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Abstract. The article explores Sard’s problem of constructing optimal quadrature formulas in the space W£4’O) (0,1) by
using Sobolev’s method. This problem involves two steps: first, calculating the norm of the error functional, and then
finding the minimum of this norm by the coefficients of the quadrature formulas. The norm of the error functional is
computed using the extremal function. Then, by using the method of Lagrange multipliers, a system of linear equations
for the coefficients of the optimal quadrature formulas in the space W§4’0) (0,1) is derived, and the existence and
uniqueness of the solution to this system are discussed. The paper then proceeds to construct the optimal quadrature
formula using the discrete analogue D4 (hg) of the high-order differential operator. Finally, the optimal quadrature

formulas that are exact for exponential-trigonometric functions are obtained.

1. INTRODUCTION AND PROBLEM STATEMENT

Quadrature formulas are widely used in various sections of mathematics and its applica-
tions. In obtaining a discrete approximation, a crucial requirement is that the quadrature formula
closely approximates the given definite integrals. Such formulas can be obtained using variational
principles. Therefore, constructing lattice optimal quadrature formulas on classes of differentiable
functions using the variational method is one of the pressing problems of computational mathe-
matics. The problem of optimizing numerical integration formulas in the variational approach is
the problem of finding the minimum of the norm of the error functional on a given space of func-

tions. The variational approach to optimizing numerical integration formulas involves finding the
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minimum error functional norm within a given function space. The problem introduced by S.M.
Nikol’skii [13], [14] involves minimizing the error functional’s norm using coefficients and nodes.
On the other hand, the problem by A. Sard [12], [15], [16] focuses on minimizing the norm of the
error functional by modifying coefficients while keeping the nodes fixed. The solutions of Nikol-
skii’s and Sard’s problems are called the optimal quadrature formula in the sense of Nikol’skii and
the sense of Sard, respectively.

In this paper, we study Sard’s problem of constructing optimal quadrature formulas in Hilbert
space.

We indicate W;L'O) (0,1) the class of functions ¢ defined on the [0,1], which possesses a contin-
uous third derivative on [0, 1] and fourth derivative is in L, (0,1).

The class W§4’0) (0,1) under the pseudo-inner product

1
(0o = (0% @)+ () (9 () + p () o (11)
0
is a Hilbert space if we can find functions that are different from the equation’s solution f®* (x) +

f (x) =0 (see, [1]). Thus, W§4’0) is the Hilbert space equipped with the norm

1/2

1
lpllysor = { f (¢ (@) +<P(X))2dx] (1.2)
0

corresponding to the inner product (1.1).

For a function ¢ from the space W§4’0) we consider a quadrature formula of the form

! N
f p(x)dx =) Cop(xg), (13)
0

p=0
where Cg and x; are called the coefficients and nodes of formula (1.1), ¢ is an element of the Hilbert
(40)
space W, (0,1).
The following difference between integral and quadrature sum
! N
() = [ otodx=Y Cop(x) (1.4
0 p=0

[o¢]

is termed the error of the quadrature formula (1.3) and (¢, ) = f ¢ (x) ¢ (x) dx. This difference

corresponds to the error functional ¢, which has the form
N
£(x) = £ (x) = ) Cpo(x - xp), (1.5)
p=0

here ¢ 1] is the characteristic function of the interval [0, 1], 6 is Dirac’s delta-function.
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According to the Cauchy-Schwarz inequality, the absolute value of the error (1.4) is appraised

by the norm

1€l y0- = sup  [(€,)| (1.6)
’ ||<P||W£4,o):1

of the error functional ¢ as follows

1€ @) <kl o0 1150

4,0)

(40)* 15 the conjugate space to the space W, .

where W2

Sard’s problem on the construction of optimal quadrature formulas in the space W§4’O) (0,1)

which satisfy the equality

o

¢

= i(I;lﬁf”f”Wg;,o)», (17)

(4,0)+
WZ

i.e., to find the minimum of the norm (1.6) of the error functional ¢ by coefficients Cg for fixed
nodes xg.

This problem consists of two parts: first calculating the norm (1.6) of the error functional ¢ in the
space W§4’0)* and then finding the minimum of the norm (1.6) by coeftficients Cg for fixed nodes x;.

There are several methods for constructing optimal quadrature formulas in the sense of Sard,
for example, the spline method [9] [17], [20], [21], [22], [30], the @-function method (see, for
example, [2], [8], [10], [11], [18], [19]) and the Sobolev method [26], [27], [28], [29]. In different
spaces, based on these methods, Sard’s problem has been studied by many authors (see, for
example, [1], [5], [6], [7], [23], [24], [25] and references therein).

One of the main goals of this paper is to study Sard’s problem of constructing optimal quadrature
formulas of the form (1.3) in the space W§4’0) by the Sobolev method. As a result, we obtain an
optimal quadrature formula that is exact for the basis functions of the norm kernel (1.2). Here, the
basis functions consist of exponential-trigonometric functions.

The paper is organized as follows: Section 2 presents the extremal function, which corresponds
to the error functional ¢. Section 3 calculates the norm of the error functional using this extremal
function, thereby solving the first part of Sard’s problem. In Section 4, the system of linear equations
for the coefficients of optimal quadrature formulas in the space W§4’0) is discussed, along with the
existence and uniqueness of the solution to this system. Section 5 details the obtained optimal

quadrature formula exact on exponential-trigonometric functions.

2. EXTREMAL FUNCTION OF THE ERROR FUNCTIONAL

To find the norm of the error functional (1.5) of the quadrature formula (1.3), we will use
the extremal function of this functional

The function 1), satisfying the equation

(6pe) = el gs0 - [apell g 2.1)

is called the extremal function for the functional ¢ [26], [27], [28], [29].
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Since W§4’0) is the Hilbert space then, by the Riesz theorem on the general form of a linear
(4,0)«

continuous functional on Hilbert spaces, for the error functional ¢ € W,

function ¢, € W§4’0) such that for any ¢ € W£4’0)

(6 @) =< e, 9>, 60 (2.2)
2

there exists a unique

following equality is fulfilled

and ||€ ||W<4,0>* = ||1,bg”w(4,o), where < ¢y, >0 is the inner product of two functions 1, and ¢ from
2 2 2

W§4’O) space. Recall that the inner product < 1, (P>W£4/O) is defined by (1.1). In particular, from (2.2)

when ¢ = ¢y we have

(€pe) =< Yo >0
= llwelfsgor = Iwellyon - 1€l s0- = 1612 o

From this, it is clear that the solution 1), of equation (2.2) satisfies equation (2.1) and is an
extremal function. Thus, to calculate the norm of the error functional ¢, we must first find the
extremal function 1, from equation (2.2), and then calculate the square of the norm of the error

functional ¢ as follows

“5”?/\/;4’0)* = (f, EW) . (2.3)
Let us solve equation (2.2). Integrating by parts the right side of equation (2.2), we have
1
(o) = [ (0 @+ 208 0 + 9 () ()
0
1
+ Z e () + 9 (1) 9 () (2.4)
0
From (2.4), taking into account the uniqueness of the function 1, we have the following equation
®) )
Pr () 20 (1) + ge(¥) = £(x) 25)
with the boundary conditions
(@+s (s) x=1
@0+ @) =0, s=03 29

It should be noted that in work [3], the following result was obtained for solving the boundary
value problem (2.5) - (2.6).

Theorem 2.1. The solution of equation (2.5) with boundary conditions (2.6) is an extremal function y, of
the error functional € of the quadrature formula (1.3) and has the form

e (x) = € (x) * Ga(x) + Ya(x)
, where Gy (x)is Green’s function, i.e., the fundamental solution of the equation

Gy (x) +2G, (x) + Ga(x) = 6(x) 2.7)
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and is expressed as follows

S0 [ o[ )2 e

8 2 2 M 2

SNEAMEA) o

G4(x) =

2
V2 2 V2 2 \2 2 Na b
Ya(x) = rleTz" cos (%/_x) + rzesz sin (%/_x) + r3e_72x cos (7\/_3() + 1’4€_sz sin (%/_x) , (29
r1, 2, Y3 and ry are constants.

Since the error functional ¢ is defined in the space W§4’0)

{5
)

({’e 2"cos(— ) (2.12)

|
o e 5

This means that our quadrature formula will be exact on functions:
e, (V2 2. (V2 e, (V2 e, (V2
ezvcos(—-x|, ez sin{—-x| e Flcos|—-x|, e ='sin|—-x|.

3. THE NORM OF THE ERROR FUNCTIONAL

, the following conditions must be

satisfied
(2.10)

The square of the error norm for the functional (1.5) can be calculated by determining the value
(¢,1¢) of the error functional £ on the function . First, we need to use equalities (2.10) - (2.13) to
derive this value. To do this, first, using equalities (2.10) - (2.13), we obtain

(¢, Ys(x)) =0,

where Yy (x) is the function defined by (2.9). Then, using (2.9) we have

1P = (€)= [ €@ G +Yild = [€@IEEGWlax, G

where G4 (x) function defined by (2.8).
Now for the convolution in (3.1) taking into account (1.5) we obtain
1

x N
(@G0 = [ €W Gix-ndy= [ Gilx-v)dy-Y CGa(x ).

0 p=0
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Then the square of the norm of the error functional ¢ is reduced to the form

N 1 1
NP _Zc,; fG4x xg) + Ga (x5 — x) |dx - ZZC/;C Gal(xs —x,) ff@x y)dxdy.
0 0

0 p=0y=0
(3.2)
Since Gy (x) is an even function, i.e.
G4(x5 - x) = G4(X - Xﬁ)
then, taking into account the last equality, from (3.2) we obtain
11 N 1
H{,| W£4,0)* Z Z CpCyGy(xp—xy) + ffG4 (x — y)dxdy — ZZ Cs fG4(x xg)dx. (3.3)
= 0 0 p=0 %

Thus, the first part of Sard’s problem on the construction of optimal quadrature formulas in the

(40)

space W, is solved. Next, we consider the second part of the problem.

4. WIENER-HOPF TYPE SYSTEM FOR FINDING OPTIMAL COEFFICIENTS

Let’s minimise the square of the error functional’s norm (3.3). It is known that the error
functional ¢ meets conditions (2.10) - (2.13). The norm’s square (3.3) of the error functional ¢
depends on many variable coefficients Cg (f = 0,N) from the quadrature formula (1.3).

To find the conditional minimum point of the square of the norm of the error functional (1.5)
under conditions (2.10) - (2.13), we use the method of undetermined Lagrange multipliers. Let us
denote C = (Cp, Cy,...,Cn) and r = (rq,72,73,74).

Let’s consider the following function

¥(C,r) = 1€ = 271 (5, e%x cos (?x)) —2r (5, egx sin (?x))
—2r3 (5, e—%x cos (?x)) —2ry4 (5, e_g" sin (?x)) .

Equating to zero the partial derivatives of the function ¥(C,r) by coefficients Cg(f = 0,N)

and rq, 72, 3 and r4, we obtain the following system of linear equations

N
Y CGalxp—x,) + Yalxp) = falxg), f=0,1,...,N, (4.1)
y=0

Z Cye? Py cos( \/Ex}) = %eg (sin g + cos %) — %ﬁ, 4.2)

N
Vi V2
Z CyeszJ’ sin(%xy) = %eTZ (Sin V2 —Ccos %) + g, (4.3)
=0
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icye—% cos (%cy) _ V2 (sin M cos %) + 2 (4.4
=
ZC R sm(T\/_x ) % %e_g (m% + cos g) (4.5)
where fi(s) =1 2 cos (%.Xﬁ) Ch(%xﬁ) - 5 cos (72 (1- xﬁ)) ch(T2 (1- Xﬁ))
_M Sin(g (1- xﬁ)) ch (% (1- xﬁ)) + M cos (% (1- xﬁ)) m(% (1- xﬁ))
W ERNE TSR WER S

G4 (x) and Y4 (x) defined by Theorem 1.

We notice that the system (4.1) - (4.5) is called the discrete system of Wiener-Hopf type [26],
[27], [28], [29].

It is worth noting that the study in [26], [27], [28], [29] investigated the existence and uniqueness
of an optimal quadrature formula of the form (1.3) in the sense of Sard in Hilbert spaces. The
difference system (4.1) - (4.5) has a unique solution for any set of different nodes x4, § = 0,1, ...,N,
when N > 3. This solution provides the minimum 1€]]> as determined by equality (3.3) under
conditions (2.10) - (2.13). The solution for this type of difference systems’ existence and uniqueness
was also studied in [26], [27], [28], [29].

Further, we consider the case of equally spaced nodes. Suppose x3 = hf, f = 0,1,..N, h =
= N=12..

We suppose that Cs; = 0 for § < 0 and § > N. Then, using the convolution of two discrete

argument functions ¢ (hB) and ¢ (hB) (see, [26], [29])

p(hp Z p(hy) - (hp=hy),

y=—00

we will rewrite the system (4.1) - (4.5) in the following convolution form:

Cp*Ga (hB) +Ya (hB) = fa (hB), p=0O,N, (47)
N
e, (VI T NI, \E) A3
;)Cye 7% cos Txy) =5 2 (sm - + cos T) - (4.8)
N
Mo (V2 N2 w2 V2) | V2
Z(‘)Cye 7% sin Txy) =—5e 2 (smT — oS 7) + - 4.9)
N
Z Cye_gx?’ cos %xy) = ge_g (sin % — cos %) + %, (4.10)
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)

sin — + cos — (4.11)

ic e_gxy sin ﬁx o ﬁ — ﬁe_
4 1 ) 2 2 2

y=0 2

where G4 (hB), Y4 (hB) and fi (hB) are defined by (2.8), (2.9) and (4.6), respectively. There are N + 5
unknowns Cg (B =0,1,...,N), r1, 2, 13,74 and N + 5 linear equations in the system (4.7) - (4.11).

By using the Sobolev method to solve system (4.7) - (4.11), we require Dy (hp) a discrete analogue

of the differential operator + 2 + 1, which should satisfy the equality

Dy (hB) + Gy (hB) = b4 (hB), (4.12)

where Gy (hf) is determined by formula (2.8) and

1, =0, 1
64 (hB) = h=—, N=1,2,..
a4 (hp) {O,,Bth, N

In this regard, in the work [4] a discrete analogue Dy () of the differential operator < I .+ 2 pre _——
satisfying (4.12) is constructed and some of its properties are investigated.
Further from [4] we have:

Theorem 4.1. The discrete analogue of D4 (hB) of the differential opemtor S 245 0 = + 1 has the form:

3
Y A AP gl s 2,
k=1

~|

Dy (h) = 1+ kiAk, Bl =1, (4.13)

3 4
F1+k217,f, =0,

where K, F1, Ay (k=1,2,3) known and h is small parameter, Ay (|Ael <1, k =1,2,3) are roots of the
polynomial Pe (M), which are given in the work [4].

Theorem 4.2. The discrete analogue Dy (hf) of the differential operator <5 o + 2 + 1 satisfies the following
equalities

Di[f) ¢ ¥l cos( L 4] =0, Difplee¥¥lsin( L) <o,
Dilf] e ¥l cos( L ) =0, Dlg)+eFWlsinZ ] =0,
Du[f]+ 8¢ cos (2 1) =0, D+ 41 ¥ sin (L) =0,
D[4+ 70 cos (L) =0, D8}« [ple 7 sin( 4] =0

Here [B] = hp.
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5. SOLUTION OF THE DISCRETE WIENER-HOPF SYSTEM

In this section, we present an algorithm for determining the exact solution of system (4.7)
- (4.11) using the discrete analogue Dy (1) of the differential operator d 42 d44 + 1

We introduce the following functions

S (hB) = Cp = Gy (hB) (5.1)
and
u (hB) =9 (hB) + Y4 (hB) (5.2)
Then, considering equation (4.12), we can determine the optimal coefficients Cy as follows:
Cp = Da ()« (). (5.3)

If we find the function u (hB), then the optimal coefficients are determined using the formula (5.3).
To calculate the convolution (5.3), we need to find the representation of the function u (hf) for all
integer values of the variable 8. From equation (4.7), itis evident that u (hB) = fa (hB) corresponds
to hp € [0,1].

Now we need to find the representation of the function u (hB) for f < 0 and g > N. Using the

formula (2.8), we calculate the convolution

9 (hB) = Cy»Ga (1)

for hB ¢ [0,1].
Let p < 0, then taking into account equalities (4.8) - (4.11) we have

S(hp) = Ga (hp) *Cp = {ble 2 hp cos(ihﬁ) + bre? Fhp sm( \fhﬁ)
+b3e_¥hﬁ cos (?hﬁ) + b4e‘¥hﬁ sin( \/_hﬁ) \/—hﬁ o8 (%hﬁ) & (%hﬁ)

X (2] 28] + 2 (%l i) )sn (2 -1

- ‘/E:ﬁ sin(§ (1- hﬁ)) ch (? (1- hﬁ))} 5.4
and for p > N
S (nB) = bre "% cos (ghﬁ) + bye £ sin (?hﬁ)

_i_bse—‘/Tihﬁ cos (?hﬁ) + b4e_¥hﬁ sin( \/_hﬁ) \/_hﬁ 08 (%hﬁ) sh (¥hﬁ)

N (\/‘) (\/_) ‘/_hﬁ (ﬁ(l_hﬁ))sh(§(l—hﬁ))

16 — "B|eh\ B+ 2
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2 (0 -mp))en (L 1-1p), 69

here by, by, b3 and by are unknowns.

Now we introduce the following notations
rp=ri—by,ry, =rp—by, 13 =r3—b3, ry =r4-by,

1l =ri4by,ry =r+by,ry =r3+bs, v =r4+by
Then, taking into account (5.2), for u (h) we have

s1n( \/_hﬁ)(rze 5hp +7r e‘_hﬂ)

—|—Cos(‘/_hﬁ)(1’ I I ezhﬁ)

_Q4 (hﬁ) ’ ﬁ <0,
u(hB) =1 f (hp), g=0,1,.,N, (5.6)
sin(%— ﬁ) (r e7 2ig 4 r %ﬁhﬁ)
cos(T‘/_ )( o= £ 4 rre\/TEhﬁ)
+Q4 (hB B >N,
where 7 7
h h
Q4 (hB) = 165 co s(?hﬁ)s (ihﬁ) ﬁ ——sin (ihﬁ) ( \/2 [3)
h h
+ ffc s(§(1-hﬁ>)sh(g (1—hﬁ)) V2 ﬁs (‘!(1 hﬁ)) (% (1—hﬁ))
and 1, 15, 13, 1y, ;r, ;r , ;r and r;“ are unknowns. From here:
) (rl—l—r;r), %(1’2—1—@),
=3 (rg —I—r;), ry = %(r; +rI),
1 1
by = E(rf —r;), by = E(r;r —r;),
1 1
by = E(r;—rg), by = E(rj—r').
Since for hp ¢ [0,1], Cg = 0, then
Cp = Dy (1) +u () =0, (k) ¢ [0,1]. 57)
—

From here we get a system of linear equations for finding unknowns VR VR CYE SV AR PR
and 7 1

From (5.6) for f = 0 and f = N we obtain

(5.8)
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Bo b logg M2 N2 V200 V2 V2 N2 N2
2T T T 2 ' 2 o'
% - % cos %ch%
F3 = BN
e2 cos 72
Now we have six unknowns r;, 3, 1y ;“ , r3 and r . From equation (5.7) for p = -1,-2,-3

and f = N+ 1, N+ 2, N + 3, and considering (5.6), we can derive a system of six linear equations

for Yy, 15, 1y, ; , ;’ and r+ Since this problem has a unique solution, the main matrix of this

system is non-degenerate
Solving system (5.6) for p = —=1,-2,-3 and f = N+ 1, N+ 2, N+3, we find 15, 15, 1], 75, ;r
and 1’:. Then using (5.2) we find ] and rl . From (6.3) forp =0,1,..., N

Cﬁ—T+ZD4 h[-H—hy)[r e \thycos(ihy)—rze 2thm(T\/_ )

r=

+rye £ cos (ihy) —-rye P sin (%hy) + ! cos (% (

5 1+ hy) Ch(%(l-ﬁ-h)/))—

|
V2 ) h(ﬁhy)Jr \Ehy sin(%hy)ch(%hy)

+1cos —hv]c
2 2 2

<—>< s @mhw) [ Fom)

( 1+h7/)] Z h(N+y-pB))x

_—\5 (112 21) cos (?hy) sh(?hy) -1 +% cos (? (1+ hV)) ch (? (1+ hV))] , (5.9)
where
8 3 A (1+ M)
T=2 F1+2+k; Ai(l—A:)

Thus the following is true.
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Theorem 5.1. The coefficients of optimal quadrature formulas of the form (1.3) with equally spaced nodes
in the space W§4’0) (0,1) are expressed by formulas

_ o 8y Ay -
Co=T+ , cﬁ_T+EZA—[A M+ AN,

3 Ak N
+ 2 M AN
k=1

»
Il
—_

where

Q1 (h) = r;[%’l cos (?h) - r;e‘gk sin (ﬁh) + rge‘/TEh cos (ﬁh) - r_e‘/TEh sin (%h)

3 cos(§ (1+ h))ch (% (1+ h)) ~ 1+ cos (%h) ch( \/ih)

1
2
SRR WYl R e PR

n|—heh| —=h —h
+£sm(\/_(1+h)) h(%(l%—h))—ﬁco ( (1+h)) h(%(lﬂl))f

16 16
Qo (h) = rfeTf(”h) cos(% (1+ h)) +rye R (1) sin(% (1+ h))
(% (1 +h)) e E0h) sin(% (1 +h))

o ) ) £

Nlﬁ

_\2
—l—r;“e 7 (14h) cos

+§COS Thc 7h+ 16 I’ITI/IC

SLESTIN A PR R S

(1+h))ch(\/§

7(1+h)),

2
NT e%ih (cos \/TEh —sin \/TEh) /‘\ieTf (cos ‘é_h + sin %= ‘/— ) 2Ax e V2h

(e ‘/Eh)\,% —2Ake2 " cos TZh + 1) e‘@’/\i — 22" cos Tzh + 1)

o2h (cos M2 4 sin “/_h) 2N V2 /\ie#h (cos %h —sin ﬁh)
_ + ’
(Ai —2\e T 2h cos ih + e‘/_h) (/\i — 2\ 2h cos ih + e‘/_h)

(r; + }1)( cos \z/_h /\k)
A2 -2\ Fhcos Zh eV A2~ 206N cos L 4 ¢V

- N2 \2
T‘f(h D cos \2/_ (h + 1) /\ke_\/TE cos %E (1’3 + %) (e 71 cos Th - /\ke\/ih)

4(Ai —ZAkeTh cos £h+e\/_h) e‘/ih)\i —2Me2 7 " cos ‘{h—i— 1

V2, .
r;eTh sin %h

+
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; " sin \é_h e % (141) o5 12 ‘/— (1+h) — Aez 142 cos %E

- +
e\@l/\i - ZAkeT cos #h +1 4 (e \@‘/\2 ZAke% cos #h + 1)

r

\2 e P14k (cos \/75 (1+h) —sin \[ (1+ h)) Ae? £ (142n) (cos %5 —sin \/TE)

32 AZe Va2 2/\1(6%2}[ cos %Eh +1 AZe Vi ZAke%Eh cos %Eh +1
P 0-1) (sm V2 (1 + h) + cos L2 ‘/_ (1+ h)) Ae™ 2 (sm V2 4 cos ‘{)

- +

Ai—2/\ke 7! cos i_h+e\5h /\i—2Ake I cos ih—ke‘@’

1
— |, k=123
N2
e 2h o T‘/_h Aee V2t (rl+ + %‘) (e 2 (141) cos %E (1+ h))
Ne = A + T
4 (e ‘/Eh/\i - ZAkeT cos TV_h + 1) e‘@%z 202" cos Fh+ 1

(rzr + }1) (/\ (142 o %E) ry (e F () gin 12 ‘/_ (14 h) — Ae F(420) giny %E)

eVIA2 27 e ¥h cos L+ 1 e VA2 — 20 e ¥ cos L+ 1

rf (eg(h‘l) sin % (1+h) - )\ke‘% sin \f) \/—e 3 (cos V2p _sin gh) — Age V2

+
22 = 2040 cos L + ¢ V2 32 220V 200 F N cos L+ 1
\/—e ¥ (cos \é_h + sin \é—h) Ak (rg + 411) (eg(h—l) cos ‘é_ (h+1) - )\ke—g CoS %E)
e AZ— 2/\keTh Cos \/_h + e V2 AZ - ZAkeTzh cos gh + e V2
" cos ‘/_h Ak 1

¥ - —Q3(h)] k=1,2,3.

4 (A]% - ZAkeTh oS %zh + e\/ih) 1=

6. CONCLUSION

Thus, in this paper, we used the Sobolev method to develop an algorithm for solving

a system of algebraic equations that determines the coefficients of quadrature formulas of the
form (1. 3) To achieve this, we used the discrete analogue D4 (hf) of the differential operator
xS + 2 = 1+ 1 to solve the system (4.7) - (4.11). We then obtained explicit expressions for the
optlmal coefficients Cs and used them to construct an optimal quadrature formula of the form (1.3)
in the space W§4’O) (0,1). Itisimportant to note that the optimal quadrature formula of the form (1.3)

in the space W£4’0) (0,1) is exact for the exponential-trigonometric functions.
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