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Abstract. The g-difference operator is a basic tool in g-calculus, widely used in many mathematical and scientific
fields, such as statistical physics, fractal geometry, quantum mechanics, number theory, combinatorics, and orthogonal
polynomials. Its applications are also found in advanced sciences, like quantum theory, mechanics, and the theory of
relativity. In this paper, we define the extended g-difference operator of the second kind and its inverse. We further
derive the Leibniz theorem, Montmorte’s theorem, and several properties associated with the extended g-difference
operator of the second kind. Additionally, a formula for the sum of partial sums of higher powers of real numbers in

an arithmetic progression is constructed using its inverse. Numerical examples are given to illustrate the results.

1. INTRODUCTION

The foundation for a theory of difference equations based on the difference operator A is

defined as
Au(k) =u(k+1) —u(k),ke N=1{0,1,2,---}. (1.1)

Moreover, a number of authors ( [1], [8], [10], [18]), have proposed that the difference operator
A can be defined as
Agu(k) = u(k+ ) —u(k), k € [0,00), € € (0, 00), (1.2)

with no appreciable findings in the field of numerical techniques. An alternative approach to the
theory of difference equations was taken in 2006, yielding many interesting findings in the area of
Numerical Methods ( [12]- [16]), by using the definition of A as stated in (1.2).
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Moreover, applications of g-calculus have emerged in the last thirty years in approximation
theory. The well-known Bernstein polynomials were used in the first g-analogue by Saw Lupas in
1987. Further, in 1997, Phillips explored an addition option in the traditional Bernstein polynomial
g-analogue. Subsequently, some scholars proposed the g-extension of the highly exponential
type operators, such as Picard, Weierstrass, Bleiman, Szasz-Mirakyan, Meyer-Konig-Zeller, and
Baskakov. Also, a discussion on the approximation features of g—analogues for some standard

integral operators of Durrmeyer and Kantorovich type was conducted ( [3]).

In literature ( [2], [4], [11], [17], [19], [20]), mathematicians have introduced g-numbers, in-
cluding g-discrete distribution, g-difference equations, g-series, and g-calculus.
In ( [9]), the g—derivative operator, A, is defined as

u(kg) —u(k
Aqu(K) :—((Z)—UIE )

They also did not produce any noteworthy results in the numerical analysis. Recently, Chan-

,q € (0,00).

drasekar and Suresh ( [5]), defined A, by replacing A, as

kq) — €u(k
oty — D=ttt

for the real-valued function u(k), £ € (0, o) and derived numerous forms of arithmetic-geometric
progressions in the field of Numerical techniques.

In ([6], [7]), we defined the first-kind extended g-difference operator for real-valued functions
u(k) as

Aq(g)u(k) =u((k+0)q) —u(k) (1.3)

and developed the formula for the sum of real numbers of arithmetic progression in Numerical
Methods.

Stated on this background, we describe the extended g-difference operator of the second
kind and make use of its inverse operator to obtain the formula for fractional series in Numerical

Analysis.

2. Basic DEFINITIONS

In this section, we provide basic definitions and preliminary results for future discussion.

Definition 2.1. Let u(k) be a real-valued function. Then the extended second-kind q—difference operator of
Dy(e,,0,) 1 defined as

Dger (k) =u(((k+6)g+ b)q) = [u((k+ &)q) +u((k+&2)q)] + u(k),
where q, 61,6 € (0, 00). (2.1)

Lemma 2.1. The relation between Ay, ¢,y and E1ltut2) g

Noertr) = Fa(0,6) _ [EQ(G) + Eli(fz)] +1. (2.2)
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Proof. The shift operator E7(‘42) is defined as
EfR)y (k) = u (((k+ 61)q + £2)q)  k € [0,00). (2.3)
The proof follows from (2.1) and (2.3). m|

Theorem 2.1. For real numbers q, {1 and {», we have

Boertr) = Ba(er)Bg(ta): (2.4)
Proof. Equation (2.4) can be obtained using (2.1) and the relation E7(©) = BDyey + 1. O
Remark 2.1. For £1,¢{, € N(1),
q(t) q(t2)
DN e) = Z q(61)CnA" Z q(£2)Cu" . (2.5)
m=1 n=1
Proof. Using (2.2) and 1+ A,y = (1 + N Equation (2.5) can be obtained. o

Lemma 2.2. If u(k) and v(k) are any two real-valued functions, then
Aq(éﬁ,l’z) [au(k) + bU(k)] = ﬂAq(gllgz)M(k> + bA’/](flez)v(k>’
where a and b are any two non-zero scalars.

Lemma 2.3. Given any two real valued functions u(k) and v(k) # 0, we have
Dy, 0) [u(k)o(k)] = v(k) Dy, )1 (k)
+ [ ((k+ @)+ 2)a) (B0 - 1)
—u ((k+€1) q) Aggey) — 1 ((k+€2) ) Mgy | 0 (). (2.6)
Lemma 2.4. For any two real valued functions, u(k) and v(k) # 0,

N u(k)] [o(k) (E7) — 1) u(k) - u(k) (E9G-2) = 1) o (k)]
1btr) [v(kJ oM v((k+b)g) o((k+)qv(((k+&)q+0)q)

~ A [%} ~ Rt [%]

3. SuPERIOR GRADE FOR EXTENDED 4-DIFFERENCE OPERATOR OF THE SECOND KIND

This section establishes the generalized Leibniz theorem according to A, ¢,) and defines the

higher order of Ay, ¢,)-

Definition 3.1. The second order of Ay, ¢,) is defined as

2 —
Aq(fl,fz) - [Aﬂl(flfﬁ’z) (ALI(fl,é’z))] :
In general, the n™ order of Dy(e,,0,) 1 defined as

n n-1

Aq(fllfz) - Aqwl’&) [Aﬂl(fllfz)] '
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Remark 3.1. For g, {1, €2 € [0, 00) and for any two positive integers m and n,

m n _ n m
Aﬂ(flrfz)Aq(flffz) o Aﬁ(f’l,fz)AlJ(flrfz)'

Remark 3.2. Suppose u(k) is any real valued function then

A;”({,l’fz)cu(k) = cAthll{,z)u(k),
where ¢ is a constant.

Theorem 3.1. Given n is a positive integer and q, {1, and €, are positive reals. Then

2 [ n
n _ i[n ) (n—i
00~ 1L ()| o

m=1Li=0
and also
n - - ST+r ny\n n—s—r . n-r v
Al (k) = (=1)%+ (S) r) [u [kq2 +Y g4y fquﬂ . (3.2)
s=0 r=0 t=1 p=1
Proof. By Binomial theorem, we find
— [(gate) - (&) _1)]"
Ao = (BT = 1) (E7) —1)]. (3.3)
Equation (3.1) follows from (3.3). Further on operating both sides with u(k) and simplifying (3.3),
we get (3.2). ]
Corollary 3.1. For any two positive integers m and n,
m m m\(m m-s m-—r n
m n __ s+r 2m—s—r t+m—r
Aqm&)k = Z(—l) T (s)(r) kq +Z€1q+ —I—Zfqu .
s=0 r=0 t=1 p=1
Proof. The proof follows by considering u(k) = k" in (3.2). o
Lemma 3.1. If {3; and {»y, are positive integers with q(€1) = Y, q(t1;) and q(€2) = Y, q(€am) then
i=1 m=1
Bty = || [ (g0 +1) - 1} [T (4 +1)- 1] : (3.4)
i=1 m=1
Proof. Equation (3.4) follows by (3.3). O

Remark 3.3. The results are easily deduced from Ay, r,) and E10%2) as follows:
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Corollary 3.2. For the shift operator E1(01.2)
(t62) _ palt) _ pa(&2)]" — —1) (A1)
[Eoteta) — pa0) — @) (k) = ) (-1) ( )A (k). (3.5)

Proof. Equation (3.5) is followed by (2.2). O

Example 3.1. When ¢ and ¢, are expressed in degrees, the integer values should be taken only anticlock-

wise.
[Eq(¢1,¢z) _ palen) _ Eq(@)]“ sin(k) = [Aq(¢1,¢2) - 1]” sin(k). (3.6)

Proof. Taking ¢1 = ¢1, 2 = ¢ and operating u(k) = sin(k) in (3.5). ]
The discrete version of the Leibniz theorem in accordance with Ay, ¢,) is as follows.

Theorem 3.2. If u(k) and v(k) are any two real functions, then

AZ(Q,@) [u(k)o(k)] = Z (Z)Ag(fz) [A;(mu(k)AZ&:)v(qu + 6 Z qtﬂ : (3.7)

r=0 t=1

Proof. Define the operator E;’(m and Eg(f’z) as

N [u(k)o(k)] = u ((k+ €2) 9) o(k)

and
Eg(m [u(k)o(k)] = u(k)o ((k+ 2)q) - (3.8)
Hence, we get

Also, we define

_ pilt2) _ pil&2)
[Agie], = B =1 and [Ayq) ], = E5% -1. (3.10)
This implies
q(L2) p(L2)
A‘i(fz) E i E Y-
From (3.10), we get
— q(L2)
Byteny = [Bgien ], + [Agien ], B2 - (3.11)
Again operating A, ;) in equation (3.11) and using Binomial theorem we get equation (3.7). m]

Lemma 3.2. When an integer x is positive and a real valued function a(k) exists, then

A06) f
A(01.02) palty.6) . ,,,El(Aqwm)“)

| e e :
mﬂ[kq(gl,fz)] = [ q(ty,t2) ]H(O) = |e a(y,t2) [1(0)
gt 2

k=0
Proof. The proof follows from the relation E"Ou(k) = u ((k + €)q), a(k) = Efa(0) and (2.3). O

The following theorem is generalized version of Montmorte’s theorem for A, , ¢,)-
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Theorem 3.3. If the series Y, xX1(62)q (kq(£y,£,)) converges, then it can be expressed as

k=0
k
s kaQ(flfz)A[K + Ay 4+ Age
Zxkq(f1,€2)a (kq(1,62)) = Z ( q(€1,62) 'i(ler)l q( 2))
=0 =0 (1 _ xq(t’l,t’z))
Proof. The proof follows from the relation Eiate) — (Aq(gl) + 1) (Aq(gz) + 1).
Corollary 3.3. If the series Y, x*160q (kq(€,€)) converges, then
k=0
kq(6,0) A2 ‘
o0 co 1 (A +2A
q(0) q(é’))
Zxkq(f,f)a (kq(£,€)) = Z — a(0).
k=0 =0 (1 - xq(&f))

4. EXTENDED g-POLYNOMIAL FACTORIAL OF THE SECOND KIND

This section presents the relationship between the polynomial factorial and the g-difference

operator, denoted by A, ¢,)-

Definition 4.1. If n is a positive integer, then the extended q-polynomial factorial of second kind denoted

) g
by kq (b defined as

=

i) = (n) () _ [
kotene) = [(k+ 1) ‘ﬂq(gz) + [(k+ €2) q]q(m - [k + k)

Lemma 4.1. If m and n are positive integers, then

m o _ |11 m_l( (1)) (@"+(m-1))C . ((n—l))
Aroa _[qn—l o Vo) T a0 | K )

Proof. The proof is obtained using the induction approach on m and n.

Lemma 4.2. For the positive integers {1,{>,t and n,

[ 2 ((k-+ ) Y~V - et

(((k+ &))" =k"Y),ift = (1)
Aq(gllgz)kgn) =

qn—l qn—l
(k&) "™ =" it = g(82).
Proof. The proof is derived from (2.2) and (4.1).

[qn_l ((Ge+ e k) + —(q"“”‘”)“]

Lemma 4.3. For the real numbers q, {1, {, and any positive integer n,

m q' =1 (" +(n-1) b ()
Aq(€1/€2)kq(€1,€2) - Aq(t’l,fl)[ g1 (kq(ez)) + (k ) )

" -1/« (7" + (n=1)) b, n-1)
+ Aq(fz,é’z) [ (kq(m) + (k ) )

qn—l

(4.1)

(4.2)
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Also, if 1 = € = ¢, then
) 7' =1(ay\, (@ +n=1)C]( n)
Aq(&t’)kq(af) - 2Aq(€,€)[ g1 kq(e) + g1 kq(t’) :
Proof. The proof follows from (4.1). O

5. MAIN REsuLTS ON INVERSE OF THE EXTENDED §-DIFFERENCE OPERATOR OF THE SECOND KIND

In this section, we define the inverse operator and derive some interesting results using its

inverse.

Definition 5.1. The inverse of the extended q-difference operator of the second kind denoted by Aq

defined as,
if Dg(er,0)0(k) = u(k) then v(k) = A;&l,{,z)u(k) +cj,

and the n'™ order inverse operator denoted by A;(’z,l 0) is defined as

if Ag(fl,é’z)v(k) = u(k) then v(k) = A;(’}l,[z)u(k) +¢j,

where c; is constant, depending upon k € N¢(j), j = k - [%] L.
Remark 5.1. Let u(k) be a real-valued function. Then
-1 -1
Aqer ) [Aq(fl,fz)u(k)] * Aﬁi(fllfz) [Aq(gl'@)u(k)]'

Theorem 5.1. If k, € and q are positive real values, then

A+l

41 k—=¢Y g k—¢ Y 4

Z(r—l)u — = —f—Z(j*—r)u q]*+—tr_+11

"
r=2 1 r=1

A2 k -2 -2
=A u(k)|j1q({) —Aq(t,)u(k)hlq({) + A u(k)|qum),

q(6) q(6)
* 2j*
, -y La Tk e K
where fig(p) = qﬁ—:l  Joge) = qzt];l and j* = [Z] is the integral part of .

Proof. The proof follows from (5.1) and the relation

r Fr+1
j* 41 k—ftZlv/t -1 k-t tle q
2 = ; =
) Z;(T—U” — |t L T
r= r=1

18

(&r1,62)

(.1)

(5.2)
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Theorem 5.2. If k, € and q are positive real values, then

r JrHr+l
41 k—tY g -1 k-¢ Y, ¢
_ t=1 é’q > =1 fq
;(r Dl — =+ +;(] | —mm o
5.3
k—¢ ]i t k—¢ 2£ t "
:( k )_2 tzlq n tzlq
(q-1)? (q-1%" | | (q-1)%*
Proof. Let u(k) = k. From (5.1), we have
{q k
_1 _ .
Bieo) (k + q- 1) T g-12 ¢ (54)
The proof follows by (5.2) and (5.4). ]
Lemma 5.1. For A # 1, k > 2g¢€ and P (k) is any function of k, then
e ¥ ot " kf(fjnzr+l qt A+l
*+1 [ 1 k=¢Y g q,-*tf:u k—¢ Y 4
t:l . tzl
Z(T‘—l)/\ PT +Z(]*—T’)A PW
r=2 r=1
- 2|17 (k) + 7+ PR e
(/\Aq(€> (k) _ 1) (A q(¢) - 1) (/\Aq(() (k) _ 1)

Proof. Let Ay(e ¢ AKF(k) = A¥P(k), where P(k) = (AA'N’) (k) pa(6) — 1)2 F(k). Operating A;(lg p on both
sides of Ay AFF(k) = A¥P(k), we obtain

0

)
a7l Akp(k):AkF(k)+cj=(AAq<f<k>E" —1) P(K) +¢j.

(66

Now the proof follows from A, = E?(Y) 4-1 and the Binomial theorem. m]

Theorem 5.3. Let k € [0, 00) and j* = [’Z‘,] Then

, -1 , -1 ;-1
41 k=Y ¢ k=¢Y ¢ k—-¢Y ¢
r=2
Frl -1 F el -1 (5.5)
*-1 k—¢ tzl qt k—¢ tzl q
e = =
+), 0= B e EA e A B | s U
r=1
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-1

*Hr+l ,
|l |= 2| ———— |+ | ———
q]*+r+1 k 2]*

Proof. In (5.1) by taking u(k) = 1, we have

dgen (3) = [+ O+ 09 =2((k+ 097 + (07, 56

From equation (5.1), we obtain

- - - 1
Myl [(K+ 0+ 00 =2((k+ 09+ (07] = (1) +
The proof follows from (5.2) and (5.6). o

Theorem 5.4. Ifk € [0, o) and n is an integer, then

k—{’iqt k—féqt
t=1 t=1
4 a4 q+nt 7 tl|gtnt
E (r-1 -2

—~ k=LY, qt kY g
i g+ (n-1)¢ 7 tlla+m-1)¢

k=LY g
=+l

g+

~—

qg+<

q?‘

4+l 4+
k=t Y. g k=t Y gt
ﬁ%—f g+<€|q+nt qj*i—:rlﬂ%-f q+nt
1
x
T (] 7’) j*r+1 A+l
r=1 k¢ Y, ¢t k=t Y 4
ﬁ%—f g+Lelg+ n-1)¢ qj*i—ilﬂ%-é’ g+ (n—1)¢
A+l
k—¢ El qt
qj*+:+1 +nt
+ ~
A+l
k=t ¥ ¢
q,‘*:‘il + (n - 1)5
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10

* 17T 2%

k-¢ Y, ¢t k-¢ Y. ¢t
|+ nt |+ nt
] ]

_ [%] 2| — +|—5 (5.7)
=) Y 03 g
L 1 I | = E TS
Proof. Taking u(k) = k+ntf and v(k) = k+ (n—1) ¢ in Lemma 2.7, we have
k+nt ]
(5.8)

Baco) [m
:[ ((k+£€)g+1€)q+nt) s

((k+¢)q+nt) k+nt ]
((k+6)q+) g+ (n-1)t)

(k+0)q+ (=10  k+n-1)¢

Apply (5.1) in (5.8), we get
Al [ ((k+0)q+10)qg+nt) 5
1O+ g+ g+ (n-1)f)

B k+nt
Ck+(n-1)¢

((k+¢)g+ne) k+nt ]
(k+8&)g+n-1)¢) k+((n-1)¢

]—i—C]'.

The proof follows from (5.2) and (5.8).

Theorem 5.5. Ifk € [0,00) and n € N(1), then

k-3 g k=LY g
o T Tlla+L|g+nt T Tllg+nt
Y, (=1 ;
r=2 k=t Y. q' k=t ¥ q'
Tt lla+llg+(n+1)e g+ (n+1)¢
k=L % g
t=1
7 +nl
+ ;
k=Y gt
T+ (1)t
4l 4+l
=L k=0 L g
= =
o preE +llg+L€|qg+nt W+€ q+nt
+ (]* B 7’) *Ar+1 -2 *Ar+1
r=1 k= Y g k=t Y% ¢
ﬁ% g+LClg+ (n+1)¢ ﬁﬂ’ g+ (n+1)¢
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JrAr+1
k= Y g
t=1
gi*+rHl +nt
+ P+l
k-t Y ¢t
— e+ (n+ )¢
i* 1 T 2j*
k=€ Y g k=€ Y qf
| +nl |+ nt
7 q
_ [k k+ nt’l 5] -2 — +|—5 . (5.9)
T nt1) k% g k5 g
prl R R A | T (1)L

Proof. Taking u(k) = k+nt and v(k) = k+ (n+1) € in Lemma 2.7, we have

A k+nt
9060 | (n+1)¢

(((k+6)g+€)q+nt) ((k+ ) g+ nt) k4 nt ] (5.10)

[(((k+€)q+€)q+(n+1)€) (k+€)g+n-1)¢) k+(n+1)¢

Equation (5.1) using in (5.10), we have

Aie) [(((k+€)q+€)q+ (m+1)6) ((k+0)q+m-1)) k+(n+1)¢
| k+nt .
oo

Equation (5.9) follows from (5.2) and (5.10). O

((k+6)qg+¢€)q+nt) ((k+¢€)q+nt) k+nt ]

6. NuMEeRrIicaL EvaLuATION OF RESULTS

In this section, we obtain several fractional series using the inverse of extended g-difference

operators, along with appropriate examples.

The following example is an illustration of Theorem 5.2.

Example 6.1. Consider the series
85 85 85 85
s=1(z)+2(3)+3(z) -+ ()

85 85 85 85
+25(2%)+24(ﬁ)+23(ﬁ)+-“—i—l(ﬁ)
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In (5.3), by taking k = 79 and € = 3, we get

2%—1’ ;
79-3
25 ) q 34

=1 3q
Y (r-1) Tt +Y (26-7) .

226) 6.1)

26
79-3Y q| [79-3% ¢
(79 ) ) i =1
(q=1)% | | (9—-1)2¢2@ |

In particular, when q = 2 we have

26 52
79-3Y 2 79-3Y 2
=1 t=1
S=79-2 555 + 552

=79 + 11.999997466802597 — 5.999999999999981
= 84.999997466802616.

The following example illustrates Theorem 5.3.

Example 6.2. Consider the series

g _ 1( 7081 )_2(17666) (%) o ( 462004736 )_ ( 1842562048 )
74725 28175 68425 1817075464295 14689548132455
7359334400 29415510016 120397920206848

- ( 118130904838247) - (947510810202215 ) T (249020931804471365735 )

On substituting k = 61, { = 6 and g = 2 in (5.5), we get

r -1 r -1 . -1
1 61-6) 2! 61-6Y 2! 61-6Y 2!
t=1 t=1 t=1

11+r
61-6 Y 2! 61-6 ) 2! 61-6 ) 2!

9
+Y (10-7) —i— t6(2+6(2| —2|| 62| |
r=1

11+4r 114r
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1 210 220
S=—-2
61 +

10 20
61-6Y 20| |61-6Y 2
t=1 t=1

= 0.01639344262295082 + 0.16766270978305362 — 0.08333381679603466
= 0.10072233560996978.

This example serves as an illustration of Theorem 5.4.

Example 6.3. Consider the fractional series

3696)_2(1464)_(636)_.“_ 9( 4529860608 )
7163 13949 43993 50096022907760639
_18( 18119417856 )_17( 72477622272 )_1 6( 289910390784 )
400770085790638079 3206168296454799359 25649376812188139519
311288806247069908992
T (902458288606356895746195676200959) '

Heren = =12,k = 58, = 3, and q = 2 can be substituted in (5.7) to get obtain

le(

58-3 )f 2t 58-3 )f 2t 58-3 ﬁ 2t
0 s—— +3|2+3]|2-36 —— +3|2-36 S —36
Z (r-1) p -2 - 4 _
= 58-3 Y, 2! 58-3 Y, 2! 58-3 Y, 2!
s—— +3[2+3|2-39 s—— +3[2-39 5—— — 39
20+4r 20+r 20+
58-3 Y 2! 58-3 Y 2! 58-3 Y 2!
" —— +3[2+3|2-36 —smr— +3|2-36 —5— — 36
+ (19-7) - -2 - + -
; 58—320ZJr 2t 58—3205 2t 58-3 zoi 2t
—— +3[2+3|2-39 —— +3]2-39 —— — 39
19 7 [ 38
58-3 Y, 2! 58-3 Y 2!
—— |36 ——|-36
22
F= [—] -2 +
19 58-3 E 2t 58-3 % 22
—— -39 ——|—39

= 1.1578947368421053 — 1.8666663049758707 + 0.9333333333329884
= 0.224561765199223.

The subsequent example clarifies Theorem 5.5.
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Example 6.4. Consider the fractional series
Fo ( 175152 ) ( 2544624 ) ( 25806384 )

20924365 244017235 4532162005
L1 2( 10560576640823280 ) ( 95045361291055152 )
27796801854126208371787 750507780983868926252605
1 O( 855408766190433264 ) ( 7698680439426710064 )
20263657264993711846847395 547118270761074774586047685

331402982164982171103515184 )
154522292488969864365468110060696904805
Taken =10,k =73, = 6,and q = 3, in (5.9), we get

73-6 )f 3t 73-6 i 3t 73-6 f; 3t
=l 1 6[3+6(|3+60 =1 1 6[3460 =1 160
13 3 3 3
2., (r=1) y 2 ,
— 73-6 Y, 3t 73-6 Y, 3t 73-6 Y, 3t
—— 16 3466 —— +6(3+66 S—— + 66

13+r 1347 13r
76 r 3 73-6 L 3 73-6 ¥ 3
1 —pn T6[3+6(3+60 —a— +6[3+60| | —E7— +60
+Y (12-7) N

134r - 13+r 134r
r=1 73-6 Y, 3t 73-6 Y, 3t 73-6 Y, 3t
[[[T‘J +6]3+6 3+66] {{3”—;’ +6]3+66] {T’J +66]

o

3+6

12 ] [ 24
73-6 ), 3 73-6 Y 3
—— [+ 60 —— |+ 60
1
P = [133] - 2 12 + 24
73-6 Y 3t 73-6 Y, 3t
—— [+ 66 —— | + 66

= 0.9568345323741008 — 1.7894742540980573 + 0.8947368421057993
= 0.062097120381842785.

7. CONCLUSION

This paper develops an advancement in Numerical Analysis regarding some conclusions on the
numerical solutions of extended g-difference equations governed by (5.2) in conjunction with the
function u(k) examination. Additionally, the theorem mentioned in this paper can be used to
compute the sum of many fractional series quickly by choosing a big value for k and a tiny

positive value for g and ¢.
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