correlations with numerous chemical characteristics. An alternative

index to Randić one was then presented, named as harmonic index [12]. In 1998, Estrada et

al. [13], defined the atom-bond connectivity index (ABC). This index became an efficient resource

to examine the thermodynamic properties of organic chemical compounds. In 2015, B. Furtula

and I. Gutman introduced the forgotten index [14]. Subsequently, numerous researchers have

introduced and proposed several versions and developed multiple topological indices, see for

example [15–18].

The concept of neighborhood indices was started in 2018 when S. Mondal, N. De, and A. Pal [19]

introduced first and second neighborhood Zagreb indices defined as:

NM1(Γ) =
∑

v∈V(Γ)

δ2(v),

NM2(Γ) =
∑

uv∈E(Γ)

[δ(u) · δ(v)],

where, δ(v) =
∑

u∈N(v)

d(u) is the neighborhood degree of a vertex v in the graph Γ. The neighbor-

hood indices have significant applications in various areas of computational chemistry and drug

discovery. There are numerous studies in this field, along with a wide range of applications, which

can be explored through many published articles, for more details, see [20–23]

The initial appearance of the entire topological indices was in 2018 by A. Alwardi et al. [24]. The

first and second entire indices are defined as follows

Mε
1(Γ) =

∑
x∈V(Γ)∪E(Γ)

d2(x),

and

Mε
2(Γ) =

∑
x is either adjacent

or incident to y

d(x)d(y).

Subsequently, the entire indices was proposed for several known indices such as the entire forgotten

index [25], the entire ABC index [26], the entire Randić index [27], the entire Sombor index [28],

the entire harmonic index [29], and the recently introduced, the entire Albertson index and the

entire sigma index [30]. Additionally, the literature is rich with research on this type of topological

indices.

Now, the entire indices, provide a comprehensive view by incorporating interactions between

the vertices, edges, and their combinations; that is, the incident and the adjacency relations be-

tween the elements of the graph are considered, and the word element means either a vertex or

an edge. on the other hand, neighborhood indices are centered on capturing the specifics of local

atomic environments. To achieve a more balanced and informative representation, and based on

the fact that the neighborhood and the entire indices have highly significant and good applica-

tions, we are motivated to introduce new indices named the first, second, and modified entire

neighborhood topological indices. By combining both approaches, these new descriptors offer a
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more comprehensive understanding of the molecular structures and are expected to significantly

enhance the accuracy of predictions for various molecular properties. We investigate the applica-

bility of their prediction of the physico-chemical properties of molecules through the quantitative

structure-property relationships (QSPR) methodology. Using the (SPSS software, 25), we find the

correlation coefficients of the newly introduced indices with some physical and chemical charac-

teristics for octan isomers and benzenoid hydrocarbons. These new indices exhibit a strong and

excellent Correlations, ranging between (0.815-0.989) with octan isomers and between (0.932-0.991)

with benzenoid hydrocarbons. Later, the general formulae for the entire neighborhood indices is

obtained for some families of graphs such as path, k-regular, cycle complete, complete bipartite,

star, book, gear, and helm graph. Furthermore, we determine the exact value of the newly defined

indices for certain types of bridge graphs and Sierpiński graphs.

Definition 1.1. Let Γ be a graph with vertex set V and edge set E. For an element x ∈ V(Γ) ∪ E(Γ),
consider the neighborhood degree of x,
δ(x) =

∑
y∈N(x)

d(y). Then, the first and second entire neighborhood indices are defined as follows,

NMε
1(Γ) =

∑
x∈V(Γ)∪E(Γ)

δ2(x),

and,

NMε
2(Γ) =

∑
x is either adjacent

or incident to y

δ(x)δ(y)

=
∑

uv∈E(Γ)

[δ(u)δ(v)] +
∑

e f∈E(L(Γ))

[δ(e)δ( f )] +
∑

v incident
to e in Γ

[δ(v)δ(e)].

The modified entire neighborhood index is defined as follows

MNMε
1(Γ) =

∑
x is either adjacent

or incident to y

[
δ(x) + δ(y)

]

=
∑

uv∈E(Γ)

[δ(u) + δ(v)] +
∑

e f∈E(L(Γ))

[δ(e) + δ( f )] +
∑

v incident
to e in Γ

[δ(v) + δ(e)].

2. Comparative Analyzes of Entire Neighborhood Indices for PredictingMolecular

Properties

The mathematical exploration of a new topological index can be evaluated by its potential appli-

cations and prediction power. The significance of the topological indices can be assessed through

regression analysis, specifically by its ability to correlate the physical and chemical properties of

a benchmark dataset. In this section, we use the octan isomers and benzenoid hydrocarbons as

benchmark datasets. Since the number of these compounds is large enough to create statistical

accuracy and reliability, the choice of these two sets is advantageous for these studies. Also, these
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molecules have well-defined structures that make it possible to present different types of graphs,

including cyclic and acyclic chemical systems, for this research, which is particularly beneficial if

the predictive value of this new index is high, as it provides evidence of its significant effectiveness.

The newly defined indices will be investigated in this section to elucidate the structural features of

molecules using the quantitative structure-property relationship QSPR methodology. The (SPSS

software, 25) is used for this modeling and for graphical analysis and polting the scientific results.

The molecular graphs are obtained by considering the atoms as vertices and the bonds as edges

and, deleting the hydrogen atoms, Figure 1 shows the molecular graphs for octan isomers.

Figure 1. Molecular graph of octane isomers.

The theoretical indices of these graphs are reported in tables 3 and 4, represents the approxi-

mate values of the properties acentric factor (AF), entropy (S), enthalpy of vaporization (HVAP),

and standard enthalpy of vaporization (DHVAP) which are taken from NIST databases [31] and

retrieved from [18]. The values of NMε
1, MNMε

1, and NMε
2 are computed using a mathematical

formation which defined in Definition 1.1. We use the partition method for the calculation of the

adjacent vertices and edges and for the incident vertices and edges. For example, the partitions

for molecular graph Γ of n-octane molecule are as shown in Tables 1 and 2.
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Table 1. Partition of the vertices and the edges in Γ.
δ(v) Frequency δ(e) Frequency

2 2 2 2

3 2 3 2

4 4 4 3

Table 2. The hole partition of Γ
δ(v), δ(u) Frequency δ(e), δ( f ) Frequency δ(v), δ(e) Frequency

2,3 2 2,3 2 2,2 2

3,4 2 3,4 2 2,3 2

4,4 3 4,4 2 3,3 2

– – – – 3,4 2

– – – – 4,4 6

Then, the value of the indices are calculated as the following

NMε
1(Γ) = 2(22) + 2(32) + 4(42) + 2(22) + 2(32) + 3(42)

= 164,

MNMε
1(Γ) = 2(6) + 2(12) + 3(16) + 2(6) + 2(12) + 2(16) + 2(4) + 2(6) + 2(9) + 2(12) + 6(16)

= 180,

NMε
2(Γ) = 2(5) + 2(7) + 3(8) + 2(5) + 2(7) + 2(8) + 2(4) + 2(5) + 2(6) + 2(7) + 6(8)

= 310.

The newly introduced indices for the rest of molecular graphs are computed in a similar manner.
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Table 3. Octan isomers and its value of NM1, MNM1, NM2, NMε
1, MNMε

1, and NMε
2.

Molecular name NM1 MNM1 NM2 NMε
1 MNMε

1 NMε
2

(a) 90 48 84 164 180 310
(b) 104 52 98 244 228 483
(c) 108 54 106 276 244 566
(d) 110 54 107 284 246 584
(e) 114 56 115 314 262 664
(f) 138 60 132 608 378 1334
(g) 126 60 129 412 312 892
(h) 124 58 121 368 294 770
(i) 118 56 113 326 276 663
(j) 146 64 148 698 414 1589
(k) 130 62 136 444 328 978
(l) 132 62 137 450 330 993

(m) 152 68 163 776 454 1819
(n) 162 70 171 858 484 2006
(o) 156 64 147 714 430 1580
(p) 164 72 179 906 502 2152
(q) 144 66 151 552 380 1235
(r) 194 80 217 1832 664 3421

Table 4. The experimental values of AF, S, HVAP, and DHVAP for octan isomers.
Molecular name AF S HVAP DHVAP

(a) 0.397898 111.67 73.19 9.915
(b) 0.377916 109.84 70.3 9.484
(c) 0.371002 111.26 71.3 9.521
(d) 0.371504 109.32 70.91 9.483
(e) 0.362472 109.43 71.7 9.476
(f) 0.339426 103.42 67.7 8.915
(g) 0.348247 108.02 70.2 9.272
(h) 0.344223 106.98 68.5 9.029
(i) 0.35683 105.72 68.6 9.051
(j) 0.322596 104.74 68.5 8.973
(k) 0.340345 106.59 70.2 9.316
(l) 0.332433 106.06 69.7 9.209

(m) 0.306899 101.48 69.3 9.081
(n) 0.300816 101.31 67.3 8.826
(o) 0.30537 104.09 64.87 8.402
(p) 0.293177 102.06 68.1 8.897
(q) 0.317422 102.39 68.37 9.014
(r) 0.255294 93.06 66.2 8.41
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The illustrated data in Table 3 shows that entire neighborhood indices are an effective and

promising tool for describing physico-chemical properties. Cubic models constructed in SPSS

show statistically significant correlations with the properties as illustrated in Table 5.

Table 5. Correlation coefficient of NM1, MNM1, NM2, NMε
1, MNMε

1, and NMε
2 with

AF, S, HVAP, and DHVAP.
Indices AF S HVAP DHVAP

NM1 0.994556963 0.952614387 0.826047189 0.893552603

MNM1 0.98642 0.94169 0.72815 0.81182

NM2 0.98533 0.94809 0.72522 0.81179

NMε
1 0.983 0.964 0.826 0.892

MNMε
1 0.982 0.963 0.815 0.883

NMε
2 0.989 0.966 0.829 0.895

The correlation of these indices can be represented in Figure 2.

Figure 2. Graphical representation of the correlations between the indices and the

properties of octan isomers.

The entire neighborhood indices showed a strong correlation with entropy and EF, which

achieved 0.98 and 0.96, respectively. as indicated in this table. The other properties have good

correlation values with these indices ranging between 0.81 - 0.89. The following figs. 3 to 5 depicts

the correlations argued above.
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Figure 3. Correlations of AF, S, HVAP, and DHVAP with first entire neighborhood

index for octane isomers.

Figure 4. Correlations of AF, S, HVAP, and DHVAP with modified entire neighbor-

hood index for octane isomers.
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Figure 5. Correlations of AF, S, HVAP, and DHVAP with second entire neighbor-

hood index for octane isomers.

The next predictive regression equations are produced through the cubic QSPR modeling, which

establishes a relationship between the newly defined indices and the physico-chemical properties

of octane isomers.

(1) For the first entire neighborhood index

AF = 3.407× 10−7(NMε
1)

2
− 1.256× 10−10(NMε

1)
3 + 0.449

S = −0.045(NMε
1) + 4.655× 10−5(NMε

1)
2
− 1.991× 10−8(NMε

1)
3 + 118.495

HVAP = −0.029(NMε
1) + 3.073× 10−5(NMε

1)
2
− 1.116× 10−8(NMε

1)
3 + 76.731

DHVAP = −0.006(NMε
1) + 6.850× 10−6(NMε

1)
2
− 2.637× 10−9(NMε

1)
3 + 10.679

(2) For the modified entire neighborhood index

AF = −0.001(MNMε
1) + 1.335× 10−6(MNMε

1)
2
− 8.810× 10−10(MNMε

1)
3 + 0.523

S = −0.124(MNMε
1) − 1.924× 10−7(MNMε

1)
3 + 128.252

HVAP = −0.087(MNMε
1) − 1.026× 10−7(MNMε

1)
3 + 84.173

DHVAP = −0.02(MNMε
1) + 4.005× 10−5(MNMε

1)
2
− 2.815× 10−8(MNMε

1)
3 + 12.407
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(3) For the second entire neighborhood index

AF = 5.533× 10−8(NMε
2)

2
− 8.395× 10−12(NMε

2)
3 + 0.435

S = −0.017(NMε
2) + 7.233× 10−6(NMε

2)
2
− 1.269× 10−9(NMε

2)
3 + 116.706

HVAP = −0.011(NMε
2) + 5.280× 10−6(NMε

2)
2
− 8.152× 10−10(NMε

2)
3 + 75.734

DHVAP = −0.002(NMε
2) + 1.132× 10−6(NMε

2)
2
− 1.831× 10−10(NMε

2)
3 + 10.456

In order to confirm the predictive power of these new novel indices, we expanded our analysis

to include benzenoid hydrocarbons dataset and Figure 6 depicts the chemical graphs for these

compounds.

Figure 6. Molecular graphs of benzenoid hydrocarbon compounds.

The values of the neighborhood and entire neighborhood indices of these graphs are explained

in Table 6 with their properties π-electronic energy (Eπ), enthalpy of formation (EF), and boiling

point (BP), which are taken from NIST databases [31] and retrieved from [32].
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Table 6. Theoretical indices for benzenoid hydrocarbons and their experimental

value of π-electronic energy (Eπ), enthalpy of formation (EF), and boiling point

(BP).
Compounds NM1 MNM1 NM2 NMε

1 MNMε
1 NMε

2 Eπ EF BP

(1) 262 114 301 862 592 199 13.6832 141 218

(2) 440 182 533 1666 1020 4055 19.4483 202.7 338

(3) 432 180 518 1576 996 3782 19.3137 222.6 340

(4) 618 250 766 2472 1448 6128 25.1922 271.1 431

(5) 610 248 751 2382 1424 5853 25.1012 277.1 425

(6) 630 252 792 2604 1476 6558 25.2745 275.1 429

(7) 602 246 735 2290 1400 5567 24.9308 310.5 440

(8) 770 302 982 3278 1818 8317 28.222 296 496

(9) 780 304 1004 3392 1844 8690 28.3361 289.9 493

(10) 780 304 1002 3388 1844 8666 28.2453 319.2 497

(11) 930 356 1218 4184 2212 10848 31.4251 301.2 542

(12) 800 318 1011 3322 1880 8371 30.9418 348 535

(13) 788 316 984 3188 1852 7924 30.8805 335 536

(14) 788 316 984 3188 1852 7925 30.8795 336.3 531

(15) 796 318 999 3278 1876 8201 30.9432 336.9 519

(16) 1080 408 1434 4980 2580 13032 34.5718 296.7 590

(17) 922 354 1199 4086 2188 10523 31.253 323 547

(18) 950 370 1221 4106 2248 10477 33.928 375.6 596

(19) 950 370 1221 4106 2248 10477 33.954 366 594

(20) 962 372 1249 4244 2276 10950 34.031 393.3 595

(21) 590 234 743 2450 1388 6157 22.506 221.3 393

(22) 96 48 96 192 192 384 8 75.2 80.1

The represented data in Table 6 underscores once again that these new indices are both reliable

and have significant potential as indicators. Additionally, a cubic model designed to improve the

predictive ability of these newly defined indices which shows good correlations with the properties

of the benzenoid hydrocarbon compounds in Table 7.
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Table 7. Correlation coefficient of NM1, MNM1, NM2, NMε
1, MNMε

1, and NMε
2 with

Eπ, EF, and BP.
Indices Eπ EF BP

NM1 0.983503 0.895749 0.977581

MNM1 0.991016 0.913259 0.98594

NM2 0.974563 0.877489 0.967496

NMε
1 0.983 0.932 0.985

MNMε
1 0.990 0.940 0.991

NMε
2 0.980 0.928 0.983

The graphical representation for the correlations of these indices with the properties of benzenoid

hydrocarbons is displayed in Figure 7.

Figure 7. Graphical representation of the correlations between the indices and the

properties of benzenoid hydrocarbons.

As highlighted, the modified entire neighborhood index demonstrates strong and significant

correlations with Eπ and BP, with a correlation value equal to 0.99. A significant correlation of the

first and second entire neighborhood indices appears with these properties where it takes values

ranging between 0.98 and 0.985. Also, the entire neighborhood indices depict a good correlation

with EF having values of 0.92, 0.93, and 0.94.

Since these new indices have demonstrated a high correlation rate, they are therefore considered

a valuable tool for modeling and estimating physical and chemical properties, and they possess a

greater level of predictive ability. Subsequently, they are expected to have valuable applications in

various fields, such as therapies and different types of networks including social, biological, and

technological networks. The following figs. 8 to 10 illustrate these discussed correlations.
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Figure 8. Correlations of Eπ, EF, and BP with first entire neighborhood index for

benzenoid hydrocarbon compounds.

Figure 9. Correlations of Eπ, EF, and BP with modified entire neighborhood index

for benzenoid hydrocarbon compounds.
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Figure 10. Correlations of Eπ, EF, and BP with second entire neighborhood index

for benzenoid hydrocarbon compounds.

The cubic QSPR modeling produced the following predictive regression equations, effectively

linking the entire neighborhood indices to the physico-chemical properties of benzenoid hydro-

carbon compounds.

(1) For the first entire neighborhood index

Eπ = 0.008(NMε
1) − 1.421× 10−7(NMε

1)
2
− 8.248× 10−11(NMε

1)
3 + 6.469

EF = 0.073(NMε
1) + 1.444× 10−5(NMε

1)
2
− 3.859× 10−9(NMε

1)
3 + 66.344

BP = 0.206(NMε
1) − 2.046× 10−5(NMε

1)
2 + 2.685× 10−10(NMε

1)
3 + 48.488

(2) For the modified entire neighborhood index

Eπ = 0.012(MNMε
1) + 2.690× 10−6(MNMε

1)
2
− 1.114× 10−9(MNMε

1)
3 + 5.799

EF = 0.064(MNMε
1) − 3.821× 10−8(MNMε

1)
3 + 65.089

BP = 0.342(MNMε
1) − 3.116× 10−5(MNMε

1)
2
− 5.329× 10−9(MNMε

1)
3 + 21.173

(3) For the second entire neighborhood index

Eπ = 0.004(NMε
2) − 8.694× 10−8(NMε

2)
2
− 2.121× 10−12(NMε

2)
3 + 6.670

EF = 0.034(NMε
2) + 1.097× 10−6(NMε

2)
2
− 1.757× 10−10(NMε

2)
3 + 67.628

BP = 0.085(NMε
2) − 4.015× 10−6(NMε

2)
2 + 5.387× 10−11(NMε

2)
3 + 56.366
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3. Entire Neighborhood Indices for Some Graph Families

In this section, we determine the first, second, and modified entire neighborhood indices for

variety types of graphs. In, addition, we identify these indices for some types of bridge graphs

and Sierpiński graphs.

3.1. Some Standard Graphs.

Proposition 3.1. Let n be a positive integer and consider the path graph Pn, n > 2. Then,

(1) NMε
1(Pn) =


14, if n = 3;
38, if n = 4;
4(8n− 23), otherwise.

(2) NMε
2(Pn) =


17, if n = 3;
61, if n = 4;
119, if n = 5;
2(32n− 101), otherwise.

(3) MNMε
1(Pn) =


22, if n = 3;
52, if n = 4;
84, if n = 5;
4(8n− 19), otherwise.

Proof. Let n be a positive integer and consider the path graph Pn, n > 2. Then, Pn has V(Pn) =

{v1, v2, v3, . . . , vn−1, vn} and E(Pn) = {e1, e2, . . . , en−2, en−1}. It is clear for n = 3, 4, or 5. Let n > 5, the

neighborhood degree of all elements of Pn is 4 except for the elements δ(v1) = δ(vn) = δ(e1) =

δ(en−1) = 2 and δ(v2) = δ(vn−1) = δ(e2) = δ(en−2) = 3. Now, according to the definition we have

NMε
1(Pn) =

∑
v∈V(Pn)

δ2(v) +
∑

e∈E(Pn)

δ2(e)

= 2(22) + 2(32) + (n− 4)(42) + 2(22) + 2(32) + (n− 5)(42)

= 4(8n− 23).

Let Va,b denote the set of all adjacent vertices uv such that δ(u) = a and δ(v) = b, Ea,b denote the

set of all adjacent edges e f where δ(e) = a and δ( f ) = b, and Aa,b be the set of all pairs (v, e) in

which the vertex v is incident to the edge e such that δ(v) = a and δ(e) = b. Now, tables 8 to 10

represent the partitions for the graph Pn as follows,

Table 8. Partition of the vertices in path graphs
Type V2,3 V3,4 V4,4

Frequency 2 2 n− 5



Int. J. Anal. Appl. (2025), 23:79 17

Table 9. Partition of the edges in path graphs
Type E2,3 E3,4 E4,4

Frequency 2 2 n− 6

Table 10. Partition of vertices incident with edges in path graphs
Type A2,2 A3,2 A3,3 A4,3 A4,4

Frequency 2 2 2 2 2n− 10

Then, we have

NMε
2(Pn) = 2(6 + 12) + (n− 5)(16) + 2(6 + 12) + (n− 6)(16) + 2(4 + 6 + 9 + 12)

+ (2n− 10)(16) = 64n− 202,

MNMε
1(Pn) = 2(5 + 7) + (n− 5)(8) + 2(5 + 7) + (n− 6)(8) + 2(4 + 5 + 6 + 7)

+ (2n− 10)(8) = 32n− 76.

�

Note that,
∑
a,b

|Va,b| = |E(Γ)|,
∑
a,b

|Ea,b| = |E(L(Γ))|, and
∑
a,b

|Aa,b| = 2|E(Γ)|.

Proposition 3.2. Let Γ be a k-regular graph of order n. Then, the first and second neighborhood indices of
Γ are as follows

(1) NMε
1(Γ) = nk[k3 + 8(k− 1)4].

(2) NMε
2(Γ) = nk[ 1

2 k4 + (2k− 2)2(2k3
− 5k2 + 6k− 2)].

(3) MNMε
1(Γ) = nk[2k2 + k(2k− 2)2].

Proof. Let Γ be a k-regular graph of order n. Then, Γ has m = nk
2 edges and each edge has degree

d(e) = 2k − 2. Thus, the neighborhood degree of each vertex and each edge in this graph are

δ(v) =
∑

u∈N(v)

d(u) = k2 and δ(e) =
∑

f∈N(e)

d( f ) = (2k− 2)2, respectively. Thus,

NMε
1(Γ) =

∑
v∈V(Γ)

δ2(v) +
∑

e∈E(Γ)

δ2(e) = nk4 +
nk
2
(2k− 2)4 = nk[k3 + 8(k− 1)4].

Now, the graph Γ has |Vk2,k2 | = 1
2 nk, |E(2k−2)2,(2k−2)2 | = 1

2 nk(k − 1), and |Ak2,(2k−2)2 | = nk. Then, we

have

NMε
2(Γ) =

nk
2

k4 +
nk
2
(k− 1)(2k− 2)4 + nk[k2(2k− 2)2]

= nk[
1
2

k4 + (2k− 2)2(2k3
− 5k2 + 6k− 2)].
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and

MNMε
1(Γ) =

1
2

nk(2k2) +
1
2

nk(k− 1)[2(2k− 2)2] + nk[k2 + (2k− 2)2]

= nk[k2 + (k− 1)(2k− 2)2 + k2 + (2k− 2)2].

�

Corollary 3.1. For the cycle graph Cn, and the complete graph Kn, n ≥ 3, we have

(1) NMε
1(Cn) = MNMε

1(Cn) = 32n.

(2) NMε
2(Cn) = 2NMε

1(Cn).

(3) NMε
1(Kn) = n3(3n− 10)2 + 5n(10n2 + 13) − 164n2.

(4) NMε
2(Kn) = n3(8n4

− 879n + 1175) − n
2 (167n5

− 739n4 + 1659n− 479).

(5) MNMε
1(Kn) = 2n(2n4

− 11n3 + 23n2
− 21n + 7).

Proposition 3.3. For any complete bipartite graph Ka,b,

(1) NMε
1(Ka,b) = ab

[
(a + b)4 + 24(a + b)2

− 8(a3 + b3) − (a + b)(23ab + 32) + 16
]
.

(2) NMε
2(Ka,b) = ab

[
(ab)2 +

(a+b−2)2

2

(
(a + b)3

− 2(a + b)2
− (2a− 2)2

−(2b− 2)2 + 4(a + b− ab)
)]

.

(3) MNMε
1(Ka,b) = ab

[
(a + b)3

− 2(a + b)2 + 4(a + b) − 2(a2 + b2)
]
.

Proof. Consider the complete bipartite graph Ka,b with a + b vertices and ab edges. The neighbor-

hood degree of every vertex v in V(Ka,b) is δ(v) = ab and δ(e) = (a + b − 2)2 for any edge e in

E(Ka,b). Therefore

NMε
1(Ka,b) = (a + b)(ab)2 + ab(a + b− 2)4

= ab[a4 + 4a3b− 8a3 + 6a2b2
− 23a2b + 24a2 + 4ab3

− 23ab2 + 48ab− 32a + b4
− 8b3 + 24b2

− 32b + 16].

Now, for the second and modified entire neighborhood indices, the graph has the following

partitions,

|Vab,ab| = ab, |E(a+b−2)2,(a+b−2)2 | = 1
2 (ab2 + a2b) − ab, and |Aab,(a+b−2)2 | = 2ab. Hence, by [1.1] we get

that

NMε
2(Ka,b) = ab(ab)2 + [

1
2
(ab2 + a2b) − ab](a + b− 2)4 + 2ab[ab(a + b− 2)2]

= ab[(ab)2 +
a + b− 2

2
(a + b− 2)4 + 2ab(a + b− 2)2]

= ab
[
(ab)2 +

(a + b− 2)2

2

(
a3
− 6a2

− 8ab + 3ab2 + 3a2b + 12a + b3
− 6b2 + 12b− 8

)]
,
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and

MNMε
1(Ka,b) = ab(2ab) + [

1
2
(ab2 + a2b) − ab](2(a + b− 2)2) + 2ab[ab + (a + b− 2)2]

= 4(ab)2 + (ab2 + a2b)(a2 + 2ab + b2
− 4a− 4b + 4)

= ab[a3
− 4a2

− 4ab + 3ab2 + 3a2b + 4a + b3
− 4b2 + 4b].

�

Corollary 3.2. For the star graph Sb, we have

(1) NMε
1(Sb) = (b− 1)[b4

− 8b3 + 25b2
− 33b + 16].

(2) NMε
2(Sb) = (b− 1)[ 1

2 b5
− 5b4 + 22b3

− 49b2 + 54b− 23].

(3) MNMε
1(Sb) = (b− 1)[b3

− 4b2 + 8b− 4].

A book graph Bn is defined to be a Cartesian product of the star graph Sn+1 and the path graph

P2, that is Bn = Sn+1�P2. It has 2n+ 2 vertices and 3n+ 1 edges. The graph Bn is a biregular graph

with two possible vertex degrees which are 2 and m + 1.

Proposition 3.4. For the book graph Bn, we have

(1) NMε
1(Bn) = 2[n5 + 6n4 + 13n3 + 25n2 + 18n + 1].

(2) NMε
2(Bn) = n6 + 7n5 + 26n4 + 69n3 + 104n2 + 48n + 1.

(3) MNMε
1(Bn) = 2[n4 + 7n3 + 25n2 + 30n + 2].

Proof. Consider the book graph Bn. Then, according to the neighborhood degree of each element

in this graph, there are 2n vertices with δ(v) = n + 3 and 2 with δ(v) = 3n + 1. Also, Bn has n
edges with δ(e) = 2n + 2, 2n edges with δ((n + 1)2, and one edge with δ(e) = 2n(n + 1). Hence,

we have that

NMε
1(Bn) = 2n(n + 3)2 + 2(3n + 1)2 + n(2n + 2)2 + 2n(n + 1)4 + (2n2 + 2n)2

= 2n(n2 + 6n + 9) + 2(9n2 + 6n + 1) + 4n(n2 + 2n + 1) + 2n(n2 + 2n + 1)2

+ 4n2(n + 1)2 = 2(n3 + 15n2 + 15n + 1) + 2n(n + 1)2[n2 + 4n + 3].

Now, tables 11 to 13 depict the partiotins of the vertices and edges in this graph as follows

Table 11. Partition of the vertices in book graphs.
Type Vn+3,n+3 Vn+3,3n+1 V3n+1,3n+1

Frequency n 2n 1

Table 12. Partition of the edges in book graphs.
Type E2n+2,(n+1)2 E(n+1)2,2n2+2n E(n+1)2,(n+1)2

Frequency 2n 2n n2
− n
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Table 13. Partition of the vertices incident with edges in book graphs.
Type An+3,2n+2 An+3,(n+1)2 V3n+1,(n+1)2 A3n+1,2n2+2n

Frequency 2n 2n 2n 2

Therefore, we get that

NMε
2(Bn) = n(n + 3)2 + 2n[(n + 3)(3n + 1)] + (3n + 1)2 + 2n[(2n + 2)(n + 1)2]

+ 2n[(n + 1)2(2n2 + 2n)] + (n2
− n)(n + 1)4 + 2n[(n + 3)(2n + 2)]

+ 2n[(n + 3)(n + 1)2] + 2n[(3n + 1)(n + 1)2] + 2[(3n + 1)(2n2 + 2n)]

= n(n + 3)[2n2 + 15n + 11] + (n + 1)2[n2(n2 + 13) + 5n(n2 + 1)]

+ (3n + 1)[4n2 + 7n + 1],

and

MNMε
1(Bn) = n[2(n + 3)] + 2n[n + 3 + 3n + 1] + 2[3n + 1] + 2n[2n + 2 + (n + 1)2]

+ 2n[(n + 1)2 + 2n2 + 2n] + (n2
− n)[2(n + 1)2] + 2n[n + 3 + 2n + 2]

+ 2n[n + 3 + (n + 1)2] + 2n[3n + 1 + (n + 1)2] + 2[3n + 1 + 2n2 + 2n]

= 2n[6n2 + 23n + 20] + 2n4 + 2n3 + 4n2 + 20n + 4.

�

The gear graph Gn is obtained from a wheel graph Wn by adding a new vertex between each

pair of adjacent vertices in the cycle. On the other hand, a helm graph Hn is obtained from a wheel

graph Wn by joining a pandent vertex to every vertex in the cycle. Each of these two graphs has

2n + 1 vertices and 3n edges.

Proposition 3.5. For any gear graph Gn, we have

(1) NMε
1(Gn) = n3(n2 + 13) + 5n(9n + 35).

(2) NMε
2(Gn) = 11n4 + 20n3 + 1

2 n[n5
− n4 + 257n + 727].

(3) MNMε
1(Gn) = n4 + 3n3 + 25n2 + 131n.

Proof. For any gear graph Gn, let V(i) and E(i) denote the subset of vertices and edges in which all

of its element has neighborhood degrees equal i, respectively. Then, Gn has |V(6)| = n, |V(n+4)| = n,

|V(3n)| = 1, |E(n+7)| = 2n, and |E(n2+5)| = n. The first entire neighborhood index can be computed

as the following

NMε
1(Gn) = n(62) + n(n + 4)2 + (3n)2 + 2n(n + 7)2 + n(n2 + 5)2

= n[n4 + 13n2 + 45n + 175].

Additionally, Gn has the partitions that can be shown in tables 14 to 16.
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Table 14. Partition of the vertices in gear graphs.
Type V6,n+4 Vn+4,3n

Frequency 2n n

Table 15. Partition of the edges in gear graphs.
Type En+7,n+7 En+7,n2+5 En2+5,n2+5

Frequency 2n 2n 1
2 n(n− 1)

Table 16. Partition of vertices incident with edges in gear graphs.
Type A6,n+7 An+4,n+7 An+4,n2+5 A3n,n2+5

Frequency 2n 2n n n

Thus, the second and modified entire neighborhood indices will be obtained by using [1.1],

NMε
2(Gn) = 2n[6(n + 4)] + n[3n(n + 4)] + 2n(n + 7)2 + 2n[(n + 7)(n2 + 5)]

+
n(n− 1)

2
(n2 + 5)2 + 2n[6(n + 7)] + 2n[(n + 4)(n + 7)] + n[(n + 4)(n2 + 5)]

+ n[3n(n2 + 5)]

= 2n[n3 + 9n2 + 42n + 178] + n[4n3 + 7n2 + 32n + 20 +
n− 1

2
(n4 + 10n2 + 25)],

Similarly, we have

MNMε
1(Gn) = 2n[n + 10] + n[4n + 4] + 2n[2n + 14] + 2n[n2 + n + 12] + n(n− 1)[n2 + 5]

+ 2n[n + 13] + 2n[2n + 11] + n[n2 + n + 9] + n[n2 + 3n + 5]

= 2n[n2 + 8n + 61] + n[n3 + n2 + 9n + 9].

�

Proposition 3.6. For the helm graph Hn, we have

(1) NMε
1(Hn) = n[n4 + 2n3 + 27n2 + 170n + 877].

(2) NMε
2(Hn) =

1
2 n3[n(n2 + 13) + (n + 13)2] + 2n[(2n + 34)2 + (n + 4)2 + 119n + 3].

(3) MNMε
1(Hn) = n3(n + 5) + 3n(17n + 117).

Proof. Consider the helm graph, then we have |V(4)| = n, |V(n+9)| = n,

|V(4n)| = 1, |E(2n+22)| = n, |E(n+14)| = n, and |E(n2+n+10)| = n. Thus, the first entire neighborhood

index can be obtained by calculating the following equation.

NMε
1(Hn) = n(42) + n(n + 9)2 + (4n)2 + n(2n + 22)2 + n(n + 14)2 + n(n2 + n + 10)2

= 6n3 + 150n2 + 777n + n(n4 + 2n3 + 21n2 + 20n + 100).
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Now, for the two remaining indices we consider the partitions for the helm graph represented

in tables 17 to 19.

Table 17. Partition of the vertices in helm graphs.
Type V4,n+9 Vn+9,n+9 Vn+9,4n

Frequency n n n

Table 18. Partition of the edges in helm graphs.
Type E2n+22,2n+22 E2n+22,n+14 En+14,n2+n+10 E2n+22,n2+n+10 En2+n+10,n2+n+10

Frequency n 2n n 2n 1
2 (n

2
− n)

Table 19. Partition of the vertices incident with edges in helm graphs.
Type A4,n+14 An+9,n+14 An+9,2n+22 An+9,n2+n+10 A4n,n2+n+10

Frequency n n 2n n n

Consequently, we get that

NMε
2(Hn) = n[4(n + 9)] + n(n + 4)2 + n[4n(n + 4)] + n(2n + 22)2 + 2n[(2n + 22)(n + 14)]

+ n[(n + 14)(n2 + n + 10)] + 2n[(2n + 22)(n2 + n + 10)] +
n2
− n
2

(n2 + n + 10)2

+ n[4(n + 14)] + n[(n + 9)(n + 14)] + 2n[(n + 9)(2n + 22)] + n[(n + 9)(n2 + n + 10)]

+ n[4n(n2 + n + 10)]

= n[6n3 + 39n2 + 222n + 948] + 2n[2n3 + 28n2 + 132n + 726]

+
n2
− n
2

[n4 + 2n3 + 21n2 + 20n + 100]

=
1
2

n3[n3 + n2 + 39n + 189] + 526n2 + 2350n.

Also, the modified one can be computed through the following equation

MNMε
1(Hn) = n[n + 13] + n[2(n + 4)] + n[5n + 4] + n[4n + 44] + 2n[3n + 36]

+ n[n2 + 2n + 24] + 2n[n2 + 3n + 32] +
n2
− n
2

[2(n2 + n + 10]

+ n[n + 18] + n[2n + 23] + 2n[3n + 31] + n[n2 + 2n + 19] + n[n2 + 5n + 10]

= n[3n2 + 24n + 163] + 2n[n2 + 9n + 99] + n4 + 9n2
− 10n

= n4 + 5n3 + 51n2 + 351n.

�
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3.2. The Bridge graph. Bridge graphs are valuable tools for identifying essential connections

within a network that are important for maintaining its connectivity. They have vast applications

in various fields such as communication, transportation, and chemistry, providing to understand

and improve the structure and accuracy of these systems. By considering these crucial links, bridge

graphs simplify the analysis and resolution of problems in complex networks.

Let Γ1 and Γ2 be two connected graphs, and let u ∈ V(Γ1), v ∈ V(Γ2). The bridge graph is

obtained by joining u ∈ V(Γ1) with v ∈ V(Γ2), for more detailed information see [33]. Through

this section, we compute the defining topological indices for three cases of bridge graphs.

Bridge graph over path Pn. Let Pn be the path graph of order n. The bridge graph Gm(Pn; v) has mn
vertices and mn− 1 edges. For instance, the bridge graph over the path P4 can be shown in Figure

11.

Figure 11. Bridge graph over path P4.

Proposition 3.7. Let m and n be positive integers greater than 4, and consider the bridge graph Gm(Pn; v)
over path. Then,

(1) NMε
1(Gm(Pn; v)) = 4(73m + 8mn− 203).

(2) NMε
2(Gm(Pn; v)) = 32m(2n + 25) − 2260.

(3) MNMε
1(Gm(Pn; v)) = 16m(2n + 7) − 328.

Proof. Let m and n be positive integers greater than 4, and consider the bridge graph Gm(Pn; v)
over path. Then, Gm(Pn; v) contains |V(2)| = |V(3)| = |V(5)| = m, |V(4)| = m(n − 4) + 2, |V(7)| = 2,

|V(8)| = m− 4, |E(2)| = |E(3)| = |E(5)| = m, |E(4)| = m(n− 5) + 2, |E(9)| = 4, |E(10)| = m− 4, |E(13)| = 2,

and |E(14)| = m− 5.

Then, the first entire neighborhood index can be calculated from the following

NMε
1(Gm(Pn; v)) = m[4 + 9 + 25] + [m(n− 4) + 2](16) + 2(49) + (m− 4)(64) + m(4 + 9 + 25]

+ [m(n− 5) + 2](16) + 4(81) + (m− 4)(100) + 2(169) + (m− 5)(196).

Moreover, we can see that Gm(Pn; v) has the following partitions as demonstrated in tables 20

to 22,
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Table 20. Partition of the vertices in bridge graphs over path.
Type V2,3 V3,4 V4,4 V4,5 V5,7 V7,8 V8,8 V5,8

Frequency m m m(n− 5) + 2 m 4 2 m− 5 m− 4

Table 21. Partition of the edges in bridge graphs over path.
Type E2,3 E3,4 E4,4 E4,5 E5,9 E9,9

Frequency m m m(n− 6) + 2 m 4 2

Type E10,14 E13,14 E14,14 E10,13 E5,10 E9,13

Frequency 2(m− 6) + 2 2 m− 6 2 m− 4 4

Table 22. Partition of the vertices incident with edges in bridge graphs over path.
Type A2,2 A3,2 A3,3 A4,3 A4,4 A4,5 A5,5

Frequency m m m m 2mn− 10m + 4 m m

Type A5,9 A7,9 A7,13 A5,10 A8,10 A8,13 A8,14

Frequency 4 4 2 m− 4 m− 4 2 2(m− 6) + 2

Therefore, the second entire neighborhood index can be obtained from the following

NMε
2(Gm(Pn; v)) = 2m[6 + 12 + 20] + [m(n− 5) + 2]16 + 4[35 + 45 + 117 + 63 + 45]

+ 2[56 + 81 + 182 + 130 + 91 + 104] + (m− 4)[40 + 50 ++50 + 80]

+ (m− 5)[64] + (m− 6)[196] + m[4 + 6 + 9 + 12 + 20 + 25]

+ [m(n− 6) + 2]16 + [2(m− 6) + 2](140 + 112) + [2mn− 10m + 4]16

= 64mn + 800m− 2260.

In a similar manner, we can get the modified entire neighborhood index

MNMε
1(Gm(Pn; v)) = m[83] + 2[124] + 4[78] + (m− 4)[61] + (m− 5)[16]

+ (m− 6)[28] + [m(n− 5) + 2]8 + [m(n− 6) + 2]8

+ [2(m− 6) + 2]46 + [2mn− 10m + 4]8

= 112m + 32mn− 328.

�

Bridge graph over cycle Cn. LetCn be the cycle graph of order n. The bridge graph Gm(Cn; v) has mn
vertices and mn + m− 1 edges. Figure 12 illustrates the graph Gm(C6; v).
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Figure 12. Bridge graph over cycle C6.

Proposition 3.8. Consider the bridge graph Gm(Cn; v) over cycle, where m > 5 and n > 4. Then,

(1) NMε
1(Gm(Cn; v)) = 8m(4n + 201) − 3022.

(2) NMε
2(Gm(Cn; v)) = 4m(16n + 1223) − 9946.

(3) MNMε
1(Gm(Cn; v)) = 8m(4n + 65) − 380.

Proof. Consider the bridge graph Gm(Cn; v) over cycle, where m > 5 and n > 4. Then, the vertices

and edges of this graph are distributed as detailed below,

|V(4)| = m(n− 3), |V(5)| = 4, |V(6)| = 2(m− 2), |V(7)| = |V(11)| = 2, |V(12)| = m− 4, |E(4)| = m(n− 4),

|E(5)| = |E(10)| = |E(17)| = 4, |E(6)| = 2(m− 2),

|E(18)| = 2(m− 4), |E(20)| = |E(27)| = 2, and |E(28)| = m− 5. Hence, get that

NMε
1(Gm(Cn; v)) = [mn− 3m]16 + 2[4(25) + (2m− 4)36] + 2[49 + 121 + 400 + 729]

+ 4[100 + 289] + (m− 4)144 + (2m− 8)324 + [mn− 4m]16 + (m− 5)784

= 32mn + 1608m− 3022.

The graph Gm(Cn; v) can be dividing to several partitions as it shown in tables 23 to 25.

Table 23. Partition of the vertices in bridge graphs over cycle.
Type V4,4 V4,5 V4,6 V5,7 V6,11 V6,12 V11,12 V7,11 V12,12

Frequency m(n− 4) 4 2(m− 2) 4 4 2(m− 4) 2 2 m− 5

Table 24. Partition of the edges in bridge graphs over cycle.
Type E4,4 E4,5 E5,10 E10,10 E10,20 E4,6

Frequency m(n− 5) 4 4 2 4 2(m− 2)

Type E6,17 E17,17 E20,17 E20,27 E17,27 E27,18

Frequency 4 2 4 2 4 4

Type E6,18 E18,18 E18,28 E27,28 E28,28 –

Frequency 2(m− 4) m− 4 4(m− 4) − 4 2 m− 6 –
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Table 25. Partition of the vertices incident with edges in bridge graphs over cycle.
Type A4,4 A4,5 A5,5 A5,10 A7,10 A7,20

Frequency 2m(n− 4) 4 4 4 4 2

Type A4,6 A6,6 A6,17 A11,17 A11,20 A11,27

Frequency 2(m− 2) 2(m− 2) 4 4 2 2

Type A12,27 A12,28 A6,18 A12,18 – –

Frequency 2 2(m− 4) − 2 2(m− 4) 2(m− 4) – –

Therefore, the remaining two neighborhood indices can be computed as the following

NMε
2(Gm(Cn; v)) = 4[2232] + 2[2875] + (2m− 4)[108] + (2m− 8)[504] + (m− 4)[324]

+ (m− 5)[144] + (m− 6)[784] + (4mn− 17m)[16] + (2m− 10)[1344]

= 64mn + 4892m− 9946.

Furthermore, by a similar criteria, we have

MNMε
1(Gm(Cn; v)) = 4[397] + 2[302] + (2m− 4)[42] + (2m− 8)[96] + (m− 4)[36]

+ (m− 5)[24] + (m− 6)[56] + (2m− 10)[132] + (4mn− 17m)[8]

= 32mn + 520m− 380.

�

Bridge graph over complete graph Kn. Let Kn be a complete graph of order n. Then, Gm(Kn; v) has mn
vertices and mn(n−1)+2m−2

2 edges. For example, the bridge graph over K6; Gm(K6; v) can be depicted

in Figure 13.

Figure 13. Bridge graph over complete graph K6.

Proposition 3.9. Let m > 4 and n > 2 be positive integers and consider the bridge graph Gm(Kn; v) over
complete graph. Then, we have
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(1) NMε
1(Gm(Kn; v)) = m[8n2(n4 + 141) + 4(79n4 + 65)

−n(71n4 + 782n2 + 839)] + 2[57n3
− 175n2 + 161n− 59].

(2) NMε
2(Gm(Kn; v)) = m[n3(8n4

− 1456n + 2865) − 1
2 n(167n5

− 931n4

+6651n− 4331) − 575] − 96n5 + 528n4
− 1513n3 + 1961n2

− 1467n + 385.

(3) MNMε
1(Gm(Kn; v)) = 2m[2n5

− 11n4 + 39n3
− 53n2 + 49n− 10] −32n3 + 30n2

− 70n− 4.

Proof. Let m > 4 and n > 2 be positive integers and consider the bridge graph Gm(Kn; v) over a

complete graph. Then, the bridge graph in this case has

|V(n(n−2)+2)| = 2(n−1), |V(n(n−2)+3)| = (m−2)(n−1), |V(n(n−1)+2)| = |V(n2+2)| = 2, |V(n2+3)| = m−4,

|E([2n−4]2+2)| = n(n − 3) + 2, |E(4n2−16n+20)| =
1
2 [m(n2

− 3n + 2] − n2 + 3n − 2, |E(4n2−10n+12)| =

(m − 4)(n − 1), |E(4n2−13n+13)| = |E(4n2−10n+11)| = 2(n − 1), |E(4n2−7n+5)| = |E(4n2−4n+3)| = 2, and

|E(4n2−4n+4)| = m− 5.

Thus, we have

NMε
1(Gm(Kn; v)) = (2n− 2)[(n2

− 2n + 2)2 + (4n2
− 13n + 13)2 + (4n2

− 10n + 11)2]

+ 2[(n2
− n + 2)2 + (n2 + 2)2 + (4n2

− 7n + 5)2 + (4n2
− 4n + 3)2]

+ (n− 1)[(m− 2)(n2
− 2n + 3)2 + (m− 4)(4n2

− 10n + 12)2]

+ (m− 4)[(n2 + 3)2] + (m− 5)[(4n2
− 4n + 4)2]

+ (n2
− 3n + 2)[(2n− 4)2 + 2)2]

+
[m(n2

− 3n + 2)
2

− n2 + 3n− 2
]
[(4n2

− 16n + 20)2]

= (2n− 2)[33n4
− 188n3 + 469n2

− 566n + 294] − 66n5 + 374n4
− 1020n3

+ 2[34n4
− 90n3 + 138n2

− 98n + 42] + 1444n2
− 1202n + 386

+ m[8n6
− 71n5 + 316n4

− 782n3 + 1128n2
− 839n + 260].

Now, to determine the second and modified entire neighborhood indices, we consider the

partitions of the bridge graph over complete graph which represented in tables 26 to 28.

Table 26. Partition of the vertices in bridge graphs over complete graphs.
Type Vn2−2n+2,n2−2n+2 Vn2−2n+2,n2−n+2 Vn2−2n+3,n2−2n+3 Vn2−2n+3,n2+2

Frequency n2
− 3n + 2 2(n− 1) 1

2 (m− 2)(n2
− 3n + 2) 2(n− 1)

Type Vn2−2n+3,n2+3 Vn2−n+2,n2+2 Vn2+2,n2+3 Vn2+3,n2+3

Frequency (m− 4)(n− 1) 2 2 m− 5
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Table 27. Partition of the edges in bridge graphs over complete graph.
Type E(2n−4)2+2,(2n−4)2+2 E(2n−4)2+2,4n2−13n+13

Frequency n3
− 6n2 + 11n− 6 2n2

− 6n + 4

Type E4n2−16n+20,4n2−16n+20 E4n2−16n+20,4n2−10n+11

Frequency 1
2 (m− 2)(n3

− 6n2 + 11n− 6) 2n2
− 6n + 4

Type E4n2−13n+13,4n2−13n+13 E4n2−13n+13,4n2−7n+5

Frequency n2
− 3n + 2 2(n− 1)

Type E4n2−10n+11,4n2−10n+11 E4n2−10n+11,4n2−7n+5

Frequency n2
− 3n + 2 2(n− 1)

Type E4n2−10n+11,4n2−4n+3 E4n2−16n+20,4n2−10n+12

Frequency 2(n− 1) (m− 4)(n2
− 3n + 2)

Type E4n2−10n+12,4n2−10n+12 E4n2−10n+12,4n2−4n+3

Frequency 1
2 (m− 4)(n2

− 3n + 2) 2(n− 1)

Type E4n2−10n+12,4n2−4n+4 E4n2−7n+5,4n2−4n+3

Frequency (m− 4)(2n− 2) − 2n + 2 2

Type E4n2−4n+3,4n2−4n+4 E4n2−4n+4,4n2−4n+4

Frequency 2 m− 6

Table 28. Partition of the vertices incident with edges in bridge graphs over com-

plete graph.
Type An2−2n+2,(2n−4)2+2 An2−2n+2,4n2−13n+13 An2−n+2,4n2−13n+13

Frequency 2n2
− 6n + 4 2(n− 1) 2(n− 1)

Type An2−n+2,4n2−7n+5 An2+2,4n2−7n+5 An2−2n+3,4n2−16n+20

Frequency 2 2 (m− 2)(n2
− 3n + 2)

Type An2−2n+3,4n2−10n+11 An2+2,4n2−10n+11 An2+2,4n2−4n+3

Frequency 2(n− 1) 2 2

Type An2+3,4n2−4n+3 An2+3,4n2−4n+4 An2−2n+3,4n2−10n+12

Frequency 2(n− 1) 2m− 10 (m− 4)(n− 1)

Type An2+3,4n2−10n+12 – –

Frequency (m− 4)(n− 1) – –
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Then, according to [1.1], we have

NMε
2(Gm(Kn; v)) = (2n− 2)[(n2

− 2n + 2)(n2
− n + 2) + (n2

− 2n + 3)(n2 + 2)

+ (4n2
− 13n + 13)(4n2

− 7n + 5) + (4n2
− 10n + 11)(4n2

− 7n + 5)

+ (4n2
− 10n + 11)(4n2

− 4n + 3) + (4n2
− 10n + 12)(4n2

− 4n + 3)

+ (n2
− 2n + 2)(4n2

− 13n + 13) + (n2
− n + 2)(4n2

− 13n + 13)

+ (n2
− 2n + 3)(4n2

− 10n + 11) + (n2 + 2)(4n2
− 10n + 11)]

+ 2[50n4
− 103n3 + 172n2

− 124n + 72] + 16n7
− 119n6 + 353n5

− 425n4

− 193n3 + 1242n2
− 1478n + 604 +

1
2

[
238n6

− 167mn6
− 1226n5

+ 931mn5
− 2912mn4

− 1150m + 3198n4
− 5660n3 + 5730mn3

− 6651mn2

+ 5170n2
− 2738n + 4331mn + 16mn7

− 32n7 + 378
]

= −96n5 + 528n4
− 1513n3 + 1961n2

− 1467n + 385

+
1
2

m
[
16n7

− 167n6 + 931n5
− 2912n4 + 5730n3

− 6651n2 + 4331n− 1150
]
.

Analogously, we get that

MNMε
1(Gm(Kn; v)) = (2n− 2)[56n2

− 121n + 129] + 8n5
− 20n4

− 60n3 + 388n2

− 538n + 314 + 20n4
− 84n3

− 4n2
− 32n− 8n5

− 60

+ m[4n5
− 22n4 + 78n3

− 106n2 + 98n− 20]

= 2m[2n5
− 11n4 + 39n3

− 53n2 + 49n− 10] − 32n3 + 30n2
− 70n− 4.

�

3.3. Sierpiński graphs. The Sierpiński type’s graph has been observed in different branches of

mathematics and many other scientific fields. The Sierpiński graphs Ŝn are one of the most

significant families of these graphs, generated by a finite number of iterations that reach the

Sierpiński gasket at the limit. In short, Ŝn+1 is made up of three copies of Ŝn that are attached,

known as the top, bottom left, and bottom right components of Ŝn+1. The introduction of these

graphs was made by Scorer, Grundy, and Smith in 1944. They are crucial in dynamic systems and

probability, as well as in psychology [34].

The generalized Sierpiński graph, denoted by Ŝ(n, G) and the process of constructing it involves

copying |G| multiple times Ŝ(n − 1, G) and adding an edge between copies x and y of Ŝ(n − 1, G)

whenever xy is an edge of G. The Sierpiński graphs Ŝ(n, k) and Ŝ(n, G) are defined as follows

Ŝ(n, k) is a graph with vertex set {1, 2, . . . , n}, and there is an edge between two vertices u =

(u1, u2, . . . , un) and v = (v1, v2, . . . , vn) if and only if there exist an α ∈ {1, 2, . . . , n} such that

• ui = vi for all i = 1, 2, . . . ,α− 1,

• uα , vα, and
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• ui = vα, vi = uα for all i = α+ 1, . . . , n.

The generalized Sierpiński graph of dimension n, Ŝ(n, G) is the graph with vertex set {1, 2, . . . , k}n

and uv is an edge if and only if there exists β ∈ {1, 2, . . . , n} such that

• ui = vi, for all i < β.

• uβ , vβ and (uβ, vβ) ∈ E(G).

• ui = vβ and vi = uβ, for all i > β.

3.3.1. Uniform subdivision of Sierpiński gasket graphs SD(Ŝn). The uniform subdivision of Sierpiński

gasket graphs SD(Ŝn) has order 1
2 (3

n + 3) + 3n and size equal 2(3n). These graphs are shown in

Figure 14 for n = 1, 2, 3.

Figure 14. Uniform subdivision of Sierpiński gasket graph SD(Ŝ1), SD(Ŝ2) and SD(Ŝ3).

Proposition 3.10. Let Γ be the graph SD(Ŝn), Then,

(1) NMε
1(Γ) = 8[76(3n) − 237].

(2) NMε
2(Γ) =

 9312, if n = 2;
4[416(3n) − 1419], n > 2.

(3) MNMε
1(Γ) =

 1704, if n = 2;
8[32(3n) − 75], n > 2.

Proof. Let Γ be the graph SD(Ŝn), Then, this graph has

|V(4)| = 3, |V(6)| = 6, |V(8)| =
3
2 (3

n
− 5), |E(6)| = |E(14)| = 6, and |E(16)| = 2(3n) − 12.

Hence, we have

NMε
1(Γ) = 3(42) + 6(62) +

3
2
(3n
− 5)(82) + 6(62) + 6(142) + 2(3n

− 6)(162)

= 1656 + 96(3n) + 512(3n) − 480− 3072

= 608(3n) − 1896.

The uniform subdivision of Sierpiński gasket graphs SD(Ŝn) has the following partitions which

illustrated in Tables 29 to 32.
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Table 29. The partition of the vertices in SD(Ŝn).
Type V4,6 V6,8 V8,8

Frequency 6 6 2(3n) − 12

For n > 2, we have,

Table 30. The partition of the edges in SD(Ŝn), n > 2.
Type E6,6 E6,14 E14,16 E16,16

Frequency 3 6 18 4(3n) − 33

and, if n = 2, we have

Table 31. The partition of the edges in SD(Ŝn), n = 2.
Type E6,6 E6,14 E14,14 E14,16 E16,16

Frequency 3 6 3 12 4(3n) − 30

Table 32. The partition of the vertices incident with edges in SD(Ŝn).
Type A4,6 A6,6 A6,14 8,14 A8,16

Frequency 6 6 6 6 4(3n) − 24

Therefore, the second and modified entire neighborhood indices, for n > 2, can be determined

through the following equations

NMε
2(Γ) = 6(24) + 6(48) + 2(3n

− 6)(64) + 3(36) + 6(6)(14) + 18(14)(16)

+ (4(3n) − 33)(162) + 6(24) + 6(36) + 6(6)(14) + 6(8)(14) + 4(3n
− 6)(8)(16)

= 6612 + 128(3n) + 1024(3n) + 512(3n) − 768− 8448− 3072

= 1664(3n) − 5676,

and

MNMε
1(Γ) = 6(10) + 6(14) + 2(3n

− 6)(16) + 3(12) + 6(20) + 18(30)

+ (4(3n) − 33)(32) + 6(10) + 6(12) + 6(20) + 6(22) + 4(3n
− 6)(24)

= 256(3n) − 600.

It is clear for n = 2.

�
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3.3.2. Uniform subdivision of the generalized Sierpiński graphs SD(Ŝ(n, C3)). The generalized Sier-

piński graphs SD(Ŝ(n, C3)) has order 3
2 (3

n
− 1) + 3n and size equal to 3(3n

− 1). These graphs are

depicted in Figure 15 for n = 1, 2, 3.

Figure 15. The generalized Sierpiński graphs for SD(Ŝ(1, C3)), SD(Ŝ(2, C3)) and SD(Ŝ(3, C3)).

Proposition 3.11. Let Γ be the graph SD(Ŝ(n, C3)). Then,

(1) NMε
1(Γ) = 3[111(3n) − 287].

(2) NMε
2(Γ) =

9
2 [177(3n) − 487].

(3) MNMε
1(Γ) = 3[69(3n) − 145].

Proof. Let Γ be the graph SD(Ŝ(n, C3)). Then, the distribution of the elements of this graph is as

follows

|V(4)| = 3, |V(5)| = 6, |V(6)| =
1
2 [5(3

n) − 21], |E(5)| = |E(8)| = 6,

and |E(9)| = 3[3n
− 5].

Thus, we have the following result

NMε
1(Γ) = 3(42) + 6(52) +

1
2
[5(3n) − 21](62) + 6(52) + 6(82) + 3[3n

− 5](92)

= 333(3n) + 732− 1593.

The partitions of the uniform subdivision of the generalized Sierpiński graphs SD(Ŝ(n, C3)) are

depicted in Tables 33 to 35.

Table 33. The partition of the vertices in SD(Ŝ(n, C3)).
Type V4,5 V5,6 V6,6

Frequency 6 6 3[3n
− 5]
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Table 34. The partition of the edges in SD(Ŝ(n, C3)).
Type E5,5 E5,8 E8,9 E9,9

Frequency 3 6 12 1
2 [3

n+2
− 57]

Table 35. The partition of the vertices incident with edges in SD(Ŝ(n, C3)).
Type A4,5 A5,5 A5,8 A6,8 A6,9

Frequency 6 6 6 6 6[3n
− 5]

Then, utility Definition 1.1, we get that

NMε
2(Γ) = 6(20) + 6(30) + [3(3n) − 15](36) + 3(25) + 6(40) + 12(72)

+
1
2
[3n+2

− 57](81) + 6(20) + 6(25) + 6(40) + 6(48) + 6[3n
− 5](54)

=
1593

2
(3n) −

4383
2

.

Also, by applying a similar procedure, we have

MNMε
1(Γ) = 6(9) + 6(11) + [3(3n) − 15](12) + 3(10) + 6(13) + 12(7)

+
1
2
[3n+2

− 57](18) + 6(9) + 6(10) + 6(13) + 6(14) + [6(3n) − 30](15)

= 708− 1143 + 126(3n) + 9(3n+2)

= 207(3n) − 435.

�

Conclusion

In this research, we introduced some new topological indices named the first, second and mod-

ified entire neighborhood indices. We investigated the prediction power of these indices through

regression analysis. The new indices exhibit a significant correlation with acentric factor (AF),

entropy (S), enthalpy of vaporization (HVAP), and standard enthalpy of vaporization (DHVAP)

for octan isomers showed in Table 5, and with π-electronic energy (Eπ), enthalpy of formation (EF),

and boiling point (BP) for benzenoid hydrocarbon compounds showed in Table 7. Furthermore,

we computed the new proposed topological indices for various standard graphs such as path,

cycle, regular, complete, and book graphs. In addition, we determined the value of the entire

neighborhood indices for some types of bridge graphs and Sierpiński graphs. Thus, according

to the high correlation which is demonstrated by these indices, this is evidence of the potential

for future use in various applications, such as designing medicines and obtaining new materials

through changes in the properties of the graph.
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Finally, as this is the initial representation of the first, second, and modified entire neighbor-

hood indices, many open problems and potential research areas require more investigation. This

includes computing these new indices for various graph operations, examining their vast ap-

plicability in many network types, such as social, biological, and technological networks, and

exploring their potential in several fields, such as drug discovery in medicine and material design

in engineering.
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