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Abstract. This article’s objective is to progress the field of generalized fuzzy topological spaces, particularly generalized
fuzzy T spaces. Various types of these spaces are introduced and examined. We investigate their hereditary, productive,
and projective properties, and demonstrate that these properties are preserved under bijective generalized fuzzy
continuous generalized fuzzy open mappings. Additionally, we explore these concepts in the context of initial and final

generalized fuzzy topological spaces.

1. INTRODUCTION

In 1965, Zadeh [24] presented The idea of fuzzy sets, which have subsequently demonstrated
valuable in addressing a variety of real-world physical problems (see, for example, [4-5], [13], [25]).
The concept of fuzzy sets has provided a natural foundation for the development of a new branch
of mathematics known as fuzzy topology. The field of fuzzy topological spaces has emerged
as a vibrant field of mathematical research (see, for example, [7], [9], [12], [15-17], [21-23], [26]).
The idea of a fuzzy topological space was initially proposed by Chang [9]. Subsequently, many
mathematicians have contributed to the advancement of fuzzy topological spaces. For instance,
A. Cséaszér [6] presented the notion of generalized topological spaces, and Chetty [10] extended
this to include generalized fuzzy topological spaces. Later, several studies (see, for example, [2-3],
[8], [10-11], [14], [20]) further developed and explored the concept of generalized fuzzy topological
spaces. Separation axioms are a key component of generalized fuzzy topological spaces, with the

generalized fuzzy T, type being one such axiom that has already been introduced in the literature.
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Developing the study of generalized fuzzy topological spaces is The aim of this work, with
a particular focus on generalized fuzzy Ty topological spaces. In this work, we introduce new
concepts related to generalized fuzzy Ty spaces and explore the relationships between them.
The format of the paper is as follows: A few preliminary results are shown in Section 2, and gen-
eralized fuzzy Ty spaces are introduced and discussed in Section 3, along with the relationships
between these concepts. In Section 4, we introduce the idea of a subspace in generalized fuzzy
topological spaces and demonstrate that hereditary, projective, and additive properties apply to
these new concepts of generalized fuzzy Ty spaces. Section 5 explores how our concepts of gener-
alized fuzzy Ty spaces are maintained under bijective generalized fuzzy continuous generalized
fuzzy open mappings. In Section 6, we discuss and examine a generalized lower semi-continuous

function, along with initial and final generalized fuzzy topological spaces.

2. PRELIMINARIES

This section provides essential concepts needed for the subsequent discussions. In this work,

the closed unit interval [0, 1] is denoted by I, while non-empty sets are represented by X and Y.

Definition 2.1. [24] A fuzzy set in X is a function from X to I. Ox and 1x represent the fuzzy sets defined
by Ox(x) = 0,and 1x(x) = 1,V¥x € X. U, V, W etc denotes the fuzzy sets on X. IX represents the collection
of all fuzzy sets on X.

Definition 2.2. [16] The complement of U, represented as U, is specified by U°(x) = 1x(x) - U(x) =
1—U(x), for every x € X.

Definition 2.3. [16] Given an indexed set | and a group of fuzzy sets {Hy |k € J} in X, the union and
intersection of these sets are defined, respectively, by:

(Ukey Hr) (x) = V{Hk(x) 1k e ]}, Vx € X

(MyeyHi)(x) = A{Hk(x) k€ J}, ¥x e X.

Definition 2.4. [16] A fuzzy singleton in X is a fuzzy set that is 0 for every element except one, where it
takes a value of a (with0 < a < 1). It is represented by x,, where x is its support. If « = 1, it is called a
crisp fuzzy singleton.

The collection of all fuzzy singletons of X will be referred to as FS(X). We say that two fuzzy singletons
Xa, Yp are distinct if x # y or a # p.

Definition 2.5. [16] The fuzzy singleton x, is considered to be within U, referred to as x, € U, ifa < U(x).
Definition 2.6. [9] for a mapping f : X — Y and U € I, the image f(U) € IV defined as follows:
V U(x) if  xefl(y)#PreX
FU)(y) =

0 , otherwise

Definition 2.7. [9] For a mapping f : X — Y and V C Y, the preimage f~(V) C X defined by
V) (x) = V(f(x)), for every x € X.
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Definition 2.8. [9] (X, 1) is referred to as a fuzzy topological space if T C IX satisfying:
1.0x,1x € 1,

2.ifHWert, thenHNWEeT,

3.if Hy € T fork € ], then Uy Hi € .

Theorem 2.1. [9] Consider a mapping f : X — Y and let U C IX, W C IY. Then:
L (f(U)) < f(Ue), fH(We) = (f71 (W)

2. UCFUFW)), FF W) €W,

3. If f is injective, then f~1(f(U)) = U;

4. If f is surjective, then f(f~1(W)) = W;

5. If f is both injective and surjective, then (f(U))° = f(U°).

Definition 2.9. [16] Two fuzzy sets H and W are considered quasi-coincident (written as HgW) if 3x € X
for which H(x) + W(x) > 1. They are not quasi-coincident (denoted Hg W) if H(x) + W(x) < 1 for every
x € X. Additionally, a fuzzy singleton x, is quasi-coincident with H if « + H(x) > 1.

Theorem 2.2. [23] Let f : X — Y be a function and let x,, represent a fuzzy singleton in X.
(1) IfV C Y and f(x4)qV, then xoqf~1(V);
(2) If U € X and x,qU, then f(xq)qf(U).

Proposition 2.1. [16] Suppose U,V € I* and x, be a fuzzy singleton. Then U C V iff UGV*; particulary,
Xo € U if and only if x,qU°".

Proposition 2.2. [7] For any fuzzy sets U, V, W and fuzzy singletons x,, yg, the following hold:
1.Ugv e Vau;

2.UNV =0x= UgjV;

3. Uugus;

4. UgqvV,W CV = UgW;

5UCV & (xgqU = x0q9V);

6. Xaq(Ukes Uk) © xaqUy, for some k € J;

7.x.9(UNV) & (xoqUand x,qV);

8. Xayp © x # Y.

Definition 2.10. [10] A subcollection g of IX is referred to as a generalized fuzzy topology (abbreviated as
GFT) if Ox € g and g is closed under arbitrary unions of its members.

A nonempty set X paired with a GFT g, denoted as (X, g), is referred to as a generalized fuzzy topological
space (abbreviated as GFTS).

The elements of g are generalized fuzzy open sets (abbreviated as GFO(X)), while their complements are
known as generalized fuzzy closed sets (abbreviated as GFC(X)).

Definition 2.11. [19] In a GFTS (X, g), a fuzzy set U is considered a g-neighborhood of a fuzzy singleton
Xq if there is w € g s.t xo € w C U. The collection of every such g- neighborhoods of x, is represented by

Ng(xa).
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Definition 2.12. [14] In a GFTS (X, g), a fuzzy set U is considered a g-Q-neighborhood of x, if AW € ¢
s.t xo, qW C U. The set of all such g-Q-neighborhoods of x, is represented by N? (xa)-

Definition 2.13. [14] A generalized fuzzy open set U is an open g-Q-neighborhood of x, if x, q U. The set
of all such open g-Q-neighborhoods of x,, is represented by Nf,gg(xa).

Definition 2.14. [14] Let (X, g) be a GFTS. For any fuzzy set H € IX, the g-closure of H is the set cq(H)
defined by co(H) = N{W : HC W, W € GFC(X)}.
Similarly, the g-interior of U is the set iy(U) defined by io(U) = U{(W: W U, W € g}

Proposition 2.3. [14] In a GFTS (X, g), the following properties hold:

(DYH,WeIX, HCW = iy(H) Cig(W) and cg(H) C cg(W);

(2)VH e I%,is(H) € GFO(X) with i¢(H) € H and cy(H) € GFC(X) with H C cg(H);
(3)V U e IX, U € GFO(X) iff U = ig(U) and U € GFC(X) iff U = cg(U);

(VU eIX, ig(ig(U)) = ig(U) and cg(ce(U)) = co(U);

GBIV U € 1%, 1—cy(U) = ig(1- ).

Proposition 2.4. [14] Let (X, g) be a GFTS on X, U € I%, and x, be a fuzzy singleton. Then x, € cg(U)
iff every open g-Q-neighborhood of x, is quasi-coincident with U.

Definition 2.15. [14] Consider (X, g) and (Y, §) as two GFTS’s. A mapping f : (X,g) — (Y, $) is
defined as follows:

(1) generalized fuzzy continous if VU € ¢, f~1(U) € g;

(2) generalized fuzzy openif VU € g, f(U) € &.

Theorem 2.3. [1] A bijective mapping between sets X and Y maintains the value of a fuzzy singleton. Also,

the preimage of any fuzzy singleton under such a mapping maintains its original value.

3. GENERALIZED FUzZY T() SPACES

This section presents several concepts related to generalized fuzzy Ty spaces and examines the

connections between them.

Proposition 3.1. Given a GFTS (X, g) and two fuzzy sets U and V. Subsequently UqV iff Uqcy(V),
when U € gin X.

Proof. Necessity. Let U € g such that UgV. Then V C U°. Since U° € GFC(X), we have c¢(V) C
cg(U°) = U°. Hence Ugcy(V).

Sufficiency. Suppose that U7cg(V). Then c,(V) C U°. Since V C c¢(V), we have V C U°. Hence
ugv. O

Corollary 3.1. Given a GFTS (X, g) and two fuzzy sets U and V. Subsequently UGV iff UG cy(V'), when
UeginX.

Corollary 3.2. Given a GFTS (X, g) and two fuzzy sets U and V and let yg be fuzzy singleton. Then UgV
if and only if ypgce(U), when yg € V € g.
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Now, we introduce our definitions of a generalized fuzzy T, topological space.

Definition 3.1. A GFTS (X, g) is referred to as a generalized fuzzy Ty space (¢§FTo space, for short)
provided that the following conditions are met for each pair of different fuzzy singletons x, and yp:

1. When x # y, either AH € N¢(xo) s.t yggH or AW € Ng(yp) 5.t x.GW;

2. When x = yand o < B(say), AV € N?(yﬂ) such that x,GV.

Example 3.1. Consider X = {x,y,z} and let § = {Ox, H} where H = {(x,1)}. We have a < H(x) for any
a € (0,1], implies xo € Hand p+ H(y) < 1 for any g € (0, 1] implies ypqH. Hence (X, g) is gFTy space.

The following theorem gives some equvalents properties of gFT space.

Theorem 3.1. Consider (X, g) as a GFTS. The statements listed below are equivalent:

1. (X, g) is a gFTy space;

2. For every pair of distinct crisp fuzzy singletons x,, yg € I%, either xo ¢ cq(yg) or yp € cg(xa);

3. For every pair of distinct fuzzy singletons x,, yg € IX such that x.qyg, either x,qcg(yg) or ypgce(xa);
4. For every pair of distinct fuzzy singletons x,, yg € IX, AH, W € gs.t xo € H C (yg)  or yg € W C (xa)".

Proof. 1 = 2 Assume that (X, g) is gFTy and x1, y; be two distinct crisp fuzzy singletons in X.
When x # y, either AH € Ng(x1) s.t yggH or AW € N¢(y1) s.t x,§W. Suppose , without loss of
generality, 3H € Ng(x1) s.t ypgH. Therefore, H € NgQ(xa) and yggH. Hence x, ¢ cg(yp).

2=3 Letx,, yg be two distinct crisp fuzzy singletons in X. Then either x, ¢ c¢(yp) or yg & cg(xa).
Suppose, without loss of generality, x, & c¢(yg). Then from Proposition 2.1, xaq(ce(yp))¢ and
(cg(yp))c € 8. Say (ce(yp))¢ = U. Hence xoqU C (yp)°. Thus x, € U and U € g. Also, we have
ypqU and x, € U € g. Hence from Corollary 3.2, xaqcq (vp).

3 =4 Letx,, yp be two distinct fuzzy singletons such that x,jyg. Suppose x,jcq(yp). Then from
Proposition 2.1, xo € (cg(yp))¢ and (cg(yp)) € g- Also, we have (cq(yp))‘Gyp. Say (cg(yp))" = U,
then Ugyg implies U C (yp)°. Hence x, € U C (yp)“.

4 =1 Let x,,yp be two distinct fuzzy singletons in X, then 3H,W € g st x, € H C (yp) or
yg € W C (xo)°. Suppose AH € gs.tx, € H C (yp)°. From Proposition 2.1, H C (yg)¢ implies Hgyg.
Hence H € Ng(xa) s.t yggH. Therefore (X, g) is a gFTp space. m]

Consider the following property P. We state that a GFTS (X, g) has property P if Vx € X and
p€[0,1],3U € g with U(x) = p.

Definition 3.2. A GFTS (X, g) is called

1. gFT(()i) if for any pair x,, yp € FS(X) where x # y, AH € g s.t either x, € H and yg ¢ H or yg € H and
Xo & H;

2. gFT(()ii) if (X, g) has property P and for any r,6 € [0,1) and x,y € X , x # y, there is W € g s.t either
W(x) = rand W(y) > 6, or W(x) > rand W(y) = o;

3. gFTéiii) if Vxa,yp € FS(X) withx # y, AH € g 5.t xoqH and yg "H = 0x or AW € g s.t ygqW and
xo NW = 0x;
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4.gFTéiv) if Vxq,yp € FS(X) with x # y, AH € g s.t either x,gH C (yp)° or ypqH C (x4)°.

The relations between the concepts given in Definition 3.2 are given in the subsequent theorem.

Theorem 3.2. As for a GFTS (X, g) the subsequent implications are true:
1. gFTY) = gFT!;

2. gFTY) = gFT\™;
3. gFTY) = gFTy,;

4. gFT = gFT\),
5. gFTo = gFT").

But, in general, the converses are not true.

Proof. 1. Let (X, g) be gFT(()i) and x,, yg € FS(X) s.tx # yand x,(x) = ys(y) =1—1,n € N. Then 3
H, € gs.t, either x, € H, and yg ¢ H, or yg € H, and x, ¢ H,,. Assume, without loss of generality,
Xo € Hy and yp ¢ Hy, then H,(x) > 1— 1. Define H = |, H, then H € gand H(x) = 1, H(y) = 0.
So, H(x) = p and H(y) = p, p € [0,1]. Hence (X, g) satisfy property P. Further choose any
1,0 €[0,1) and x, y € X where x # y. Since AH € g s.teither H(x) = 1and H(y) = 0or H(y) =1
and H(x) = 0, we consider W(x) = max{H(x),r}. Then W(x) =1, W(y) = ror W(y) =1, W(x) =
r, implying the existance of W € GFO(X) satisfying W(x) > 6, W(y) = ror W(y) > 6, W(x) =r.
Hence (X, g) isa gFT(()ﬁ) space.

2. Let (X, g) be gFT(()i) and x,, yp € FS(X) s.tx # y and xa(x) = yg(y) = 1 -1, n € N. Afterward
1 G, € g st either x, € G, and yg € G, or yg € G, and x4, ¢ G,. Assume ,without loss of
generality, x, € G, and y ¢ G, then G,(x) > 1— 1. Define G = |, G, then G € gand G(x) = 1,
G(y) = 0. G(x) = 1implies G(x) +a > 1 forany a € (0, 1]. Therefore x,4G and H(y) = 0 indicates
ypNG = 0x. So G € g s.tx,9G and yg N G = Ox. Therefore, (X, g) is gFTéiii).

3. Suppose (X, g) be a gFT(()i) space and X,,yp € FS(X) s.t x # y. Therefore, 3 G € g s.t either
G(x) = 1and G(y) = 0 or G(y) = 1 and G(x) = 0. Let takes G(x) = 1 and G(y) = 0. Now
G(x) = 1 implies a < G(x), for any a € (0, 1]. Therefore x,, € G for every G € g. G(y) = 0 implies
B+ G(y) <1 forany p € (0,1]. Therefore y4G. So, from Corollary 3.2, x,jce(yg). Hence from
Theorem 3.1, (X, g) is a gFT space.

4. Assume that (X, g) is gF T(()iii) and x4, yp be any two distinct fuzzy singletons, then 1 H € ¢ s.t
xoqH and yg NH = 0x. ygNH = 0x implies H(y) = 0 and so H(y) 4+ p < 1 for any g € (0,1].
Therefore H C (yg)°. Hence x,q H C (yp)°. Therefore (X, g) is gFTéiv).

5. Suppose (X, g) be a gFTy space, x4, yg € FS(X) where x # y and x,(x) = yg(y) = 1-1,n e N.
Then 1 G, € ¢ s.t, either x, € G, and ypdG,, or yg € G, and x,4G,. Assume x, € G, and ygGy.
Then o < G,(x) implies 1 — 1 < G, (x). Define G = |, G, then G € g and G(x) = 1. Afterward
G(x) +a > 1 for any a € (0,1] and Therefore x,4G and G C Y- Hence (X, g)is gFTéiU). o

The opposite direction of the above implications does not hold, as demonstrated through the

subsequent examples.
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Example 3.2. . Consider X = {x,y} and let g = {0x, Uy, Uz} where Uy(x) = 15, Ui(y) = 1 and
Uzx(x) =1, Uz(y) = 1 -5, such that € € (0,1]. Then for any r,6 € [0,1), we have (X, g) is gFTé”) space.
But for any v, € (0, 1] there exists Uy € g such that x, € Uy and yg € Uy. Hence (X, g) is not gFT(()Z).

Example 3.3. Consider X = {x,y} and ¢ = {0x, G} where G(x) = 1—¢€ and G(y) = 0, such that
e =5 forae (0,1. Then G(x) = 1-5 = Hx)+5 =1= Gx)+a >1= x,9G and
G(y) = 0= yp NG = Ox. Therefore, (X, g) is gFT(()iii) space. But for & = 1 we get x, ¢ G and G(y) =0
implies yg ¢ G for any p € (0,1]. Hence (X, g) is not gPT(()i) space.

Example 3.4. Consider X = {x,y,z} and ¢ = {0x, W1, Wa, W3, Wy} where W1 = {(x,1)}, W, =

{(y, )} Ws ={(x,1), (v, )} and Wy = {(x,1),(y, %), (z,1)). Forany a,p € (0,1], we get xafcg(yp). So
(X, g) is a gFT space but not gFT((;) space as there exists Wy € g such that x, ¢ W and yg ¢ Wo.

Example 3.5. Consider X = {x, y} and ¢ = {O0x, W} where W(x) = 1 and W(y) = 0.1. For0 < a <1,
0 < B < 0.9, we obtain W(x) +a > 1= x,qWand W(y) +p < 1 = ypqW. Therefore I open g-Q-
neighborhood W of x, that is not not quasi-coincident with yg. This indicates that (X, g) is gFT(()iU)
However, since W(y) # 0 = yg N W # Ox. it is evident that (X, ) is not a gFT(()iii) space.

space.

Example 3.6. Take the GFTS (X, g) to be described in Example 3.3, (X, g) is gFT(()iU) but not gFT as for
a=1,p€(0,1) IH € gs.t ypqH but H ¢ Ngo(xa).

Theorem 3.3. For a GFTS (X, g), The statements listed below are equivalent:

1. (X,g)isa gFT(()i) space;

2.Vx,y e Xwherex #y, AW € g s.t either W(x) = 1and W(y) = 0or W(y) = 1and W(x) = 0;

3. for any pair xo,yp € FS(X) where x # y, AW € g s.t x, € Wand ygN'W = O0x or yg € W and
xo NW = 0x.

Proof. 1 & 2 Necessity. Consider (X, g) asa gFT(()i)

space and let x,, yg € FS(X) s.t, x # y and x,(x)
=yp(y) =1~ %, n € N. Then AW, € g s.t, either x, € W, and yg ¢ W, or yg € W, and x, € W,,.
Assume ,without loss of generality, x, € W, and yg ¢ W,. Then W,,(x) > 1 - % Define W = (J, W,
Subsequently W € gand W(x) =1, W(y) = 0.

Sufficiency. Consider x,, yg € FS(X) s.t, x # y and values a, $ € (0, 1], Subsequently thereis W € g
such that, W(x) =1, W(y) = 0. Since W(x) = 1, then @ < W(x) for any « € (0,1], so x, € W, also
when W(y) = 0 then g £ W(y) for any g € (0,1], so yg ¢ W. Hence (X, g) is gFTéi).

1 & 3 Necessity. Consider (X, g) as a gPT(()i) space and x,, g € FS(X) s.tx # y. Then AW € g s,
W(x) =1and W(y) = 0or W(y) = 1 and W(x) = 0. Now W(x) = 1 implies a < W(x) for any
a € (0,1]. Hence x, € W. W(y) = 0 implies yg N W = Ox.

Sufficiency. Let x,, yg € FS(X) s.t, xa(x) = yp(y) =1 - %, where 7 is a natural number. AW, € ¢
s.t, either x, € W, and yg N W, = Ox or yg € W, and x, N W, = Ox. Assume that there is an infinite
subsets of N such that x, € W, and ys "W, = Ox foralln € K. Now if x, € W, then W, (x) > 1 - %
Additionally, if y3 N W, = Ox, then W, (y) = 0 for every n € K. Define W = (J,,cx Wy.. Therefore,

Weg W(x)=1and W(y) = U,ex Wn(y) = 0. Hence, (X, g) isa gPT(()i) space. ]
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Theorem 3.4. A GFTS (X, g) is gFTéiv) iff ¥ xa, yp € FS(X) with x # y, cg(xa) # cg(yp).

Proof. Necessity. Suppose (X, g) is a gFT(()w) space. Then V x,,yg € FS(X) wherex # y, AU € g
s.t xaqU C (yp)° or ypqU C (xa)°. If xoqU C (yp), then x, € U and U C (yp)<, that is, x, £ U°
and yg C U°. Since U° € GFC(X) and cg(yp) € GFC(X) (the smallest one) containing yg, then
ce(yp) € U°. Since x, ¢ U and x, € cg(xa), then cg(xq) # cg(yp)-

Sufficiency. suppose xq,yp € FS(X)(x # y) and c¢(xa) # cg(yp). Let zy € FS(X) such that
z) € cg(xa) and z; ¢ cg(yp). We claim x, ¢ cg(yp) (Indeed, if xo € co(yp), co(xa) S cg(yp). This
contradicts the fact that zy ¢ c¢(yp)). Hence x, € cg(yp), that is, x4q(cg(yp))  and U = (ce(yp))° €
GFO(X), then xoqU C (yp)°. o

4. GENERALIZED FUZZY SUBSPACE, THE PRODUCT AND THE SUM GENERALIZED FUZZY TOPOLOGICAL SPACES

In this part, we examine the hereditary property and provide the idea of a subspace in general-
ized fuzzy topology.Additionally, we examine the additive, productive, and projective character-

istics of generalized fuzzy Ty spaces.

Lemma 4.1. Consider (X, g) as a GFTS and let B C X. Subsequently gg = {HNB : H € g} isa GFT on
B.

Proof. Since gis GFT , ¢ € g. Hence ¢ "B = ¢ € gp.

Now let {Hy : k € J} be a subcollection of gg. By definition of gg, for each k € |, 3 Dy € g s.t
Hy = Dy N B. Then Ugej Hy = Ugej(Dk N B) = (Ukej Dk) N B. But Ugej Dk € g- Hence Uy H € g5
So, gp is GFT on B. m]

Definition 4.1. Consider (X, g) as a GFTS and B C X. The collection gg = {U N B : U € g} is referred to
as the relative generalized fuzzy topology on B. The space (B, gp) is known as a generalized fuzzy subspace
of (X, ).

Members of gp are known as generalized fuzzy open sets on B (GFO(B), for short) and their complements

are referred to as generalized fuzzy closed sets on B (GFC(B), for short).

Definition 4.2. A property P of a GFTS is considered hereditary if every subspace of a GFTS that possesses
property P, also retains property P.

Now, we shall show that our notions of a gFTj spaces satisfies the hereditary property.

Theorem 4.1. Consider (X, g) isa GFTS and B C X, then
1. (X,g) is gFTo = (B, gp) is gFT;
is FTY) = (B, gg) is gFTS";

i) o (B, gB) is gFTéii);

iif) = (B, gB) is gPT(()i” :

)
is gPT(w) = (B, gp) is gFTOiU).
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Proof. 1. Suppose (X, g) is gFTo and x,, yg € FS(B). Since B C X, then x,, yg € FS(X). Furthermore,
since (X, g) is a ¢FT) space, it follows that

When x # y, either 3 G € Ng(x,) s.t, ypgG or D € Ng(yp) s.t, xoGD. For a subset B of X, both
GNB,DNBegp. x,€c H=a<G(x),xeX=>a<(GNB)(x),xe BC X = x, € GNB. Also,
ypiG = p+G(y) <L, ye X = B+ (GNB)(y) <1,y € B<C X = y37(GNB). Consequently,
G N B € Ny, (x,) and (G N B).

Whenx =yanda <B,3D € NgQ(yﬁ) s.t, xogD. D € NgQ(yﬁ) implies 4 G € g s.t, y3qG < D. For
BCX,GNBegp. ypqG=P+G(y)>1,ye X=p+(GNB)(y) >1,ye BC X = ypq(GNB) and
GNBC D. Then we have D eNgQB(yﬁ). xefD => a+D(x) <1, xeX=>a+ (DNB)(x) <1,xeBC
X. So x.§(D N B). Hence (B, gg) is also gFTy. Proof of (2) is similar to proof of (1).

3. Suppose (X, g) is gFTéii) and x,y € Bwith x # y. Since B C X, then x,y € X. Also, (X,g)
is gFT(ii), then for any 7,6 € [0,1), 3an G € gs.t, G(x) = rand G(y) > 6 or G(x) > r and
G(y) = 6. For B C X, it follows that GNB € gg. G(x) =r = (GNB)(x) =r,x € BC X and
G(y) >0 = (GNB)(y) >06,y € BC X. Hence (B, gp) is also gFT(()ﬁ).

4. Suppose (X, g) is gPTéﬁi) and x,,yg € FS(B) with x # y. Since B C X, then x,,yp € FS(X).
Given that (X, g) isa gFTé ), then either T H € gs.t xaqH and yg NH = Ox or AW € g s.t, yggW
and x, "W = 0x. For B C X, it can be inferred that HNB,WNB € gp. xogH = H(x) +a > 1,
x € X= (HNB)(x)+a >1,x € BCX = xqHNB)and ypgNnH = 0x = H(y) = 0 =
(HNB)(y) =0,y € BC X = ygN (HNB) = Ox. In a similar manner, it can be demonstrated that.
ypg(WNB),x, N (WNB) = 0x. Hence (B, gp) is also gPT(()iii). Proof of (5) is similar to proof of
(4). ]

iif

Definition 4.3. Consider { X, k € J} be a collection of non empty sets. Define X = []e; X as the product
of the Xy and let iy denote the projection map from X to Xy. Additionally, assume that Xy is a GFTS with
GFT gx. The GFT on X is then generated by using {n;l(bk) : by € gk, k € J} as a subbasis, and this is
referred to as the product GFTS on X.

Definition 4.4. A property P of a GFTS is said to be productive, if, given a collection {(X, gx) : k € J},
where each space has the property p, (I'1 Xk, I'1 k) also possesses the property P.

Definition 4.5. A property P of a GFTS is said to be projective if (I Xy, I1 gx) has the property P implies

that each individual coordinate space (X;, gi) also possesses the property P.

Definition 4.6. Consider (X, g) and (Y, §) as two GFTS’s. A mapping f : (X, g) — (Y, §) is referred to
as a generalized fuzzy homeomorphism if f is bijective and both f and its inverse f~' are generalized fuzzy

continuous.

Now, we shall show that our notions of a gFT) spaces satisfies the projective and the productive

properties

Theorem 4.2. Let {(X, gx),k € J}, is a collection of GFTS’s and X = [[ye; Xk and g be the product
generalized topology on X. Then, Vk € ],
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1. (X, gx) is gFTo iff (X, g) is gFTo;
2. (Xp 1) is SFTY iff (X, g) is gFT.;
3. (Xe, gx) is ST iff (X, g) is gFTS";
4. (Xp 1) is SFT iff (X, g) is gFTO";
5. (Xe, 6) ( )

X, &) is gPTOiv) iff (X,g) is gFTéiv :

Proof. 1. Necessity. Assume Y k € ], (X, gx) is gFTo. We need to prove that (X, g) is gFTo. Suppose
Xa, Yp € FS(X), there exist two possible scenarios (i) x # y, (ii) x = y and a < §, for instance.
Whenever x is not equal to y, then (x¢)a, (vk)p € FS(Xj) satisfy xi is not equal to yy for at least one
k € J. Since (X, k) is a gFT space, then either 3 Hy € Ny, ((xx)a) s-t, (vx)pgHx or 3 Vi € Ng, ((yk)p)
such that (x;).jVy. Additionally, mx(x) = x¢ and mx(y) = yk. Assume, without losing generality,
that 3H; € N, ((x¢)a) s-t (yx)pqHx-

Now, Hi € Ng ((xx)a) = (xk)a € Hr = a < Hy(x) = a < Hi(me(x)) = a < (Heom)(x) =
Xa € (Hromy) = (Hpomy) € Ng(xa) and (yx)pgHr = Hi(ye) +p <1 = Hi(me(y)) +p <1 =
(Hiome)(y) + P < 1= yp(Hi o mg).

When x = y and a < f,for instance, AV € Ng((yk) p) such that (x;) g V.

Now, Vi € N?k((yk)ﬁ) implies that there exists Gy € g such that (yi)pgGr € Vi. (vk)pqGr =
Gr(yk) +B8 > 1 = Gi(r(y)) +B > 1 = (Gromy)(y) +B > 1 = ypq(Gromy) and Gy C Vi =
(Gromy) € (Vi omy). Therefore, ypq(Gy o mix) C (Vi o mi). Hence, (Vi omy) € NgQ(yl;). (%) aGVi =
Vilxp) +a<1= Vi(m(x))+a<1= (Viom)(x) + a <1 = x,§(Viomg). Hence, (X, g) is ¢FTo.
Sufficiency. Let (X, g) be ¢FTo. We need to prove that (X, gx) fork € ] is also gFTp. Choose a
constant element by in X;. Define By = {x € X = [[j¢; Xk : x; = b; forsomek # j}. Then By C X,
so (By, g, ) is a subspace of (X, g). Given that (X, g) is gFTy, it follows that (B, ga,) is also gFTy.
Furthermore, By is homeomorphic to Xy. Therefore, (X, gx) is a gFTo space Y k € . Proof of (2) is
similar to (1).

3. Necessity. Assume Y k € ], (Xi, gx) is gFT(ii)

H 0
criteria for a gFT[()”) space. Consider x and y in X with x is not equal to y. Then xy, yx € Xi with

. We need to demonstrate that (X, ¢) meets the

xx # Yy for some k € J. Since each (X, gx) is a gFT(()ii) space, then for any r,6 € [0,1), 3 Hy € gk s.t,
Hi(xx) = r and Hy(yx) > 6 or Hx(xx) > r and Hi(yx) = 6. Note that 7x(x) = xx and 7, (y) = yi.
Suppose, without loss of generality, that 3Hy € g such that Hy(x;) = r and Hi(yx) > 0.

Now, Hy(xx) = r = Hi(mx(x)) = r = (Hyomy)(x) = rand Hi(yx) > 0 = Hp(m(y)) > 6 =
(Hy o mtx)(y) > 6. This means that (Hy o i) € gs.t, (Hx o mx) (x) = rand (Hy o 7ty ) (y) > 0. Similarly,
we can show that (U; o 7t;) (x) > rand (U; o 7t;)(y) = 6. Hence (X, g) is gFTéii) space.

Sufficiency. Let (X, g) be gFT(()ii). We need to show that (X, gx) is gFT(()ii) Vk € J. Consider a
constant element by in Xi. Define By = {x € X = [ Xk : x; = bj forsomek # j}. Hence By C X,
and thus (By, gs,) is a subspace of (X, g). Since (X, g) is gFT(ii), it follows that (By, gp,) is gFT(()ii).
At this point, we find By is homeomorphic to X;. Hence (X;, g;) is a ¢F T(()ii)

4. Necessity. Assume V k € |, (X, gx) is gFT(()iii). We need to show that (X, g) is gFT[()iii). Suppose

space, Yk € |.
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Xa, Yg € FS(X) where x # y. Then, for some k € ], (xx)a, (Vk)p € FS(Xk) with xx # yx. Since (X, gx)
is agFT(()iii) space, then either 3 Hy € gi s.t, (x)aqHy and (yx)p N Hy = Ox or A Wy € gk s.t, (vk)pqWi
and (xx)o N Wi = 0x. Note that 71, (x) = xx and m(y) = yx. Suppose, without loss of generality,
that JU; € g; such that (x;)aqU; and (y;)g N U; = Ox.

Now, (x¢)agHx = Hi(xx) +a > 1 = Hi(m(x)) +a > 1 = (Hyomy)(x) +a > 1 = x,q(Hy o 1y.)
and (yx)p NHy = 0x = Hi(yx) = 0 = Hi(mi(y)) = 0= (Hrkomy)(y) = 0= ypN (Hromy) =
Ox. Therefore, (Hy o my) € g satisfies x,q(Hy o 11x) and yg N (Hi o 1) = Ox. Similarly, one can
demonstrate that ygq(Wj o i) and x, N (Wg o 1) = Ox. So, (X, g) is gFT(()ﬁi).

Sufficiency. Let (X, g) be gFT(()iii). We need to show that (X, gx) is gFT(()ﬁi) , Yk € J. Consider a
constant element by in X;. Define By = {x € X = [[;¢; Xi : x; = bj forsomek # j}. Then By C X, and
thus (By, ga,) is a subspace of (X, g). Since (X, g) is gF T(()iﬁ), so (By, gs, ) is also gFTéiii)
By is homeomorphic to Xj. Therefore (X, gi) is a gFT((]iii) space, Yk € . Proof of (5) is similar to

(4). ]

. Furthermore,

Proposition 4.1. Let {(X, gk) : k € ]} be a collection of disjoint GFTS’s and let X = ey Xk The class
Brej gk = {HIH € p(X) A (HN Xy) € g Vk € ]} defines a GFT on X. Where o(X) is the fuzzy power

class of the universe.

Proof. it is evident that Ox € @y gr. Consider an arbitrary collection {H; : i €A} of sets from
@Orej §k- For each i €a and k € |, HiNX; € g Thus Ui, HiN Xy € gVk € . Therefore,
Uica Hi € ®rej gk Vk € J. Hence, @y¢j g is GFT on X. O

Definition 4.7. The GFT ®;¢; §; described in the above propostion is said to be the sum GFT on X. The
corresponding pair (X, ®ie1gi) is known as the sum GFTS for the family {(X;, i) = i € I}.

Definition 4.8. A property P of a GFTS is said to be additive if, for any family of GFTS {(X;, gi),i € A}
with the property P, the sum of this family (X, ®ie1gi) also has property P.

Now, we shall show that our notions of gFTj spaces satisfies the additive property.
Theorem 4.3. The property of being a gFT space is an additive property.

Proof. Suppose (Xx, gx) is a gFTo space, Yk € ]. We have to prove that ;X is gFTo space. To do
so, we consider two fuzzy singletons x4, yg in X = U Xk with x is not equal to y. If x and y are
a member of different sets X; and X; one easily obtain, x, € X € X; —{yg} or yg € X; C Xy — {xa}.
Xk € X;, both X and X; are generalized fuzzy open sets in X under @;. If x and y belong to the
same gFT, space (X,, 8k, ), then there exists Up, Vo € GFO(Xy,) such that x, € Uy C Xi, — {yp} or
yg € Vo C Xi, — {xa}. Since Xj, € GFO(X), X = @ej X, one finds Up, Vo € GFO(X) and hence the

result. m|
Theorem 4.4. The property of being a gFT(()i) space is an additive property.

Proof. Is similar to proof of Theorem (4.3). O
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Theorem 4.5. The property of being a gFT(()iz‘)

Proof. Suppose (X, gx) is a gFT(()ﬁ)

space is an additive property.

space, Yk € . We aim to show that @ X is also gF T(()ii) space.
To do so, we consider two fuzzy singletons x,, yp in X = Uie; Xi with x is not equal to y. If x and
y is a member of different sets Xy and X; one easily obtain, Xj(x) = r and Xi(y) > 6 or Xi(x) > r

and Xi(y) = 0. Xx C X;, both Xj and X are generalized fuzzy open sets in X under @;. If x and
y belong to the same gFT(()ii) space (Xk,, Sk, ), then there exists Uy € GFO(Xy,) s.t, Up(x) = r and
Uo(y) > 6 or Up(x) > r and Up(y) = 6. Since Xy, € GFO(X), X = @ Xk, one finds Uy € GFO(X)

and hence the result. m]

Theorem 4.6. The property of being a ng(iii)

iii)

space is an additive property.

Proof. Suppose (X, g) is a gFT i)

space, Yk € J. We aim to show that & X is gFT space. To
do so, we consider two fuzzy singletons x,, yg in X = Uy Xi with different supports x and y. If x
and y belongs to different sets Xy and X; one easily obtain, x, (x)gX) and yz N Xy = Ox or ypqX; and

Xo N X = 0x. Xi C X;, both X; and X; are generalized fuzzy open sets in X under @;. If x and y

belong to the same gF T(()ﬁi) space (Xx,, 8k, ), then there exists Uy € GFO(X,) such that x,qUp and
ygN U = Ox or ygqllp and x, N Uy = Ox. Since Xj, € GFO(X), X = @ej Xy, one finds Uy € GFO(X)

and hence the result. O

Theorem 4.7. The property of being a gFTéiv) space is an additive property.

Proof. Is similar to proof of Theorem (4.6). ]

5. MarrINGs IN gFT( sPACES

In this part, we demonstrate the preservation of our concepts of generalized fuzzy T, spaces

under bijective generalized fuzzy continuous generalized fuzzy open mappings.

Theorem 5.1. Assume (X, g) and (Y, §) are two GFTS’s and let f : X — Y be a bijective generalized
fuzzy open map. Then
1. (X, g)is gFTo = (Y, §) is gFTo;
X,g)is gFT() = (Y,8)is gFT(i),
L (X,8) is gFTy" = (Y, 8) is gFT,";

Proof. 1. Consider (X, g) as a gFTj space and let X, /g € FS(Y) where ¥ is not equal to §. Given
that f is surjective, there is x,y € X s.it f(x) = X, f(y) = y. Here, x4, yp € FS(X) where x
is not equal to y because f is injective. Given that (X, g) is gFTo, then either 3 H € Ng(x,)
s.t, ypgH or AW € Ng(yp) s.t, xogW. Suppose, for simplicity, that there is G € Ng(x,) and
ypdG. Now, G € Ng(x,) implies that AW € g s.t, x, € W € G and 137G = G(y) +p < 1.
Given that f(G)(%) = sup{G(x) : f(x) = %} = G(x), for some x. Also f(G)(y) = G(y), for a
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particular y. Since G, W € GFO(X) and f is a generalized fuzzy open map, it can be inferred that
£(G), f(W) € GFO(Y).

Again, x, e W= a < W(x) = a < f(W)(£) = x, € f(W). Since W € G = f(W) € f(G), so
X, € F(W) C F(G) and G(y) +§ < 1 = f(G)(§) + < 1 = yif(G). Thus, 3 £(G) € Ng(xs)
and yggf(G). Similarly, we can demonstrate that f(W) € N¢(y3) and x,gf(W). Alternatively,
consider x;, ¥ € FS(Y) with ¥ = 7 and a < f(say). Since f is surjective, 3 x,y € X s.t f(x) = %,
f(y) = ¥ and x,, yp € FS(X) where x = y due to the injective of f. Given that (X, g) is a gFT
space, then 3G € N?(y,;) s.t, x,4G. Since G € Ng(yﬁ), AWeg.t, ypgW C G. ypqW = 4+ W(y) >
1= fW)(@)+B>1= ypqf(W)and W C G = f(W) C f(G). Then ypqf(W) C f(G). Also
we observe, x,4G = G(x) +a <1 = f(G)(¥) +a <1 = x4f(G). Since W € GFO(X) and f is
a generalized fuzzy open mapping, then f(W) € GFO(Y). Consequently, 3 f(G) € N?(y’ﬁ) s.t,
X2qf(G). Hence (Y, u) is gFTy.

2. Is similar to (1).

3. Consider (X, g) is gF T(()ii) and let ¥, 7 € Y where % is not equal to 3. Since f is surjective, x, y € X
s.t f(x) =%, f(y) = y. Given that f(x) # f(y) and f is injective, it can be inferred that x is not
equal to y. Considering that (X, g) isa gFT(()ii) space, G € gstG(x) =rand G(y) > dor G(x) > r
and G(y) = 0. For simplicity, assume there exists G € g s.t, G(x) = r and G(y) > 6. Given that,
f(G)(%) = sup{G(x) : f(x) = £} = G(x), for some x. Also f(G)(y) = G(y), for some y. Since
G € GFO(X) and f is a generalized fuzzy open mapping, f(G) € GFO(Y).

Again, G(x) = r = f(G)(*) = rand G(y) > 6 = f(G)(y) > 6. Similarly, we can show that
f(G)(y) = 6 and f(G)(x) > r. Therefore, (Y, u) is gPTéii).

4. Consider (X, g) is gFT(()iii) and let X, ¥ € FS(Y) with # is not equal to ¥. Since f is surjective, 3
x and y are elements of X s.t f(x) = %, f(y) = . x4, yp € FS(X) with x # y because f is injective.
Given (X, g) is gFTgii), then either 3 H € g s.t, xo,gH and yg N H = Ox, or A W € ¢ s.t ysqW and
xo N W = 0x. Assuming, for simplicity, there exists an G € g s.t x,4G and y3 N G = Ox. This means
%.9G = G(x) +a > land ygNG = 0x = G(y) = 0. Since, f(G)(*) = sup{G(x) : f(x) = %} = G(x),
for some x. Also f(G)(y) = G(y), for a certain y. Since G € GFO(X) and f is a generalized fuzzy
open mapping, then f(G) € GFO(Y).

Moreover, G(x) +a > 1 = f(G)(%¥)+a > 1 = xqf(G) and G(y) = 0 = f(G)(y) = 0 =
YN f(G) = Ox. Likewise, it can be shown that y3qf (W) and x;, N f(W) = 0x. Therefore, (Y, §) is
gPTéiii).

5. Is similar to (4). O

Theorem 5.2. Consider (X, g) and (Y, ) as two GFTS’sand let f : X — Y is an injective and generalized
fuzzy continous map. Then

1. (Y,§)is gFTo = (X, g) is gFTo;

2. (Y, §) is gFTY) = (X, g) is gFT;

3. (Y,§) is gF) = (X, g) is gFT";



14 Int. ]. Anal. Appl. (2025), 23:49

4. (Y, $) is gFT((]”Z) = (X,9)is gFT((;ii);
5.(Y,§)is gFTéw) = (X,9)is gFT(()w).

Proof. 1. Suppose (Y, §) is gFTg and let x,, yg € FS(X) with x is not equal to y. Consequently,
(f(x))a, (f(y))p € FS(Y) with f(x) is not equal to f(y) due to f being injective. Given that (Y, ¢)
isa gFTo space, AH € Ng((f(x))a) and (f(y))p7H. H € Ng((f(x))a) implies AW € ¢ s.t, (f(x))a €
@ C H Which indicates that f~1((f(x))s) € f{(W) ¢ f1(H). Thus x, € f1 (W) ¢ f1(H)
and (f(y))sgH = H(f(y))+p <1 = fY(H)(y) +p < 1. Therefore yzq f~}(H). Since f is a
generalized fuzzy continous map and W,H € GFO(Y), it can be inferred that f~1(W), f~1(H) €
GFO(X). Consequently, 3 f71(H) € Nq(x4) s.t, fH(H) 7 yp-

Alternatively, let x,, yg € FS(X) with x is not equal to y. Afterward (f(x))a, (f(v))s € FS(Y)
with f(x) is equal to f(y) since f is injective. Given that (Y, ¢) is gFTo, AH € N?((f(y))ﬁ) s.t,
(f(x))agH. Since, U € NgQ((f(y))ﬁ) AW € ¢st, (f(y))ﬁqW C H. This indicates (f(y))ggW
= W(F) +6> 1= IR +6> 1= ypq 0 and W H = f1(1) € (). So
v FHN) € F1(FD). Also we obtain, (£(x))egH = H(f(x) +a <1= fUH)(x) +a <1 =
xo§ f~1(H). Given that f is a generalized fuzzy continous map and W € ¢, it implies f~1(W) € g.
Therefore, A f~1(H) € NQ(yﬁ) s.t, x,3f 1 (H). Hence (X, g) is gFT.

2. Is similar to (1).

3. Assume (Y, §) is gF T(()ii) and consider x, y € X with x is not equal to y. Because f is injective, the
images f(x) and f(y) in Y are also distinct. Given that (Y, ¢) isa gFT(()ii) space, for any 1,6 € [0,1)
and distinct f(x) and f(y), thereis an G € ¢ s.t G(f(x)) = rand G(f(y)) > 6 or G(f(y)) = 6 and
G(f(x)) > r. Without limiting generality, assume 3G € ¢ s.t G(f(x)) = rand G(f(y)) > 6.

Now, G(f(x)) = r = f1Y(G)(x) = rand G(f(y)) > 6 = f(G)(y) > 6. Given that f is a
generalized fuzzy continous map and G € ¢, it can be inferred that f~'(G) € g. Similarly, if
G(f(x)) > rand G(f(y)) = 6, afterward f~1(G)(x) > rand f~1(G)(y) = 6. Thus, (X, g) is gFT(()ii).
4. Consider (Y, ¢) as a gPTéﬁi) space and let x,, yg € FS(X) with different supports. Therefore
(f(x))ar (f(v))p € ES(Y) with f(x) is not equal to f(y) since f is injective.Because (Y, §) is gFT(()ﬁi),
AH € ¢ st (f(x))agH and (f(y))sNH = 0x or AW € ¢ s.t (f(y))pgW and (f(x))a NW = Ox.
Assume, for simplicity, that H € ¢ s.t (f(x))aqH and (f(y))s N H = Ox.

Now, (f())agHl = H(f(x) +a > 1= fHHx) +a > 1= (FUE))+a> 1= xaf (H)
and (£(y))p 1 H = 0x = H(F()) = 0 = f(H(y)) = 0= (£ (H))(y) = 0=y f(H) = Ox,
Given that f is a generalized fuzzy continous map and H € ¢, it can be inferred that f~1(H) € g.
Similarly, we can show that yzqf (W) and x, N f~1 (W) = 0x. Therefore, (X, g) is a gFTé #) space.
5. Is similar to (4). |

Theorem 5.3. A GFTS (X, g) is considered a gFTq space iff V x,, yg € FS(X) with x is not equal to y, Aa
generalized fuzzy continuous mapping f from X to a gFTy space (Y, §) s.t f(x) is not equal to f(y).

Proof. Necessity. Assume (X, g) is gFTp. Assume (Y, §) = (X, g) and let f be the identity mapping
idx. Clearly, (Y, ) and f meet the required criteria.
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Sufficiency. Consider fuzzy singletons x, and, yg in FS(X). We examine two scenarios: (i) x # y
and (ii)x =ywitha <p

For the situation where x # y, according to the hypothesis, 3 a generalized fuzzy continous
mapping f from (X, g) to gFTy (Y, §) with f(x) is not equal to f(y). Given that (Y, §) is a gFTy
space and (f(x))a, (f(v))p € FS(Y) s.t f(x) is not equal to f(y), either 3 H € N;((f(x))a) s.t
(f(y))pgHor AW € N;((f(y))ﬁ) s.t (f(x))agW. It follows from generalized fuzzy continouity of
f that either f'(H) € N§(xa) s.t ygqf ' (H) or f~ (W) € N§(yp) st xaffH(W).

If x = yand (a < B), then (f(x))a, (f(y))p € FS(Y) with f(x) = f(y). Given that (Y,$) is
a gFTy space, there exists W € NQ (f(y))p) st (f(x))agW. Therefore, f1(V) € N?X(yﬁ) s.t
xoqf1(V).Thus (X, g) is also a gFTo space. o

Theorem 5.4. A GFTS (X,g) isa gFTéi) space iff ¥ x4, yp € FS(X) with x # y, A a generalized fuzzy
continuous mapping f from X toa gFT(()Z) space (Y, §) s.t f(x) is not equal to f(y).

Proof. Is analogous to the proof of Theorem 5.3. O

Theorem 5.5. A GFTS (X, g) isa gFTéﬁ) space iff ¥ x, y € X where x is not equal to y, I a generalized
fuzzy continuous mapping f from X to a gPT(()ii) space (Y, §) s.t f(x) # f(y).

Proof. Necessity. Suppose (X, g) is gFT(()ii). Consider (Y, §) be defined as (X, g) and let f be the
identity mapping idx. Clearly, (Y, $) and f meet the required criteria.

Sufficiency. Assume x, y € X with x # y. Based on the hypothesis, 9 a generalized fuzzy continous
mapping f from (X, g) to gFTéii) (Y, §) s.t, f(x) is not equal to f(y). Since (Y, $) is gFT(()ii) and
f(x), f(y) € Ywith f(x) isnotequal to f(y), then foranyr,6 € [0,1) and f(x), f(y) € Y with f(x) is
not equal to f(y). 3G € ¢ s.teither G(f(x)) = rand G(f(y)) > 6 or G(f(x)) > rand G(f(y)) = o.
It follows from generalized fuzzy continouity of f that f~1(G) € ¢ s.t either f~}(G)(x) = r and
FYG)(y) > dor f1(G)(x) >rand f‘l(G)( ) = 0. Hence (X,g) isa gPT( i) space. ]

Theorem 5.6. A GFTS (X, g) is gFT zﬁ‘v’ Xa, Yp € FS(X) with x is not equal to y, A a generalized fuzzy
(i) space (Y, $) s.t f(x) is not equal to f(y).

Proof. Necessity. assuming (X, g) is gFT(() " Consider (Y,$) = (X,g) and let f be the identity
mapping idx. Clearly, (Y, §) and f meet the required criteria.

continuous mapping f from X toa gFT;

Sufficiency. Consider fuzzy singletons x, and, yz in FS(X) withx # y. According to the assumption,
3 a generalized fuzzy continous mapping f from (X, g) to gFT(()m) (Y, $) s.t f(x) is not equal to

F(y). Given that (Y, §) is gFT"" and (f(x))a, (f(y))s € FS(Y) s.t f(x) is not equal to f(y), AH € ¢
st (f(x))agH and (f(y))pNH = 0x or AW € ¢ s.t (f(y))pgW and (f(x))a N W = Ox. It follows
from generalized fuzzy continouity of f that f'(H) € g s.t xoqf ' (H) and yg N ' (H) = Ox or
fHW) e gs.typgf (W) and x, N f~1(W) = 0x. Thuse, (X,g) isa gFT(()iii) space. o
Theorem 5.7. A GFTS (X, g) isa gFTéiv) space iff ¥ xo, yg € FS(X) with x # y, 3 a generalized fuzzy
continuous mapping f from X to a gFT(()iv) space (Y, §) s.t f(x) is not equal to f(y).

Proof. Is analogous to the proof of Theorem 5.6. m]
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6. A GENERALIZED LOWER SEMI-CONTINUOUS FUNCTION, INITIAL AND FINAL GENERALIZED FUZZY

TOPOLOGICAL SPACES

This section covers the initial and final generalized fuzzy topologies as well as the introduction

and examination of a generalized lower semi-continuous function.

Definition 6.1. A real-valued function f on a GTS is called a generalized lower semi-continuous function
if the collection {x : f(x) > B} is generalized open Y real p.

Definition 6.2. Consider a nonempty set X having a generalized topology g. Let w(g) represent the
collection of all generalized lower semi-continuous functions from (X, g) to I. Hence, w(g) = {H € I* :
HY(B,1] € g}, VB € [0,1). It can be demonstrated that w(g) forms a GFT on X.

Theorem 6.1. Consider (X, g) be a GTS . The subsequent statements are equivalent:

1. (X, g) is a gTy space;

2. (X, w(g)) is a gFT space;
3. (X, w(g))isa gFT(()i) space;
4. (X, w(g)) isa gFT(()ii) space;
5. (X, w(g))isa gFTéiii) space;
6. (X, w(g))isa gFT(()iv) space.

Proof. 1 & 2. Necessity: Suppose (X, g) is gTo. We shall demonstrate that (X, w(g)) is ¢FTo.
Assume x,, yg € FS(X) where x is not equal to y. Given that (X, g) is gTo, 3G € gs.t x € G and
y¢ Gory € Gand x ¢ G. According to the concept of the generalized lower semi-continuous
function, 1¢ € w(g) and satisfies 1(x) = 1 and 15(y) = 0. Therefore:

e Since 15(x) = 1, it can be concluded that a < 15(x), so x, € 1g

e Since 16(y) = 0, it can be concluded that 16(y) + < 1, so yg7lc. Consequently, 157yg, meaning
1g € (yp)°. Thus, 1g € w(g) and x, € 1y C (yp)¢. Similarly, we can prove that yg € 15 C (x,)“.
Hence (X, w(g)) is a gFTy space.

Sufficiency: Considering (X, w(g)) is gFTo. We must demonstrate that (X, g) is gTp. Assume
x,y € X where x # y. Because (X,w(g)) is a gFTy space,so Y xu, Yo € FS(X), AG € w(g) s.t
Xo € G C (Ya)€ Or y, € G C (x,)°. Without loss of generality, x, € G C ()"

Now, x, € G=>a<Gkx) 2 1-a=m<G(x) =xeG(mland G C (y,)° = Gy, =
Gly) +a<1=G(y) <l-a=m=y ¢ G'(m1]. Likewise, it can be demonstrated that if
y € G71(m, 1], then x ¢ G™'(m, 1]. Additionally, G™'(m, 1] is generalized open set. Hence (X, g) is
a gTp space.

1 & 3. Necessity: Suppose (X, g) is §To. We want to demonstrate that (X, w(g)) is gF T%. Consider

0
Xa,Yp € FS(X) where x # y. Because (X, g) is gTo,so dH € gstx € Hand y ¢ Hor y € H and

x ¢ H. By the concept of the generalized lower semi continuous function, we know 1y € w(g).
Then 1 (x) = 1and 15(y) = 0or 1g(y) = 1 and 1y(x) = 0. Hence (X, w(g)) isa gFT(()Z) space.

Sufficiency: Considering (X, w(g)) is a gPT(()i) space. We need to demonstrate that (X, g) is gTo.
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Assume x, y € X where x # y. Given that (X, w(g)) is gFT(()i) space, Y xo, Yo € FS(X), 3G € w(g) st
G(x) =1and G(y) = 0or G(y) = 1 and G(x) = 0. Assume, without affecting generality, G(x) = 1
and G(y) = 0.

Now,G(x) =1=>G(x)+a>1=G(x)>1-a=m=>x€G (m1]and G(y) = 0= G(y) + a <
1= G(y) <l-a=m= y ¢ G'(m1]. This can be similarly shown for the reverse case.
Additionally, G=1(m, 1] is generalized open set. Hence (X, g) is a ¢Ty space.

1 & 4. Necessity: Assuming (X, g) is gTo. We aim to demonstrate that (X, w(g)) is gFT((Jii). Suppose
x,y € X where x # y and assume that r,6 € [0,1). Since (X,g) is ¢Top, IGe gstxe Gandy ¢ G
or y € Gand x ¢ G. By the concept of the generalized lower semi continuous function, 1 € w(g)
with 1g(x) = 1and 1¢(y) = 0. Thus:

e Since 15(x) = 1, we have 1g(x) > r.

e Since 15(y

)
Hence (X, w(
Sufficiency: Suppose (X,w(g)) is a gPTéﬁ) space. We need to demonstrate that (X, g) is gTo.

=0, we have 15(y) = 0.

g))isa gPT(()ii) space.

Assume x, y € X where x is not equal to y. Given that (X, w(g)) is a gFT(()ﬁ) space, Yr,0 € [0,1),
3G € w(g) s.t G(x) = r and G(y) > 6 or G(x) > r and G(y) = 6. Suppose, without loss of
generality, G(x) = rand G(y) > 0.

Now, G(x) =r=x¢ G (r,1] and G(y) > 6 = y € G7(5,1]. Hence (X, g) is a ¢T space.

1 & 5. Necessity: Suppose (X, g) is §To. We shall demonstrate that (X, w(g)) is gFT(()iii). Assume
Xa,Yp € FS(X) where x # y. Given that (X, g) is gTo, AdH € gstx € Hand y ¢ Hor AW € g st
y € Wand x ¢ W. According to the concept of the generalized lower semi continuous function,
we know 1y, 1w € w(g). Thus:

e Since 15(x) = 1, it can be concluded that 15(x) + a > 1, so x,q14.

e Since 15(y) = 0, it can be concluded that y3 N 1 (y) = Ox. This can be similarly shown for the
reverse case. Therefore, (X, w(g)) is a gFT((]iii) space.

Sufficiency: Suppose (X,w(g)) is a gFTéiﬁ) space. We need to demonstrate that (X, g) is gTo.
Assume x,y € Xwhere x is not equal to y. Given that (X,w(g)) is gFTéiii), VX4, Yo € FS(X),
dH € w(g) s.txoqH and y, NH = 0x or AW € w(g) s.t yoqW and x, N W = 0x. Suppose, without
loss of generality, 3H € w(g) s.t x,qH and y, N H = 0x.

Now, x,gH = H(x) +a>1=H(x)>1-a=m=x€ H!(m 1] and y, NH = 0x = H(y) =
0= H(y)+a<1=H(y) <l-a=m=y ¢ H'(m1]. This can be similarly shown for the
reverse case. Additionally, H!(m, 1] and W~1(r, 1] are generalized open sets. Hence (X, g) isa gTo
space.

1 & 6. Necessity. Suppose (X, g) is §To. We want to demonstrate that (X, w(g)) is gFT(iv). Assume

0
Xa,Yp € FS(X) where x # y. Given that (X, g) is gTo, IG € gstx € Gand y ¢ Gor AW € gsi.t
y € Wand x ¢ W. According to the concept of the generalized lower semi continous function, we
know 1¢, 1w € w(g). Thus

1g(x) = 1 implies 1g(x) + a > 1 = xaqlc. 16(y) = 0implies 1¢(y) + B <1 = ypilc = ledys =
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1c € (yp)°. Hence, xaq1c C (yp)°. Similarly, we can show that ygqlc C (x,). Hence, (X, w(g))isa
gFT(()iv) space.
Sufficiency: Assume (X, w(g)) is gFT(()iv). We need to demonstrate that (X, g) is gTp. Consider
x,y € X where x is not equal to y. Given that (X, w(g)) is gPT(()iii), VX4, Yo € FS(X),AG € w(g) s.t
xaqG C (yp)° or ypgG < (xa). Suppose, without loss of generality, 3G € w(g) s.t x,9G C (yp)°.
Then:
e x,qG implies G(x) + a > 1,50 G(x) > 1 — a = m, meaning x € G~ (m, 1].
e G C (yp) implies Gjyg, so B+ G(y) < 1, hence G(y) < 1 - = m meaning y ¢ G™*(m, 1]. Since
G~!(m, 1] is generalized open sets. Hence (X, ¢) is a gT space.

m

Definition 6.3. Given the family of GFTS {(Xg, k)}kej and the the collection of functions {f; : X —
(Xk, 8k)Ykej, The initial GFTS on a set X is specified as the smallest GFT that makes each f generalized
fuzzy continuous. This GFT is generated by the family { fk‘1 (Hi) : Hy € Silkey)-

Theorem 6.2. If {(X, gx)} represents a collection of gFTy spaces and {fy : X — (X, gx)} denotes a
collection of injective and generalized fuzzy continuous functions; thus, the initial GFT induced by the
collection {fi}ej is also a gFT space.

Proof. Assume that ¢ denote the initial GFT on X for the family {fi}rc;. Consider x4,y € FS(X)
where x # y. Since fj is a one-to-one function, fy(x) and fi(y) are distinct elements in Xy. Given that
(Xk, gx) is a gFTp space, for every different fuzzy singletons (fi(x))s and (fi(v))s either AH € gi
s.t (fi(x))a € He © ((fi(y))p) or AWy € g st (fi(y))p € Hi € ((fi(x))a)C. For simplicity, assume
JHy € gi st (fi(x))a € He € ((fe(y))p)"-

Given that, (fi(x))a € Hy = a < Hi(fi(x)) = a < f,' (Hi)(x). This condition holds Yk € ], so a <
Viey £ (i) (3). Also He € ((fly))p)° = () = Helfe(y) + <1 = £ (H)(y) +p < 1.
This is true for every k € J. Vig fi'(Hi)(y) +B < 1. Let H = Vi i (Hi). Then H € g as
fr is a generalized fuzzy continous. so, @ < H(x) and H(y) + 8 < 1. Therefore, x, € H and
Hjyg = H C (yp)°. Hence x, € H C (yp)°. Similarly, yg € H C (x,)°. Hence (X, g) is a gFTy

space. m]

Theorem 6.3. If (X, gx) represents a collection of gFT(()i) spaces and {fy : X — (Xk, gx)} denotes a
collection of injective and generalized fuzzy continuous functions; thus, the initial GFT induced by the

collection {fi}ej is also a gFT(()i) space.

Proof. Is analogous to the proof of Theorem 6.2. m]

i)

Theorem 6.4. If (X, gx) represents a collection of gFT(()" spaces and {fi : X — (Xk, gx)} denotes a

collection of injective and generalized fuzzy continuous functions; thus, the initial GFT on X induced by

the collection {fi}iey is also a gFT(()ii) space.

Proof. Assume that ¢ denote the initial GFT for the collection {fi}ej. Suppose x and y are elements

of X where x is not equal to y and any r,0 € [0,1). Since f; is a one-to-one function, fi(x) and
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fe(y) are distinct elements in X;. Given that (X, gx) is a gPT(()ii) space, for any 7,6 € [0,1) and
distinct fi(x) and fi(y) in X, AHy € gk s.t He(f(x)) = r and Hi(fk(y)) > 06, or Hx(fi(x)) > r and
Hi(fx(y)) = 0. For simplicity, assume 3 Hy € gi s.t Hx(fx(x)) = r and Hy(f¢(y)) > 6.

Now, Hi(fi(x)) = r = f7'(Hi)(x) = r. This condition holds Yk € J. Thus, \/ses f; ' (Hk)(x) = 7.
Also, Hx(fi(y)) > 0 = f ' (Hi)(y) > 6 = Viey fi ' (Hi) (y) > 0. Suppose H = Vi f; ' (Hy). Since
fr is a generalized fuzzy continous, H € g. Therefore, H(x) = rand H(y) > 6. This can be similarly

shown for the reverse case. Thus, (X, g) isa gFT(()ii)

space. ]

Theorem 6.5. If (X, gi) represents a collection of gFT.")

spaces and {fx : X — (X, gx)} denotes a
collection of injective and generalized fuzzy continuous functions; thus, the initial GFT on X induced by

the collection {fi}kej is also a gFT(iii)

o Space.

Proof. Assume that g denote the initial GFT on X for the family {fi}re;. Consider x,, yg € FS(X)
where x # . Since f; is a one-to-one function, fi(x) and f;(y) are distinct elements in Xy. Given that
(Xk, gx)isa gF Téiii) space, for every different fuzzy singletons (fi(x))s and (fi(v))p either AH; € g
s.t (fk(x))aqHk and (fi(v))s N Hx = Ox, or AWy € g s.t (fi(v))pqWik and (fi(x))a N Wy = Ox. For
simplicity, assume 3 Hy € g s.t (fk(x))agqHk and (fi(y))p N Hi = Ox.

Given that, (fx(x))agHx = Hr(fx(x)) +a>1= fk‘1 (Hk)(x) + « > 1. This condition holds Yk € J.
Hence /ey fi ' (Hi) (x) +a > 1. Also, (fi(y))s NHy = 0x = Hi(fi(y)) = 0x = f ' (Hi)(y) =
0x = Vies fi ' (Hi)(y) = Ox. Suppose H = /¢ f, ' (H). Since f; is a generalized fuzzy continous,
H € g. Therefore, H(x) +a > 1 and H(y) = Ox. Hence, x,qH and yg N H = Ox. Similarly, ysqW
and x, N W = 0x. Hence (X, g) isa gFT(()ﬁi) space. o

) spaces and {fy : X — (Xy, gk)} denotes a

Theorem 6.6. If (X, gx) represents a collection of gFT(()iU
collection of injective and generalized fuzzy continuous functions; thus, the initial GFT on X induced by

the collection {filre is also a gFT(()iv) space.
Proof. Is analogous to the proof of Theorem 6.5. m]

Definition 6.4. Given the family of GFTS {(X, gk ) ke and the family of functions {fi : X — (X, 8k) Ykej,
The final GFTS on a set X is defined as the finest GFT on X that ensures every fi generalized fuzzy continuous.

Theorem 6.7. If (Xy, gx) represents a collection of gFTy spaces and {fi : (Xk, gx) — X} denotes a set of
bijective and generalized fuzzy open functions; thus, the final GFT corresponding to the collection {fi}re;
will be a gFT space.

Proof. Suppose g represent the final GFT for the collection {fi}ic;. Assume x4, yp € FS (X) where
x # y. For each k, f7!(x) and f'(y) are elements of X}, and since f; is bijective, f'(x) # f, ().
Given that (X, gx) is a gFTo space, then ¥ (£, (x))a, (f7(v))p € FS(Xx) with £ (x) # 7 (y),
AH, We € ge st (7 (¥)a € He © (£ (1)) or (7 (1))p € We € ((f(3))a)". Suppose, with-
out loss of generality, 4Hy € gi s.t (7' (x))a € Hr € ((f7'(y))p)"-

Consider, (f'(x))a € Hx = a < Hi(f{'(x)) = a < fi(Hy)(x) and Hy C ((f7'(y))p)" =
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Hg (7 (v)p = B+ He(f7'(y)) <1 = B+ fi(Hi)(y) < 1. This is holds Yk € J, so it follows
that & < Vg fi(Hi)(x) and B+ Ve fi(Hi)(y) < 1. Define H = V¢ fx(H). Since f; is a gener-
alized fuzzy open function, H € g. Thus, @ < H(x) and f + H(y) < 1. Consequently, x, € H and
Hgyg = H < (yp)°. Therefore, x, € H C (yp)°. Hence (X, g) is a gFTo space. o

) spaces and {fy : (Xk, gx) — X} denotes a set of

Theorem 6.8. If (X, gx) represents a collection of gFT(()i
bijective and generalized fuzzy open functions; thus, the final GFT corresponding to the collection {fi}res

will be a gFT((]i) space.
Proof. Resembles the proof of Theorem 6.7. m|

Theorem 6.9. If (Xy, gx) represents a collection of gPTéii) spaces and {fi : (Xy, gk) — X} denotes a set of
bijective and generalized fuzzy open functions; thus, the final GFT corresponding to the collection {fi}res
will be a gFT((J”) space.

Proof. Suppose g represent the final GFT for the collection {fi}x;. Assume x,y € X wih x # y and
any r,6 € [0,1). For each k, f ' (x) and f!(y) are elements of X;, and since f; is bijective, f;!(x) #
S (y). Given that (X}, gx) is gFT(()ﬁ) space, for each pair of fuzzy singletons f!(x) and f'(y) in
Xy and for any r,6 € [0,1), 3Hy € g st Hy(f7'(x)) = r and H(f, ' (y)) > 6 or He(f ' (x)) > r
and Hi(f;'(y)) = 6. Suppose, without loss of generality, AHy € g s.t Hi(f;'(x)) = r and
H(f (1) > 6.

Now, H(f'(x)) = r = fi(Hi)(x) = rand Hi(f7'(y)) > 6 = fx(Hi)(y) > 6. This is holds Yk € J.
Therefore, Ve fi(Hx)(x) = r and Ve fi(Hk)(y) > 0. Define H = V¢ fy(H). Since f; is a
generalized fuzzy open function, H € g. Consequently, H(x) = rand H(y) > 0. Similarly, H(x) > r
and H(y) = 6. Then (X, g) isa gFT(()ii) space. m]

Theorem 6.10. If (X, gx) represents a collection of gFT(()iii) spaces and {fi : (Xx, gx) — X} denotes a set
of bijective and generalized fuzzy open functions; thus, the final GFT corresponding to the collection { fi}ie;
will be a gFT(()m) space.

Proof. Suppose g represent the final GFT for the collection { fi}iej. Assume x4, Y3 € FS(X) where x #
y. Foreachk, f!(x) and £, (y) are elements of X}, and since f; is bijective, £ (x) # f ' (y). Given
that (X, g) is agFT(()m) space, then ¥ (f71(x))a, (f7(y))p € FS(X¢) with £ (x) # £, (v), AHk € &
s.t (fk‘1 (x))agHy and (fk‘l(y))ﬁ NHy = 0x or AWy € gg s.t (fk‘l(y))ﬁqwk and (fk‘1 (x))a N Wi = 0x.
Suppose, without loss of generality, 3H € gi s.t (f"' (x))aqHx and (£, (y))p N Hy = Ox.

Now, (f71(x))aqHr = Hi(f, ' (%)) + a > 1= fi(Hp)(x) +a > 1= Vg (fi(Hy))(x) +a > 1. Also,
(f'()p N Hy = 0x = Hi(f7'(y)) = 0x = fi(H)(y) = 0x = Vi (fe(Hi))(y) = Ox. Define
H = Vej f(Hy). Since f; is a generalized fuzzy open function, H € g. Consequently, x,qH and

yg N H = Ox. Similarly, yggW and x, N W = Ox. Therefore, (X, g) is a gFTéiii) space. |
)

Theorem 6.11. If (X, g) represents a collection of gFT(()iU spaces and {fi : (Xy, gx) — X} denotes a set
of bijective and generalized fuzzy open functions; thus, the final GFT corresponding to the collection { fi}ies

will be a gFTéiv) space.
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Proof. Resembles the proof of Theorem 6.10. m]
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