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Abstract. The main purpose of this paper is to investigate a nonlinear elliptic problem with a natural growth term under

Robin boundary conditions. Using approximation techniques and surjectivity criteria of an operator mapping from a

Banach space into its dual, we prove the existence of a sequence of weakly approximated solutions and take its limit to

establish the existence of a renormalized or entropy solution for the initial problem.

1. Introduction

In this paper we consider the following nonlinear Robin boundary value problem

(P)


β(u) − div a(x, u,∇u) + H(x, u,∇u) 3 f in Ω

a(x, u,∇u) · ν = −|u|p(x)−2u on ∂Ω.

Here we suppose that Ω is an open bounded domain of RN (N ≥ 3) with smooth boundary ∂Ω,

f ∈ L1(Ω) and ν represents the outer unit normal vector on ∂Ω. The function p(.) : Ω −→ R+ is

continuous and satisfies the following conditions

1 < p− := min
x∈Ω

p(x) ≤ p+ := max
x∈Ω

p(x) < ∞.
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The functionβ is a maximal monotone graph such that 0 ∈ β(0) and int(domβ) = (m, M)with −∞ ≤

m ≤ 0 ≤M ≤ ∞.

We assume that the p(.)-Leray-Lions type operator a : Ω ×R ×RN
→ RN is a Carathéodory

function satisfying the following conditions for all ξ, η ∈ RN, s ∈ R, and for a.e. x ∈ Ω

a(x, s, ξ).ξ ≥ C1|ξ|
p(x), (1.1)

|a(x, s, ξ)| ≤ C2(k(x) + |s|p(x)−1 + |ξ|p(x)−1), (1.2)

(a(x, s, ξ) − a(x, s, η))(ξ− η) > 0 if ξ , η, (1.3)

and

a(x, s, 0) = 0, (1.4)

where C1 > 0, C2 > 0 and k(.) is a given nonnegative function in Lp′(.)(Ω). Note that p′(.) stands

for the conjugate exponent of p(.).
The Carathéodory function H : Ω ×R ×RN

−→ R is a nonlinear term having natural growth of

order p(.) with respect to |∇u| and fullfils a sign condition :

|H(x, s, ξ)| ≤ b(|s|)(c(x) + |ξ|p(x)), for a.e. x ∈ Ω, s ∈ R, ξ ∈ RN (1.5)

and

H(x, s, ξ)s ≥ 0, (1.6)

where b : R+
→ R+ is a continuous increasing function, c(.) a given nonnegative function in

L1(Ω).

We emphasize that the Robin problems exhibiting a natural growth term have been less analyzed

when the p(.)-Leray-Lions type operator depends simultaneously on the spatial variable x, the

solution u, and its gradient ∇u. However, assuming g ≡ 0, certain authors addressed the problem

(P) when the operator a depends only on x and the gradient of the solution. Indeed, in the

framework of classical Sobolev spaces constant exponents p, Motreanu et al. [31] have recently

employed a sub-supersolution approach to establish the existence of solution for the following

Robin boundary value problems with full gradient dependence

(P)


div a(x,∇u) + α(x)|u|p−2 = f (x, u,∇u) in Ω

a(x,∇u) · ν+ η(x)|u|p−2u = 0 on ∂Ω.

(1.7)

We also refer the reader to the references cited therein [31] for motivation regarding Robin boundary

conditions. As far as the Robin boundary problems are concerned, some results have been extended

from classical Sobolev spaces to Sobolev spaces with variable exponents. In [36], by considering

the p(.)-Leray-Lions type operator a(x,∇u) and H identically zero, Ouaro et al. (see also [34, 35,

38]) proved the existence and uniqueness of a renormalized and an entropy solution of a Robin

boundary problem when the source term is an integrable function or a measure data. Further,

they studied in [37, 42] the problem (P) without the natural growth term in the context of the
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p(x, u)−Laplacian operator (i.e., the exponent p(.) depends on the solution u). In [39], Alain

prignet analyzed the existence of solutions to the following elliptic problem

div a(x, u,∇u) = f inD′ (1.8)

where f ∈ (C(Ω))′ and with non-homogeneous boundaries condition of types Neumann (i.e

a(x, u,∇u).η = g on ∂Ω), Fourier (i.e a(x, u,∇u).η+ λu = g on ∂Ω), Dirichlet (u = g on ∂Ω). We

also recall that nonlinear elliptic problems involving the general Leray-lions operator are most stud-

ied under the Dirichlet boundary conditions (see [7,9,11,13–16,19,26,45]) and Neumann boundary

conditions ( [7, 12, 33]) Besides the mathematical interest in solving partial differential equations

in Sobolev spaces with variable exponents, researchers are motivated by their applications across

various disciplines, including physical and mechanical processes, electro-rheological fluids, as well

as stationary thermo-rheological viscous flows of non-Newtonian fluids (see [6, 20, 25, 40, 41] for

more details). Another great progress in their application was the modeling of image processing

( [18]).

Recently, in [3], the authors analyzed the existence of solutions for the problem (P) under Dirichlet

boundary conditions in the framework of constant exponent. Then, in [28], the second author and

collaborators extended their results in the context of p(.) variable exponents and measure data.

In this paper, we use the theory of maximal monotone operators in Banach spaces and approx-

imation techniques to establish the existence of renormalized and entropy solutions for a broad

class of multivalued nonlinear elliptic problems involving Robin boundary conditions. We stress

that the concept of renormalized solutions is an alternative approach to solving partial differential

equations when the data are not smooth (L1-function or a measure), and classical methods might

fail. This type of solutions was initially introduced by Lions and Diperna [21] (see also [1,2,26,28])

to tackle elliptic equations when the right-hand side data belong to L1 or are represented as a

measure.

Since we only have weak-∗ convergence of the Yosida approximation βε of β (see below) in the

space of bounded measures, a measure arises that must be properly handled when passing to the

limit. To overcome this difficulty, we proceed as in [28, 32, 34–36] by taking into account the mea-

sure that appears in the definition of solution. Another obstruction is that the Poincaré inequality

and the Poincaré-Wirtinger inequality with variable exponents cannot be applied. However, we

overcome this by using the Poincaré-Wirtinger inequality with a constant exponent. In contrast

to the Dirichlet case, the solution of the Robin boundary problem is not null on the boundary. We

must handle the solution on the boundary. To overcome this difficulty, we proceed as in [38] by

defining a new space that accounts for the boundary condition (see the proof of Proposition 3.1).

The added value of our work in the literature is the resolution of multivalued problems involving

simultaneously a general nonlinear operator (i.e., −div(a(x, u,∇u))), a natural growth term and

Robin boundary condition. Furthermore, this work is a generalization of results from constant to

variable exponent Sobolev spaces.



4 Int. J. Anal. Appl. (2025), 23:36

The remainder of this paper is structured as follows. Section 2 introduces key definitions and prop-

erties of Sobolev spaces with variable exponents. In Section 3, we demonstrate the existence of a

renormalized solution. Finally, Section 4 concludes by proving the existence of entropy solutions.

2. Preliminaries

In the following, we provide definitions and outline the fundamental properties of Lebesgue and

Sobolev spaces with variable exponents.

Let Ω be a bounded open domain in RN (N ≥ 3)with smooth boundary ∂Ω, and let p(.) : Ω −→ R+

be a continuous function with

1 < p− := min
x∈Ω

p(x) ≤ p+ := max
x∈Ω

p(x) < ∞. (2.1)

We denote

C+(Ω) =

{
p(.) : Ω −→ (1,∞) continuous such that 1 < p− ≤ p+ < ∞

}
.

From this point onward, we assume that p ∈ C+(Ω) and define the variable exponent Lebesgue

space as follows:

Lp(.)(Ω) :=
{

u : Ω→ R measurable :
∫

Ω
|u|p(x)dx < ∞

}
.

Let p(.) be in ∈ C+(Ω). Then, the expression

‖u‖p(.) := inf
{
λ > 0 :

∫
Ω

∣∣∣∣∣∣u(x)λ
∣∣∣∣∣∣p(x)dx ≤ 1

}
defines a norm in Lp(.)(Ω), called the Luxembourg norm. Moreover, (Lp(.)(Ω), ‖.‖p(.)) is a separable,

reflexive and uniformly convex Banach space. Hence its dual space is isomorphic to Lp′(.)(Ω)where
1

p(x) +
1

p′(x) = 1 in Ω.

We call the p(.)-modular of Lp(.)(Ω) the mapping ρp(.) : Lp(.)(Ω) −→ R defined by

ρp(.)(u) :=
∫

Ω
|u|p(x)dx.

Let u ∈ Lp(.)(Ω), then, we have (see [22], [23]):

min
{
‖u‖p

−

p(.); ‖u‖
p+

p(.)

}
≤ ρp(.)(u) ≤ max

{
‖u‖p

−

p(.); ‖u‖
p+

p(.)

}
. (2.2)

For any u ∈ Lp(.)(Ω) and v ∈ Lp′(.)(Ω), we have the Hölder type inequality (see [29]):∣∣∣∣∣∣
∫

Ω
uvdx

∣∣∣∣∣∣ ≤
(

1
p−

+
1

(p′)−

)
‖u‖p(.)‖v‖p′(.). (2.3)

Let p1, p2 ∈ C+(Ω) such that p1(x) ≤ p2(x) for any x ∈ Ω. Then the embedding Lp2(.)(Ω) ↪→

Lp1(.)(Ω) is continuous (see [29]).

Proposition 2.1. [29] Let un, u ∈ Lp(x)(Ω). Then, the following properties hold true:
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(i) ‖u‖p(.) < 1 (resp, = 1, > 1) if and only if ρp(.)(u) < 1 (resp, = 1, > 1);
(ii) ‖u‖p(.) > 1 imply ‖u‖p−p(.) ≤ ρp(.)(u) ≤ ‖u‖

p+
p(.), and ‖u‖p(.) < 1 imply ‖u‖p+p(.) ≤ ρp(.)(u) ≤ ‖u‖

p−
p(.);

(iii) ‖un‖p(.) → 0 if and only if ρp(.)(un)→ 0, and ‖un‖p(.) →∞ if and only ρp(.)(un)→∞.

Now, we define the variable exponent Sobolev space by

W1,p(.)(Ω) :=
{

u ∈ Lp(.)(Ω) : |∇u| ∈ Lp(.)(Ω)

}
,

with the norm

||u||1,p(.) = ‖u‖p(.) + ‖∇u‖p(.).

For a measurable function u : Ω −→ R, we introduce the following notation

ρ1,p(.)(u) :=
∫

Ω
|u|p(x)dx +

∫
Ω
|∇u|p(x)dx.

Proposition 2.2. (see [43, 44]) If u ∈W1,p(.)(Ω), the following properties hold true:

(i) ‖u‖1,p(.) > 1⇒ ‖u‖p
−

1,p(.) < ρ1,p(.)(u) < ‖u‖
p+

1,p(.);

(ii) ‖u‖1,p(.) < 1⇒ ‖u‖p
+

1,p(.) < ρ1,p(.)(u) < ‖u‖
p−

1,p(.);
(iii) ‖u‖1,p(.) < 1 (respectively, = 1, > 1)⇐⇒ ρ1,p(.)(u) < 1 (respectively, = 1, > 1).

By setting

p∂(x) := (p(x))∂ :=


(N−1)p(x)

N−p(x) if p(x) < N,

∞ if p(x) ≥ N,

we have the following result.

Proposition 2.3. (see [44]) Let p ∈ C+(Ω). If q ∈ C(∂Ω) such that

1 < q(x) < p∂(x) ∀x ∈ ∂Ω,

then, there is a compact embedding W1,p(.)(Ω) ↪→ Lq(.)(∂Ω). In particular, there is a compact embedding
W1,p(.)(Ω) ↪→ Lp(.)(∂Ω).

We denote by W1,p(.)
0 (Ω) the closure of C∞0 (Ω) in W1,p(.)(Ω), and we define the Sobolev exponent

by p∗(x) = Np(x)
N−p(x) if p(x) < N and p∗(x) = ∞ if p(x) ≥ N.

Lemma 2.1. [9] Let u, un ∈ Lp(.)(Ω) such that ‖un‖p(.) ≤ C. If un(.) → u(.) a.e. in Ω, then un ⇀ u in
Lp(.)(Ω).

Theorem 2.1. [23, 27]

(i) The space W1,p(.)(Ω) is a separable and reflexive Banach space.
(ii) If q ∈ C+(Ω) and q(x) < p∗(x) for any x ∈ Ω, then the embedding W1,p(.)

0 (Ω) ↪→↪→ Lq(.)(Ω) is
continuous and compact.

(iii) Poincaré inequality : there exists a constant C > 0, such that

‖u‖p(.) ≤ C‖∇u‖p(.), ∀u ∈W1,p(.)
0 (Ω).
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(iv) Sobolev-Poincaré inequality : there exists a constant C > 0, such that

‖u‖p∗(.) ≤ C‖∇u‖p(.), ∀u ∈W1,p(.)
0 (Ω).

Remark 2.1. In view of (iii) in Theorem 2.1, we deduce that ‖∇u‖p(.) and ‖u‖1,p(.) are equivalent norms in

W1,p(.)
0 (Ω).

Lemma 2.2. [39] There exists a constant C > 0 such that for any u ∈W1,1(Ω), one has∫
Ω
|u|dx ≤ C

( ∫
Ω
|∇u|dx +

∫
∂Ω
|u|dσ

)
(2.4)

and there exists a constant C′ > 0 such that for any u ∈W1,q(Ω), 1 < q < N, one has( ∫
Ω
|u|q

∗

dx
) q

q∗

≤ C′
( ∫

Ω
|∇u|qdx +

( ∫
∂Ω
|u|dσ

)q)
, (2.5)

where q∗ = Nq
N−q .

Remark 2.2. It is clear that for 1 ≤ p− ≤ p+ < ∞, one has

(a + b)p(x)
≤ 2p+−1(ap(x) + bp(x)).

Throughout the paper, we will use the truncation function Tk of level k > 0 defined by

Tk(s) = max{−k, min{k; s}}. (2.6)

One can easily see that lim
k→∞

Tk(s) = s and |Tk(s)| = min{|s|; k}.

T
1,p(.)(Ω) := {u : Ω→ R measurable function such that Tk(u) ∈W1,p(.)(Ω)}.

Let us introduce some functions that will be frequently used in this paper.

For r ∈ R, let r+ := max(r, 0) and sign+
0 be the function defined by

sign+
0 (r) =

 1 if r > 0,

0 if r ≤ 0.

For any s and k in R, with k ≥ 0, we defined the function Gk(s) = s− Tk(s).
Let β be a maximal monotone operator defined on R. Then, we define its main section β0 by

β0(s) =


minimal absolute value of β(s) if β(s) , ∅,
∞ if [s,∞)∩D(β) = ∅,

−∞ if (−∞, s] ∩D(β) = ∅.

For a maximal monotone graph β in R ×R, for any ε ∈ (0, 1], the Yosida approximation βε of β

(see [4, 5, ]) is given by βε =
1
ε
(I − (I + εβ)−1), which a non-decreasing and Lipschitz-continuous

function.

If s ∈ Dom(β), |βε(s)| ≤ |β0(s)| and βε(s) −→ β0(s), as ε → 0, and if s < Dom(β), |βε(s)| −→ ∞, as

ε→ 0.

We also use the following useful convergence result (see [32]).
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Lemma 2.3. Let (βn)n≥1 be a sequence of maximal monotone graphs such that βn → β in the sense of the
graph (for (x, y) ∈ β, there exists (xn, yn) ∈ βn such that xn → x and yn → y). We consider two sequences
(zn)n≥1 ⊂ L1(Ω) and (wn)n≥1 ⊂ L1(Ω). We suppose that: ∀n ≥ 1, wn ∈ βn(zn), (wn)n≥1 is bounded in
L1(Ω) and zn → z in L1(Ω). Then, z ∈ dom(β).

Proposition 2.4. [] Let u ∈ T 1,p(.)(Ω). Then there exists a unique measurable function v : Ω −→ RN

such that ∇Tk(u) = vχ{|u|<k}, for all k > 0. The function v is denoted by ∇u. Moreover if u ∈ W1,p(.)(Ω)

then v ∈ (Lp(.)(Ω))N and v = ∇u in the usual sense.

As in [5], we introduce T 1,p(.)
tr (Ω) as the set of functions u ∈ T 1,p(.)(Ω) such that there exists a

sequence (un)n∈N ⊂W1,p(.)(Ω) satisfying the following conditions:

(i) un −→ u a.e. in Ω.

(ii) ∇Tk(un) −→ ∇Tk(u) in (L1(Ω))N for any k > 0.

(iii) There exists a measurable function v on ∂Ω, such that un → v a.e. in ∂Ω.

The function v is the trace of u in the generalized sense introduced in [4, 5].

Lemma 2.4. [9] Let u ∈ Lp(.)(Ω) and un ∈ Lp(.)(Ω) such that ‖un‖Lp(.)(Ω) ≤ C. If un ⇀ u a.e. in Ω then,
un ⇀ u in Lp(.)(Ω).

In the sequel, the following lemma which proof follows the same lines as in [9] will be useful.

Lemma 2.5. Assuming that (1.1)-(1.3) hold and (un)n∈N is a sequence in W1,p(.)(Ω) such that un ⇀ u in
W1,p(.)(Ω) and ∫

Ω

[
a(x, un,∇un) − a(x, un,∇u)

]
∇(un − u)dx→ 0. (2.7)

Then, un → u in W1,p(.)(Ω).

3. Existence of renormalized solutions

Definition 3.1. We say that a pair (u, b) ∈ T 1,p(.)
tr (Ω) × L1(Ω) is a renormalized solution of problem (P)

if it satisfies the following conditions:
(P1) u ∈ dom(β) LN- a.e. in Ω, b ∈ β(u) LN- a.e. in Ω, |u|p(x)−2u ∈ L1(∂Ω),

(P2) there exists ν ∈ Mp(.)
b (Ω) such that ν ⊥ LN, and the positive part ν+ and negative part ν− of ν satisfy

the following conditions

ν+ is concentrated on [u = M] ∩ [u , ∞], ν− is concentrated on [u = m] ∩ [u , −∞],

(P3) for any v ∈W1,p(.)(Ω)∩ L∞(Ω) and for any S ∈ Cc(R),∫
Ω

a(x, u,∇u)∇(S(u)v)dx +
∫

Ω
H(x, u,∇u)S(u)vdx +

∫
Ω

bS(u)vdx

+

∫
Ω

S(u)vdν+
∫
∂Ω
|u|p(x)−2uS(u)vdσ =

∫
Ω

f S(u)vdx. (3.1)
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Moreover,

lim
l→+∞

∫
{l≤|u|≤l+1}

|∇u|p(x)dx = 0. (3.2)

Theorem 3.1. Let f ∈ L1(Ω). Then, the problem (P) has at least one renormalized solution.
Proof.
step 1 Approximate problem
Our first step is to consider the following approximate problem

(Pε)


βε(T 1

ε
(uε)) − diva(x, uε,∇uε) + Hε(x, uε,∇uε) + ε|uε|p(x)−2uε = fε in Ω

a(x, uε,∇uε) · η = T 1
ε
(γ(uε)) on ∂Ω,

where γ(uε) = |uε|p(x)−2uε, βε : R → R is the Yosida approximation of β and Hε(x, s, ξ) =
H(x, s, ξ)

1 + ε|H(x, s, ξ)|
, for any ε ∈ (0, 1]. For all u ∈W1,p(.)(Ω), remark that

〈βε(u), u〉 ≥ 0, |βε(u)| ≤
1
ε
|u| and lim

ε→0
βε(u) = β(u).

One also has

Hε(x, s, ξ)s ≥ 0, |Hε(x, s, ξ)| ≤ |g(x, s, ξ)| , |Hε(x, s, ξ)| ≤
1
ε

and

|βε(T 1
ε
(uε))| ≤

1
ε2 .

Furthermore, for any ε > 0, fε = T 1
ε
( f ) is a sequence of bounded functions which converge to

f ∈ L1(Ω) as ε→ 0.

Moreover, one has

|| fε||L1(Ω) ≤ || f ||L1(Ω) (3.3)

Proposition 3.1. For any f ∈ (W1,p(.)(Ω))∗, the problem (Pε) admits at least one weak solution uε ∈
W1,p(.)(Ω). Namely,∫

Ω
βε(T 1

ε
(uε))ϕdx +

∫
Ω

a(x, uε,∇uε)∇ϕdx +
∫

Ω
Hε(x, uε,∇uε)ϕdx + ε

∫
Ω
|uε|p(x)−2uεϕdx

∫
∂Ω

T 1
ε
(γ(uε))ϕdσ =

∫
Ω

fεϕdx, (3.4)

for all ϕ ∈W1,p(.)(Ω)∩ L∞(Ω).

Proof. We define the reflexive space

E := W1,p(.)(Ω) × Lp(.)(∂Ω)

and X0 the subspace of E defined by

X0 = {(u, v) ∈ E : v = τ(u)},
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where τ(u) is the trace of u ∈ T 1,p(.)
tr (Ω) in the usual sense, since u ∈ W1,p(.)(Ω). In the sequel, we

will identify an element (u, v) ∈ X0 with its representative u ∈W1,p(.)(Ω).

Let us define the operator Aε : W1,p(.)(Ω)→ (W1,p(.)(Ω))∗ as follows:

∀ u,ϕ ∈W1,p(.)(Ω),

〈Aε(u),ϕ〉 = 〈Au,ϕ〉+
∫

Ω
βε(T 1

ε
(u))ϕdx +

∫
Ω

Hε(x, u,∇u)ϕdx + ε

∫
Ω
|u|p(x)−2uϕdx,

where 〈Au,ϕ〉 =
∫

Ω
a(x, u,∇u)∇ϕdx +

∫
∂Ω

T 1
ε
(γ(u))ϕdσ.

Lemma 3.1. The operator Aε is pseudo-monotone and bounded. Moreover, Aε is coercive in the following
sense

〈Aε(u), u〉
‖u‖1,p(.)

→ +∞ as ‖u‖1,p(.) →∞.

Proof. There exists a constant C3 > 0 such that (see [45])∣∣∣∣∣∣
∫

Ω
Hε(x, u,∇u)ϕdx

∣∣∣∣∣∣ ≤ C3‖ϕ‖1,p(.). (3.5)

There exists a constant C4 > 0 such that∣∣∣∣∣∣
∫

Ω
βε(T 1

ε
(u))ϕdx

∣∣∣∣∣∣ ≤ C4‖ϕ‖1,p(.). (3.6)

By using again Hölder type inequality, one has∣∣∣∣∣∣ε
∫

Ω
|u|p(x)−2uϕdx

∣∣∣∣∣∣ ≤ ε
∫

Ω
|u|p(x)−1

|ϕ|dx

≤ ε

(
1

p−
+

1
(p−)′

)
‖|u|p(x)−1

‖p′(.)‖ϕ‖p(.)

≤ ε

(
1

p−
+

1
(p−)′

)
‖|u|p(x)−1

‖p′(.)(‖ϕ‖p(.) + ‖∇ϕ‖p(.))

≤ C5‖ϕ‖1,p(.),

where C5 = ε

(
1

p− +
1

(p−)′

)
‖|u|p(x)−1

‖p′(.).∣∣∣∣∣∣
∫
∂Ω

T 1
ε
(γ(u))ϕdσ

∣∣∣∣∣∣ ≤ 1
ε

∫
∂Ω
|ϕ|dσ. (3.7)

Using the Hölder type inequality and the growth condition (1.5), we can show that A is bounded.

From this, together with (1.2), (3.5) and (3.6), we deduce that Aε is also bounded.

In order to prove the coercivity of Aε, we set

α =


p+ if ‖u‖1,p(.) ≤ 1,

p− if ‖u‖1,p(.) > 1;
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then, for all u ∈W1,p(.)(Ω), one has

〈Aε(u), u〉
‖u‖1,p(.)

=

∫
Ω

a(x, u,∇u)udx +
∫

Ω
βε(T 1

ε
(u))udx +

∫
Ω

Hε(x, u,∇u)udx

‖u‖1,p(.)

+

ε

∫
Ω
|u|p(x)−2udx +

∫
∂Ω
|u|p(x)−2udσ

‖u‖1,p(.)

≥

∫
Ω

a(x, u,∇u)∇udx + ε

∫
Ω
|u|p(x)−2udx

‖u‖1,p(.)
(by neglecting positive terms)

≥

λ

∫
Ω
|∇u|p(x)dx + ε

∫
Ω
|u|p(x)−2udx

‖u‖1,p(.)

≥

min(ε,λ)
( ∫

Ω
|∇u|p(x)dx +

∫
Ω
|u|p(x)dx

)
‖u‖1,p(.)

≥
min(ε,λ)ρ1,p(.)(u)

‖u‖1,p(.)

≥ min(ε,λ)
‖u‖α

1,p(.)

‖u‖1,p(.)

≥ min(ε,λ)‖u‖α−1
1,p(.) →∞ as ‖u‖1,p(.) →∞ (since 1 < p− ≤ p+).

Thus, Aε is coercive.

It remains to show that Aε is pseudo-monotone. For that we consider a sequence (uk)k∈N in

W1,p(.)(Ω) such that 

uk ⇀ u in X0,

Aεuk ⇀ χ in X′0,

lim
k→∞

sup〈Aεuk, uk〉 ≤ 〈χε, u〉.

(3.8)

Now, we aim to prove that

〈Aεuk, uk〉 −→ 〈χ, u〉 as k −→ ∞with χ = Aεu.

By the compact embedding W1,p(.)(Ω) ↪→↪→ Lp(.)(Ω), there exists a subsequence, still denoted

(uk)k∈N, such that uk → u in Lp(.)(Ω) as k→∞.

Since (uk)k∈N is a bounded sequence in W1,p(.)(Ω), using the growth condition it follows, that

(a(x, uk,∇uk))k∈N is bounded in (Lp′(.)(Ω))N. Therefore, there exists a function ϕ ∈ (Lp′(.)(Ω))N

such that

a(x, uk,∇uk)⇀ ϕ in (Lp′(.)(Ω))N as k→∞. (3.9)
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Since (Hε(x, uk,∇uk))k∈N is bounded in (Lp′(.)(Ω))N, it follows in the same manner that there exists

a function ψε ∈ (Lp′(.)(Ω))N such that

Hε(x, uk,∇uk)⇀ ψε in (Lp′(.)(Ω))N as k→∞. (3.10)

Given the inequality |βε(T 1
ε
(uk))| ≤

1
ε2 and the convergence uk −→ u a.e. in Ω, as k → ∞, one can

apply the Lebesgue dominated convergence theorem and deduce that

βε(T 1
ε
(uk)) −→ βε(T 1

ε
(u)) in L(p−)′(Ω), as k→∞. (3.11)

It can also be stated that

|uk|
p(x)−2uk −→ |u|p(x)−2u in Lp(.)(∂Ω) as k→∞ (3.12)

and

ε|uk|
p(x)−2uk −→ ε|u|p(x)−2u strongly in Lp′(.)(Ω), as k→∞. (3.13)

Thus, for any v ∈W1,p(.)(Ω),

〈χε, v〉 = lim
k→∞
〈Aεuk, v〉

= lim
k→∞

∫
Ω

a(x, uk,∇uk)∇vdx + lim
k→∞

∫
Ω

Hε(x, uk,∇uk)vdx

+ lim
k→∞

∫
Ω
βε(T 1

ε
(uk))vdx + ε lim

k→∞

∫
Ω
|uk|

p(x)−2ukvdx + lim
k→∞

∫
∂Ω
|uk|

p(x)−2ukvdσ

=

∫
Ω
ϕ∇vdx +

∫
Ω
ψεvdx +

∫
Ω
βε(T 1

ε
(u))vdx + ε

∫
Ω
|u|p(x)−2uvdx +

∫
∂Ω
|u|p(x)−2uvdσ. (3.14)

Based on (3.8) and (3.14), one obtains

lim
k→∞

sup〈Aεuk, uk〉 = lim
k→∞

sup
( ∫

Ω
a(x, uk,∇uk)∇ukdx + ε

∫
Ω
|uk|

p(x)dx

+

∫
Ω

Hε(x, uk,∇uk)ukdx +
∫

Ω
βε(T 1

ε
(uk))ukdx

+

∫
∂Ω
|uk|

p(x)dσ
)

≤

∫
Ω
ϕ∇udx +

∫
Ω
ψεudx +

∫
Ω
βε(T 1

ε
(u))udx +

∫
∂Ω
|u|p(x)dσ

+ε

∫
Ω
|u|p(x)dx. (3.15)

Combining (3.10)-(3.13), as k→∞, we obtain∫
Ω

Hε(x, uk,∇uk)ukdx −→
∫

Ω
ψεudx, (3.16)

∫
Ω
βε(T 1

ε
(uk))ukdx −→

∫
Ω
βε(T 1

ε
(u))udx, (3.17)
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ε

∫
Ω
|uk|

p(x)−2uk −→ ε

∫
Ω
|u|p(x)−2udx (3.18)

and ∫
∂Ω
|uk|

p(x)−2ukdσ −→
∫
∂Ω
|u|p(x)−2udσ. (3.19)

It follows that

lim
k→+∞

sup
∫

Ω
a(x, uk,∇uk)∇ukdx ≤

∫
Ω
ϕ∇udx. (3.20)

According to (1.3), we have∫
Ω
(a(x, uk,∇uk) − a(x, uk,∇u))(∇uk −∇u)dx ≥ 0.

Then, ∫
Ω

a(x, uk,∇uk)∇ukdx ≥
∫

Ω
a(x, uk,∇uk)∇udx +

∫
Ω

a(x, uk,∇u)(∇uk −∇u)dx.

Given that ∇uk ⇀ ∇u in Lp(.)(Ω), and using (3.41) one obtains

lim
k→∞

inf
∫

Ω
(a(x, uk,∇uk)∇ukdx ≥

∫
Ω
ϕ∇udx.

From (3.20), one can deduce that

lim
k→∞

∫
Ω

a(x, uk,∇uk)∇ukdx =

∫
Ω
ϕ∇udx. (3.21)

Combining (3.16), (3.17), (3.18) and (3.21), we obtain

〈Aεuk, uk〉 → 〈χε, u〉 as k→∞.

It remain to prove that a(x, uk,∇uk)⇀ a(x, u,∇u) in (Lp′(.)(Ω))N and

Hε(x, uk,∇uk)⇀ Hε(x, u,∇u) in Lp′(.)(Ω) as k→∞.

From (3.21), we can prove that

lim
k→∞

∫
Ω
(a(x, uk,∇uk) − a(x, uk,∇u))(∇uk −∇u)dx = 0.

As stated in Lemma 2.5, one obtains

uk → u in W1,p(.)(Ω) and ∇uk → ∇u a.e. in Ω, as k→∞.

Then, we have

a(x, uk,∇uk)⇀ a(x, u,∇u) in (Lp′(.)(Ω))N as k→∞ (3.22)

and

Hε(x, uk,∇uk)⇀ Hε(x, u,∇u) in Lp′(.)(Ω) as k→∞. (3.23)

Thus, we can express χε = Aεu, which completes the proof of Lemma 3.1. �
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Since Aε is bounded, coercive and pseudo-monotone, according to Theorem 2.7 in [30], Aε is

surjective.

Therefore, for any f ∈ (W1,p(.)(Ω))∗, there exists at least one solution uε ∈W1,p(.)(Ω) to (Pε), which

concludes the proof of Proposition 3.1. �

Step 2 The a priori estimate

Lemma 3.2. Let uε be a weak solution of (Pε). Then, for any k > 0 one has,∫
Ω
|∇Tk(uε)|p(x)dx ≤ k

|| f ||L1(Ω)

C3
, (3.24)

∫
Ω
βε(T 1

ε
(uε))Tk(uε)dx ≤ k|| f ||L1(Ω) (3.25)

and

‖T 1
ε
(γ(uε))‖L1(∂Ω) ≤ || f ||L1(Ω). (3.26)

Proof. Taking Tk(uε) as test function in (3.4), one obtains∫
Ω
βε(T 1

ε
(uε))Tk(uε)dx +

∫
Ω

a(x, uε,∇uε)∇Tk(uε)dx +
∫

Ω
Hε(x, uε,∇uε)Tk(uε)dx

+ε

∫
Ω
|uε|p(x)−2uεTk(uε)dx +

∫
∂Ω

T 1
ε
(γ(uε))Tk(uε)dσ =

∫
Ω

fεTk(uε)dx. (3.27)

Let us remark that ∫
Ω

fεTk(uε)dx ≤ k|| f ||L1(Ω).

Having in mind (1.1), (1.6) and the fact that Tk, βε, s 7→ |s|r(.)−2s are non-decreasing functions with

βε(0) = Tk(0) = 0, then all the integrals in (3.27) are nonnegative. Therefore, by disregarding the

positive terms, it follows that ∫
Ω

a(x, uε,∇uε)∇Tk(uε)dx ≤ k|| f ||L1(Ω), (3.28)

∫
Ω
βε(T 1

ε
(uε))Tk(uε)dx ≤ k|| f ||L1(Ω), (3.29)

∫
∂Ω

T 1
ε
(γ(uε))Tk(uε)dσ ≤ k|| f ||L1(Ω). (3.30)

Applying (1.1) in (3.28), one obtains (3.24).

After dividing (3.29) by k > 0 and letting k→ 0, one arrives at (3.25).

Similarly, dividing (3.30) by k > 0, one gets∫
∂Ω

T 1
ε
(γ(uε))

1
k

Tk(uε)dσ ≤ || f ||L1(Ω).

Then, (3.26) follows by applying Lebesgue dominated convergence theorem. �
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Remark 3.1. We claim that |u|p(x)−2u ∈ L1(∂Ω).
Indeed, from (3.26), we have ∫

∂Ω
|T 1

ε
(γ(uε))|dx ≤ || f ||L1(Ω). (3.31)

By applying Fatou’s Lemma, we obtain∫
∂Ω
|γ(u)|dx ≤ lim inf

ε→0

∫
∂Ω
|T 1

ε
(γ(uε))|dx ≤ || f ||L1(Ω).

Lemma 3.3. The sequences (βε(T 1
ε
(uε)))ε>0 and (βε(T 1

ε
(Tk(uε))))ε>0 are uniformly bounded in L1(Ω).

Proof. Indeed, based on (3.29), one has∫
Ω
βε(T 1

ε
(uε))

1
k

Tk(uε)dx ≤ || f ||L1(Ω).

Passing to the limit as k→ 0, one gets∫
Ω
|βε(T 1

ε
(uε))|dx ≤ || f ||L1(Ω).

Thus, the sequence (βε(T 1
ε
(uε)))ε>0 is uniformly bounded in L1(Ω).

Using the following inequality∫
Ω
|βε(T 1

ε
(Tk(uε)))|dx ≤

∫
Ω
|βε(T 1

ε
(uε))|dx,

we deduce that (βε(T 1
ε
(Tk(uε))))ε>0 is also bounded in L1(Ω). �

Lemma 3.4. [36] Let uε be a solution (Pε) with k > 0. Then,∫
Ω
|∇Tk(uε)|p

−

dx ≤ C(k + 1) (3.32)

and ∫
∂Ω
|Tk(uε)|p

−

dσ ≤ (k + 1)|| f ||L1(Ω). (3.33)

The following estimates follows from Lemmas 2.2 and 3.4.

Proposition 3.2. [36] Let uε be a weak solution of (Pε) with k > 0 large enough. Then,

meas{|uε| > k} ≤
Const( f , p−, (p−)∗, Ω)

kα
(3.34)

and

meas
{
|∇uε| > k

}
≤

const( f , Ω)(k + 1)
kp− +

Const( f , p−, (p−)∗, Ω)

kα
(3.35)

where α = (p−)∗(1− 1
p− ) and (p−)∗ =


Np−

N−p− if p− < N,

any element in [N,∞) if p− = N.

Step 3 Convergence results.

Proposition 3.3. [36] Let uε be a weak solution of (Pε) and k > 0. Then, we have



Int. J. Anal. Appl. (2025), 23:36 15

(i) Tk(uε) −→ Tk(u) in Lp−(Ω) and a.e. in Ω, as ε→ 0.
(ii) Tk(uε) −→ Tk(u) in Lp−(∂Ω) and a.e. on ∂Ω.

(iiI) There exists u ∈ T 1,p(.)
tr (Ω) such that u ∈ dom(β) a.e. in Ω and

uε → u in measure and a.e. in Ω, as ε→ 0.

(iv) uε converges a.e. on ∂Ω to some function u.

The above convergences are not sufficient to pass to the limit, so we must prove the strong

convergence of the sequence (Tk(uε))ε>0.

Proposition 3.4. Let uε be a solution of (Pε) and k > 0. Then, one has

Tk(uε)→ Tk(u) strongly in W1,p(.)(Ω). (3.36)

Proof. For all k ≥ 0, we defined the function ϕ(s) = seαs2
such that α =

(
b(k)
λ

)2

.

Let us recall that for any s ∈ R, the function ϕ verifies the following inequality (see [13], Lemma 1)

ϕ′(s) −
b(k)
λ
|ϕ(s)| ≥

1
2

. (3.37)

Now, we choose ϕε = ϕ(Tk(uε) − Tk(u)) as a test function in (3.4) to obtain∫
Ω
βε(T 1

ε
(uε))ϕεdx +

∫
Ω

a(x, uε,∇uε)∇ϕεdx +
∫

Ω
Hε(x, uε,∇uε)ϕεdx

+

∫
∂Ω

T 1
ε
(γ(uε))ϕεdσ+ ε

∫
Ω
|uε|p(x)−1

|ϕε|dx =

∫
Ω

fϕεdx.

Due to the fact that ϕε and uε have the same sign in the set {|uε| > k}, one has

I1
ε + I2

ε + I3
ε + I4

ε + I5
ε ≤ I6

ε ,

where I1
ε =

∫
{|uε|≤k}

βε(T 1
ε
(uε))ϕεdx, I2

ε =

∫
Ω

a(x, uε,∇uε)∇ϕεdx, I3
ε =

∫
Ω

Hε(x, uε,∇uε)ϕεdx,

I4
ε =

∫
∂Ω

T 1
ε
(γ(uε))ϕεdσ, I5

ε = ε

∫
Ω
|uε|p(x)−2uεϕεdx, I6

ε =

∫
Ω

fεϕεdx.

Since |uε|p(x)−2uε −→ |u|p(x)−2u in Lp′(.)(Ω) andϕε −→ 0 in L∞(Ω) as ε→ 0, it follows that lim
ε→0

I5
ε = 0.

Since uε converges to u and ϕε −→ 0 a.e. on ∂Ω as ε → 0, then by the continuity of γ, one has

T 1
ε
(γ(uε))ϕε → 0 a.e. on ∂Ω.

On the other hand, as |Tk(uε) − Tk(u)| ≤ 2k, for any k ≥ 1, we have

|ϕε| ≤ 2ke4αk2
and |T 1

ε
(γ(uε))ϕε| ≤ 2ke4αk2

|γ(uε)| ∈ L1(∂Ω).

Using the Lebesgue generalized convergence theorem, one obtains lim
ε→0

I4
ε = 0.

On the set {|uε| ≤ k}, one has |βε(T 1
ε
(uε))| ≤ max

(
βε(T 1

ε
(−k)), βε(T 1

ε
(k))

)
and

|βε(T 1
ε
(uε))ϕε| ≤ 2ke4αk2

max
(
βε(T 1

ε
(−k)), βε(T 1

ε
(k))

)
.



16 Int. J. Anal. Appl. (2025), 23:36

By applying the Lebesgue dominated converge theorem, it follows that lim
ε→0

I1
ε = 0.

Since ϕε −→ 0 in L∞(Ω) and fε −→ f in L1(Ω) as ε→ 0, one has lim
ε→0

I6
ε = 0.

Proceeding as in [28], we have

lim
ε→0

∫
Ω
[a(x, Tk(uε),∇Tk(uε)) − a(x, Tk(uε),∇Tk(u))] · ∇(Tk(uε) − Tk(u))dx = 0. (3.38)

By employing Lemma 2.5, we obtain (3.36) �

Remark 3.2. Letting ε→ 0, the above results imply that
• ∇uε → ∇u and ε|uε|p(x)−2uε −→ 0 a.e. in Ω.
• Since the functions a(x, ., .) and H(x, ., .) are continuous for a.e. x in Ω, we have

a(x, uε,∇uε)→ a(x, u,∇u) a.e. in Ω (3.39)

and

Hε(x, uε,∇uε)→ H(x, u,∇u) a.e. in Ω. (3.40)

• According to (3.39) and Lemma 2.1, one has

a(x, uε,∇uε)⇀ a(x, u,∇u) weakly in (Lp′(.)(Ω))N. (3.41)

Note that the above strong convergence is not sufficient to pass to the limit in (3.4), so we need the

following results.

Lemma 3.5. Let uε be a solution of (Pε). Then, letting ε→ 0, we have

Hε(x, uε,∇uε)→ H(x, u,∇u) and ε|uε|p(x)−2uε −→ 0 strongly in L1(Ω). (3.42)

Proof. According to Remark 3.2, we have

Hε(x, uε,∇uε)→ H(x, u,∇u) and ε|uε|p(x)−2uε −→ 0 a.e. in Ω.

By taking ϕ = T1(uε − Tn(uε)) as a test function in (3.4), we obtain∫
Ω
βε(T 1

ε
(uε))T1(uε − Tn(uε))dx +

∫
Ω

a(x, uε,∇uε).∇[T1(uε − Tn(uε))]dx (3.43)

+

∫
Ω

Hε(x, uε,∇uε)T1(uε − Tn(uε))dx + ε

∫
Ω
|uε|p(x)−2uεT1(uε − Tn(uε))dx

+

∫
∂Ω

T 1
ε
(γ(uε))T1(uε − Tn(uε))dσ =

∫
Ω

fεT1(uε − Tn(uε))dx.

Since T1(uε − Tn(uε)) has the same sign with uε and ∇T1(uε − Tn(uε)) = ∇uεχ[n<uε≤n+1], all the

terms in the left-hand side of (3.43) are nonnegative.
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By neglecting some positive terms and recalling that | fε| ≤ | f | ∈ L1(Ω) and meas({|uε| > n}) −→ 0

as n→∞, one obtains∫
{|uε|>n}

Hε(x, uε,∇uε)T1(uε − Tn(uε))dx + ε

∫
{|uε|>n}

|uε|p(x)−2uεT1(uε − Tn(uε))dx

≤

∫
{|uε|>n}

| fε|dx

≤

∫
{|uε|>n}

| f |dx

−→ 0 as n→∞.

Since {|uε| ≥ n + 1} ⊂ {|uε| > n}, we deduce from the above inequality that

lim
n→∞

lim sup
ε→0

( ∫
{|uε|≥n+1}

|Hε(x, uε,∇uε)|dx + ε

∫
{|uε|≥n+1}

|uε|p(x)−1dx
)
= 0.

Thus, for any ρ > 0, there exists h(ρ) > 0 such that∫
{|uε|≥h(ρ)}

|Hε(x, uε,∇uε)|dx + ε

∫
{|uε|≥h(ρ)}

|uε|p(x)−1dx ≤
ρ

2
. (3.44)

For any measurable subset A ⊂ Ω, one has∫
A
|Hε(x, uε,∇uε)|dx + ε

∫
A
|uε|p(x)−1dx ≤ b(h(ρ))

∫
A
(c(x) + |∇Th(ρ)(uε)|

p(x))dx

+

∫
{|uε|≥h(ρ)}

|Hε(x, uε,∇uε)|dx

+

∫
A
|Th(ρ)(uε)|

p(x)−1dx

+ε

∫
{|uε|≥h(ρ)}

|uε|p(x)−1dx. (3.45)

According to (3.36), there exists θ(ρ) > 0 such that, for all A ⊆ Ω with meas(A) ≤ θ(ρ),

b(h(ρ))
∫

A
(c(x) + |∇Th(ρ)(uε)|

p(x))dx + ε

∫
A
|uε|p(x)−1dx ≤

ρ

2
. (3.46)

Combining (3.44), (3.45) and (3.46), one has∫
A
|Hε(x, uε,∇uε)|dx + ε

∫
A
|uε|p(x)−1dx ≤ ρ, (3.47)

for all A ⊆ Ω such that meas(A) ≤ θ(ρ).

We conclude that the sequences (Hε(x, uε,∇uε))ε>0 and (ε|uε|p(x)−2uε)ε>0 are equi-integrable. There-

fore, by Vitali’s Theorem, one arrives at (3.42). �

Lemma 3.6. (see [34]) Let uε be a solution of (Pε). Then, letting ε→ 0, we have

∇[S(uε)ξ] −→ ∇[S(u)ξ] strongly in Lp(.)(Ω),

for all S ∈ C1
c (R) and ξ ∈W1,p(.)(Ω)∩ L∞(Ω).
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Now, we focus on the demonstration of (3.1) and (3.2). For that, one firstly uses S(uε)ξ as test

function in (3.4) to obtain∫
Ω

fεS(uε)ξdx−
∫
∂Ω

T 1
ε
(γ(uε))S(uε)ξdσ−

∫
Ω

a(x, uε,∇uε).∇[S(uε)ξ]dx−
∫

Ω
H(x, uε,∇uε)S(uε)ξdx

−ε

∫
Ω
|uε|p(x)−2uεS(uε)ξdx =

∫
Ω
βε(T 1

ε
(uε))S(uε)ξdx, (3.48)

where ξ ∈W1,p(.)(Ω)∩ L∞(Ω) and S ∈ C1
c (R).

By applying the Lebesgue dominated convergence theorem, we obtain

lim
ε→0

∫
Ω

fεS(uε)ξdx =

∫
Ω

f S(u)ξdx. (3.49)

Due to Lemma 3.5 and the fact that S(uε)ξ −→ S(u)ξ in L∞(Ω), one has

lim
ε→0

∫
Ω

H(x, uε,∇uε)S(uε)ξdx =

∫
Ω

H(x, u,∇u)S(u)ξdx (3.50)

and

lim
ε→0

ε

∫
Ω
|uε|p(x)−2uεS(uε)ξdx = 0. (3.51)

Since |T 1
ε
(γ(uε))S(uε)ξ| ≤ C(S, ‖ξ‖∞)|γ(uε)| ∈ L1(∂Ω), we apply the generalized Lebesgue domi-

nated convergence theorem, to obtain

lim
ε→0

∫
∂Ω

T 1
ε
(γ(uε))S(uε)ξdσ = lim

ε→0

∫
∂Ω
γ(u)S(u)ξdσ. (3.52)

According to Lemma 3.6 and the convergence (3.41), we obtain (see [28])

lim
ε→0

∫
Ω

a(x, uε,∇uε).∇[S(uε)ϕ]dx =

∫
Ω

a(x, u,∇u).∇[S(u)ϕ]dx. (3.53)

Lemma 3.7. Let uε be a solution of (Pε) with k > 0. Then, we have

(i) there exists z ∈ Mb(Ω) such that βε(T 1
ε
(uε))

∗
⇀ z, as ε→ 0,

(ii) lim
ε→0

∫
Ω
βε(T 1

ε
(uε))S(uε)ξdx =

∫
Ω

S(u)ξdz.

Proof.
(i) Since (βε(T 1

ε
(uε)))ε>0 is uniformly bounded in L1(Ω) (see Lemma 3.3), then up to a subsequence

still denoted by ε, there exists z ∈ Mb(Ω) such that

βε(T 1
ε
(uε))

∗
⇀ z, as ε→ 0.

(ii) Proceeding as in [42] (see also aso [28]), it follows (ii). �

Now, passing to the limit as ε→ 0, and combining (3.49)-(3.53) and Lemma 3.7-(ii), we obtains

−

∫
Ω

a(x, u,∇u).∇[S(u)ξ]dx−
∫

Ω
H(x, u,∇u)S(u)ξdx−

∫
∂Ω
γ(u)S(u)ξdσ

+

∫
Ω

f S(u)dx =

∫
Ω

S(u)ξdz. (3.54)
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Therefore, we deduce that z ∈ Mp(.)
b (Ω). The Radon Nikodym decomposition of the measure z

with respect to Lebesgue measure LN can be expressed as follows

Lemma 3.8. [28, 42] Let uε be a solution of (Pε) with k > 0. Then, z = bLN + ν such that ν⊥LN and

b ∈ β(u) LN
− a.e. in Ω, b ∈ L1(Ω), ν ∈ Mp(.)

b (Ω),

ν+ is concentrated on [u = M] ∩ [u , ∞],

ν− is concentrated on [u = m] ∩ [u , −∞].

In view of Lemma 3.8, (3.1) follows from (3.54).

To prove (3.2), one chooses ϕ = T1(uε − Tn(uε)) as test function in (3.4) to obtain∫
Ω
βε(T 1

ε
(uε))T1(uε − Tn(uε))dx +

∫
Ω

Hε(x, uε,∇uε)T1(uε − Tn(uε))dx

+ε

∫
Ω
|uε|p(x)−2uεT1(uε − Tn(uε))dx +

∫
∂Ω

T 1
ε
(γ(uε))T1(uε − Tn(uε))dσ

+

∫
Ω

a(x, uε,∇uε).∇[T1(uε − Tn(uε))]dx =

∫
Ω

fεT1(uε − Tn(uε))dx. (3.55)

Since uε and T1(uε − Tn(uε)) have the same sign and βε is nondecreasing, the four first terms are

positives. Then, one can deduce that∫
[n<|uε|<n+1]

a(x, uε,∇uε).∇uεdx ≤
∫

Ω
fεT1(uε − Tn(uε))dx. (3.56)

Since ∇[T1(uε − Tn(uε))] = ∇uεχ[n<|uε|<n+1], using (1.1), one obtains

C1

∫
[n<|uε|<n+1]

|∇uε|p(x)dx ≤
∫

Ω
fεT1(uε − Tn(uε))dx. (3.57)

According to [36], one has lim
n→∞

lim
ε→0

∫
Ω

fεT1(uε − Tn(uε))dx = 0.

Therefore, passing to the limit in (3.57) as ε→ 0 and n→∞, one obtains (3.2). �

Remark 3.3. We emphasize that if M = ∞ (resp. m = −∞), then ν+ ≡ 0 (resp. ν− ≡ 0). In particular,
when the domain of β is the entire R, the above result leads to the standard reformulation of the renormalized
solution as follows.

Corollary 3.1. LetD(β) = R. Then, the problem (P) has at least one solution (u, b) ∈ T 1,p(.)
tr (Ω)×L1(Ω)

such that u ∈ dom(β) LN- a.e. in Ω, b ∈ β(u) LN- a.e. in Ω, |u|p(x)−2u ∈ L1(∂Ω) and for any S ∈ Cc(R),∫
Ω

a(x, u,∇u)∇(S(u)v)dx +
∫

Ω
H(x, u,∇u)S(u)vdx +

∫
Ω

bS(u)vdx

+

∫
∂Ω
|u|p(x)−2uS(u)vdσ =

∫
Ω

f S(u)vdx, (3.58)
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for any v ∈W1,p(.)(Ω)∩ L∞(Ω). Moreover,

lim
n→∞

∫
[n≤u≤n+1]

|∇u|p(x)dx = 0. (3.59)

Remark 3.4. If the domain of β is bounded (meaning −∞ < m ≤ 0 ≤M < ∞), one can choose h ≡ 1. As a
result, the renormalization by the function h is not required in definition 3.1.

Theorem 3.2. Let −∞ < m ≤ 0 ≤M < ∞. Then, the condition (P3) can be expressed as follows:
(P′3): for any v ∈W1,p(.)(Ω)∩ L∞(Ω),∫

Ω
a(x, u,∇u)∇vdx +

∫
Ω

H(x, u,∇u)vdx +
∫

Ω
bvdx +

∫
Ω

vdν+
∫
∂Ω
|u|p(x)−2uvdσ

=

∫
Ω

f vdx. (3.60)

Proof. Let us consider the function Sl defined by Sl(r) = inf{1, (l + 1− |r|)+}with l > 0.

Now, we set S0 = Sl0 where l0 > 0 satisfying the following conditions
S0 ∈ C1

c (R), S0(r) ≥ 0,∀r ∈ R,

S0(r) = 1 if |r| ≤ l0 and S0(r) = 0 if |r| ≥ l0 + 1.

As the domain of β is bounded, we can choose l0 > 0 such that [m, M] ⊂ [−l0, l0]. Then, setting

S = S0 in (3.1), we obtain∫
Ω

a(x, u,∇u)∇(S0(u)v)dx +
∫

Ω
H(x, u,∇u)S0(u)vdx +

∫
Ω

bS0(u)vdx,

+

∫
Ω

S0(u)vdν+
∫
∂Ω
|u|p(x)−2S0(u)vdσ =

∫
Ω

f S0(u)vdx. (3.61)

Since u ∈ dom(β), one has S0(u) = 1. Hence, from (3.61), it follows (P′3). �

4. Entropy solutions

In the following result, we derive the relationship between a renormalized solution and an

entropy solution.

Definition 4.1. A couple (u, b) ∈ T 1,p(.)
tr (Ω) × L1(Ω) is said to be an entropy solution of the problem (P)

if it satisfies the condition (P1), (P3) and∫
Ω

bTk(u− v)dx +
∫

Ω
a(x, u,∇u)∇Tk(u− v)dx +

∫
Ω

H(x, u,∇u)Tk(u− v)dx

+

∫
∂Ω
|u|p(x)−2uTk(u− v)dσ ≤

∫
Ω

f Tk(u− v)dx, (4.1)

for any v ∈W1,p(.)(Ω)∩ L∞(Ω) such that v ∈ dom(β).

Theorem 4.1. Let f ∈ L1(Ω). Then, the problem (P) has at least one entropy solution.
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Proof. For any n > 0, let Sn be the function defined on R by Sn(r) = inf{1, (n + 1− |r|)+} and (u, b)
a renormalized solution of (P).

Note that Sn(u) −→ 1 a.e. in R as n→∞. Setting S = Sn in (3.58), one obtains∫
Ω

a(x, u,∇u)∇(Sn(u)v)dx +
∫

Ω
H(x, u,∇u)Sn(u)vdx +

∫
Ω

bSn(u)vdx +
∫

Ω
Sn(u)vdν

+

∫
∂Ω
|u|p(x)−2uSn(u)vdσ =

∫
Ω

f Sn(u)vdx, (4.2)

for any v ∈W1,p(.)(Ω)∩ L∞(Ω).

Since ∇(Sn(u)v) = Sn(u)∇v + S
′

n(u)v∇u, one can rewrite (4.2) as follows.∫
Ω

Sn(u)a(x, u,∇u)∇vdx +
∫

Ω
S
′

n(u)va(x, u,∇u)∇udx +
∫

Ω
H(x, u,∇u)Sn(u)vdx

+

∫
Ω

bSn(u)vdx +
∫

Ω
Sn(u)vdν+

∫
∂Ω
|u|p(x)−2uSn(u)vdσ =

∫
Ω

f Sn(u)vdx. (4.3)

Since, Sn(u) −→ 1 a.e. in Ω as n → ∞, excepted the sixth term, all the terms in (4.3) pass to the

limit as n→∞ (we refer to [28] for the detail). Hence, we obtain∫
Ω

a(x, u,∇u).∇vdx+
∫

Ω
H(x, u,∇u)vdx+

∫
Ω

bvdx+
∫

Ω
vdν+ lim

n→∞

∫
∂Ω
|u|p(x)−2uSn(u)vdσ =

∫
Ω

f vdx.

(4.4)

By applying the Lebesgue dominated convergence Theorem, we obtain∫
Ω

a(x, u,∇u).∇vdx +
∫

Ω
H(x, u,∇u)vdx +

∫
Ω

bvdx +
∫

Ω
vdν+

∫
∂Ω
|u|p(x)−2uvdσ

=

∫
Ω

f vdx, (4.5)

where v ∈W1,p(.)(Ω)∩ L∞(Ω).

Let v ∈W1,p(.)(Ω)∩ L∞(Ω) and k > 0. Then, we choose Tk(u− v) as test function in (4.5) to get∫
Ω

a(x, u,∇u)∇Tk(u− v)dx +
∫

Ω
H(x, u,∇u)Tk(u− v)dx +

∫
Ω

bTk(u− v)dx

+

∫
Ω

Tk(u− v)dν+
∫
∂Ω
|u|p(x)−2uTk(u− v)dσ =

∫
Ω

f Tk(u− v)dx, (4.6)

for any v ∈W1,p(.)(Ω)∩ L∞(Ω).

Since v ∈ domβ, it follows that the fourth term in (4.6) is nonnegative (see [34]), which leads to

(4.1). �
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