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Abstract. This study proposes a new computational scheme for the solution of the class of one-dimensional Burgers’

equations, comprising mainly the classical Burgers’ equation, and the system of coupled Burgers’ equations. This

method is based upon coupling the Method of Lines (MOL) and the prominent Adomian Decomposition Method

(ADM) for the reliable computational examination of dissimilar initial-boundary value problems of Burgers’ equations.

Certainly, MOL helps with the spatial semi-discretization of the governing problem to a system of nonlinear Ordinary

Differential Equations (ODEs); while the ADM contributes to the efficient semi-analytical solution of the resulting

nonlinear ODEs. Moreover, the computational accuracy of the new approach has been demonstrated on certain test

models and further evaluated using L2 and L∞ norms. Indeed, the method produces better results with minimal errors

than many existing computational approaches as successfully reported in various supportive figures and tables.

1. Introduction

Various forms of nonlinear evolution equations exist in the open literature with a variety of

applications in the contemporary fields of science and technological processes. In light of this, the

class of Burgers’ equations is one of the famous evolution equations with immense relevance in

the study of fluid flow in the field of fluid mechanics, and also it plays a vital role in the field of

nonlinear waves ([1, 2]), optics, wave scattering, shocks, and shallow water waves to list a few.

A coupled variant of Burger’s equation was devised as the coupled viscous Burger’s equation,
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which was utilized in modeling the transmission of poly-dispersion in sedimen tation processes;

read Esipov [3]. Moreover, the importance of this class of nonlinear equations alongside the lack of

enough exact analytical solutions for computational validations is what results in various scientists

devising several computational methods to study the equations. Computationally, many proficient

numerical approaches for the study of nonlinear Partial Differential Equations (PDEs) are available.

In this regard, we make mention of the Method of Lines (MOL) [4], an interesting numerical

method that goes by discretizing the spatial coordinates, thereby yielding an approximate system

of coupled Ordinary Differential Equations (ODEs) in the temporal variable t. In addition, optimal

computational MOL solutions are attained upon choosing positive spatial discretization points

alongside a type of spatial discretization technique. The next approach of much concern is the

Adomian Decomposition Method (ADM) [5]. The ADM is a semi-analytical approach, which in

the same way multiples as a computational method that swiftly convergences to the accessible

exact analytical solution of the problem.

However, this study is motivated by the competency of both the MOL [4] and the ADM [5] in

handling diverse classes of nonlinear PDEs and thus feels the imperativeness of coupling these

eminent approaches to yet come up with a new approach that combines the salient features of

MOL and ADM. Besides, the study is set to make use of an optimal spatial-discretization technique

together with relatively advanced spatial discretization points in MOL, for the solution numeri-

cal treatment of the governing PDEs, while the ADM is set to approximately solve the resulting

temporal-based system of nonlinear ODEs. Indeed, this new computational approach is referred

to as the Decomposition Method of Lines (DMOL), being the combo of MOL and ADM, which is

suitable for both the classes of real-valued and complex-valued evolution equations, with the gov-

erning class of Burgers’ equations inclusive. In addition, various other computational approaches

have been used in the past and present times to numerically examine this class of equations, includ-

ing, for instance, the differential transformation technique [6], local RBF method [7], cubic Hermite

collocation approach [8], finite element method [9], cubic-B spline basis functions approach [10],

quintic-B spline functions approach [11], and a lot of other approaches, including Chebyshev col-

location method, Chebyshev-Legendre Pseudo-spectral approach and the differential quadrature

technique among others, read also ([12–14]) and the references therewith. Additionally, the effi-

ciency of the proposed DMOL scheme will be computationally assessed with the help of L2 and L∞
error norms for various fixed involving parameters, and different time levels. Equally, the implicit

linearization approach by Mukundan and Awasthi [15] for the solution of the governing model will

be deployed for comparative study. Lastly, the manuscript is organized in the following manner:

Section 2 gives the models of scrutiny. Section 3 is explains the ADM and its application in solving

nonlinear ODEs. Section 4 outlines the DMOL for the two Burgers’ equations of concern. Section

6 analytically derive the error bounds for the DMOL method and demonstrate its convergence

properties. Section 5 is dedicated to the linearization of the two models. Section 7 demonstrates
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the application of the devised DMOL scheme on certain test models of concern; while Section 8

gives some concluding notes.

2. Governing Equations

The current section presents the governing equations of curiosity in this study. Indeed, this study

intends to establish some new reliable computational schemes for the solution of certain nonlinear

evolution equations. Precisely, the study considers the one-dimensional Burgers’ equation, and

the system of coupled one-dimensional Burgers’ equation, as given in what follows.

2.1. Burgers’ equation. The standard form of the one-dimensional Burgers’ equation takes the

following representation [1]

wt = vwxx −wwx, (2.1)

where w = w(x, t), is the real-valued function, denoting the resulting wave field or the correspond-

ing fluid flow, depending on the examining scenario, in the spatial x and temporal t variables. In

addition, v is the kinematic viscosity parameter, defined by v =
1

Ra
; with Ra representing the

involving Reynolds number in the flow. Certainly, this nonlinear evolution equation has a rich

literature, with vast applications in the study of fluid flow in the field of fluid mechanics and also

it plays a vital role in the field of nonlinear waves, which are governed by evolution equations,

portraying the dynamics of solitary wave propagation in various media.

2.2. System of coupled of Burgers’ equations. Equally, among the most widely utilized system

of coupled one-dimensional Burgers’ equations is the following system [2]

w1t = v1w1xx + η1w1w1x + α(w1w2x + w1xw2),

w2t = v2w2xx + η2w2w2x + β(w1w2x + w2xw2), (2.2)

where w1 = w1(x, t), and w2 = w2(x, t) are the resulting real-valued functions for the respective

waves in each equation; of course, they can equally denote the respective fluid flows in the

concerning control volumes - depending on the application, with the spatial x and temporal t

variables. In addition, v j are the associated kinematic viscosities such that v j =
1

Ra
, for j = 1, 2

with Ra, denoting the Reynolds number; while α, β and η j are non-zero real constants all for

j = 1, 2. This coupled Burgers’ model have been examined extensively in the literature, including

the dynamicity of the fractional-order derivative in the model, one may read [2] and the cited

references therein.

3. Adomian DecompositionMethod (ADM)

George Adomian first presented the Adomian decomposition method in 1984 ([16, 17]). Since

then, applied mathematics in general and initial value and boundary value problems in particu-

lar have given this method a lot of attention. The decomposition method yields highly accurate

numerical approximations and shows rapid convergence of the solution. Without resorting to
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linearization, perturbation, or the physical behavior of the physical model under study, the tech-

nique tackles applicable problems directly and simply. In the literature, numerous scholars have

addressed and extensively employed the method ([18–21]). On the other hand, the Adomian

approach reduces the amount of computing work, while some common methods call for large

computations [22].

According to this approach, the solution to a functional equation is equivalent to the sum of an

infinite series that eventually converges. Applying this approach to a class of linear and nonlinear

partial differential equations has been the subject of numerous research projects lately ([23–25]).

Since the approach avoids using needless limiting techniques and presumptions like linearization

and perturbations, which could significantly alter the situation, it is ideally suited to physical

problems. We only go over the essentials of this approach here; [26] has further information.

We first consider the equation

L(w) + R(w) + N(w) = g(x, t), (3.1)

where L is the highest-order linear differential operator ( invertible), R represents a linear differen-

tial operator of order lesser than L, and N represents the nonlinear terms and g(x, t) is the source

term and w is function in (x, t).
Unknown function w(x, t) is represented as an infinite series:

w(x, t) =
∞∑

n=0

wn(x, t), (3.2)

Applying L−1 on the both sides of Equation 3.1 yields

w(x, t) = f (x, t) − L−1R (w(x, t)) − L−1N(w(x, t)), (3.3)

where f (x, t) = w(x, 0) + L−1(g(x, t)) and the function f (x, t) represents the terms arising after

integrating the source term g(x, t) and by using the given conditions.

Substituting the infinite series of components Eq.(4.6) into both sides of Equation 3.3 yields
∞∑

n=0

wn(x, t) = f (x, t) − L−1R

 ∞∑
n=0

wn(x, t)

− L−1N

 ∞∑
n=0

wn(x, t)

 , (3.4)

The decomposition method suggests that the zeroth component w0 is usually defined by all

terms not included under the inverse operator L−1, which arise from the initial data and from

integrating the inhomogeneous term. This in turn gives the formal recursive relation

w0(x, t) = f (x, t),

wk+1(x, t) = −L−1R (wk(x, t)) − L−1N (wk(x, t)) , k = 0, 1, 2, .... (3.5)

More, the nonlinear term N(w) is then expressed by an infinite series of Adomian polynomials

as follows

N(w) =
∞∑

n=0

An, (3.6)



Int. J. Anal. Appl. (2025), 23:44 5

where An are the Adomian polynomials expressed using the following algorithm ([26–28])

An =
1
n!

dn

dλn

N
 ∞∑

i=0

λiwi(x, t)



λ=0

, n = 0, 1, 2, ... (3.7)

The general formula Equation 4.11 can be simplified as follows

A0 = N(w0),

A1 = w1N′(w0),

A2 = w1N′(w0) +
1
2!

w2
1N′′(w0),

A3 = w3N′(w0) + w1w2N′′(w0) +
1
3!

w2
1N′′′(w0).

(3.8)

It is noted from the above equation that A0 depends only on w0, A1 on w0 and w1, and continuously

in that manner.

Finally, after determined these Components w0(x, t), w1(x, t), w0(x, t), ..., we then substitute the

obtained component into Equation (3.1), to obtain the solution in a series form.

The determined series may converge very rapidly to a closed-form solution if an exact solution

exists. For concrete problems, where a closed-form solution is not obtainable, a truncated number

of terms is usually used for numerical purposes. A few terms of the truncated series give an

approximation with a high degree of accuracy. In [29], the Adomian decomposition method

(ADM) was applied to the coupled system of Burgers’ equation.

4. Derivation for the Computational Scheme

This section derives the proposed Decomposition Method of Lines (DMOL) schemes for the

computational treating of one-dimensional Burgers’ equation, and the system of coupled one-

dimensional Burgers’ equations as presented in the above section. In light of this, the procedure

starts with the MOL process by first converting the partial differential equations under consider-

ation into a coupled system first-order Ordinary Differential Equations (ODEs) through approx-

imating the spatial derivatives in the governing models with the non-central difference 5-point

scheme. Thereafter, the resulting coupled of system first-order ODEs is then solved with the help

of the standard ADM.

4.1. DMOL scheme for Burgers’ equation. To derive the DMOL computational scheme for Burg-

ers’ equation, let us consider an initial-boundary value problem for the one-dimensional Burgers’

equation earlier expressed in Equation 2.1 as follows [8]

wt = vwxx −wwx, a < x < b, (4.1)

subject to the following initial-boundary data

w(x, 0) = f (x), a ≤ x ≤ b, (4.2)

w(a, t) = g1(t), w(b, t) = g2(t), 0 ≤ t ≤ T, (4.3)
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where v is as explained; while the functions f , g are known nice functions.

Accordingly, to begin with, we portray the spatial discretization by considering the spatial

variable x, and discretize it into N + 1 uniformly spaced grid points as follows

xi = xi−1 + ∆x, i = 1, 2, ..., N,

where ∆x = xi − xi−1 = 1/N is a constant spacing, x0 and xN are the two end-points (specifically,

the boundary points), while x′i s for i = 2, 3, 4, ..., (N − 1) are the interior points.

Now, to approximate the first and second-order spatial derivatives using non-central difference

5-point scheme [4], we define Υ and Λ are N ×N matrices that represent approximate first and

second derivatives, respectively, as follows

Υ =



−25 48 −36 16 −3 0 0 0 . . . 0

0 −3 −10 18 −6 1 0 0 . . . 0

0 1 −8 0 8 −1 0 0 . . . 0

0 0 1 −8 0 8 −1 0 . . . 0
. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

0 · · · 0 1 −8 0 8 −1 0 0

0 · · · · · · 0 −1 6 −18 10 3 0

0 · · · · · · · · · 0 3 −16 36 −48 25



, (4.4)

and

Λ =



35 −104 114 −56 11 0 0 0 . . . 0

0 11 −20 6 4 −1 0 0 . . . 0

0 −1 −16 −30 16 −1 0 0 . . . 0

0 0 −1 16 −30 16 −1 0 . . . 0
. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

0 · · · 0 −1 16 −30 16 −1 0 0

0 · · · · · · 0 −1 4 6 −20 11 0

0 · · · · · · · · · 0 11 −56 114 −104 35



. (4.5)

Furthermore, if we discretize in space and leave time continuous, a system of ODEs is obtained.

Next, we solve the resulting system of ODEs by ADM [5]. Indeed, the decomposition method

decomposes the unknown function w(x, t) as follows

w(x, t) =
∞∑

n=0

wn(x, t), (4.6)
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where the component wn, n ≥ 1 are determined recurrently. Further, upon utilizing the differential

operator of the expression Lt = ∂/∂t into Equation 4.1, the equation is then expressed as follows

Lt(w) = vΛw−
1
2

Υ(w2), (4.7)

where the nonlinear term appearing in Equation 4.7 is expressed component-wise as follows

A0 = w0w0x ,

A1 =
1
2

Lx(2w0w1) = w0xw1 + w0w1x ,

A2 =
1
2

Lx(2w0w2 + w2
1) = w0xw2 + w1xw1 + w2xw0,

A3 =
1
2

Lx(2w0w3 + 2w1w2) = w0xw3 + w1xw2 + w2xw1 + w3xw0,

...

(4.8)

and so on. Also, for the sake of numerical computation, the (N − 1)-term approximant is consid-

ered; while the overall expected recursive scheme is obtained as follows

w1 = f (x0) + L−1
t v Lxx(w0) − L−1

t A0,

w2 = f (x1) + L−1
t v Lxx(w1) − L−1

t A1,

...

wN−1 = f (xN−2) + L−1
t v Lxx(wN−2) − L−1

t AN−2,

(4.9)

where L−1
t =

∫ t
0 (.)dt is the inverse operator that is applied on both sides of Equation 4.7. Notably,

it is worth mentioning that the generation of the overall recurrent scheme is that both the zeroth

term w(x, 0) and w(N, t) must always be defined from the prescribed initial and boundary data;

while the remaining component wN−1(x, t) can then be successfully computed recurrently.

Now, upon using the approximations and Adomian polynomials in Equation 4.1, one gets the

first-order coupled system of ODEs as follows

ẇi =
v

4!(∆x)2 [−wi−2 + 16wi−1 − 30wi + 16wi+1 −wi+2] − L−1
t Ai, for i = 3(1)N − 3. (4.10)

where Ai’s are the resulting Adomian polynomials for the nonlinear term, which are computed for

any given nonlinearity based on the Adomian’s scheme as follows ( [26–28]).

An =
1
n!

dn

dλn

N
 ∞∑

i=0

λiwi



λ=0

, n = 0, 1, 2, ... (4.11)

Lastly, with the above development, the components in Equation 4.10 are acquired, which when

further substituted into Equation 4.6 gives the explicit expressions for w1, w2, wi, ..., wN−1. Indeed,

one obtains the approximate computational solution for the governing equation in Equation 4.1.

Besides, this study utilizes only m-term of the Adomian polynomials.
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4.2. DMOL scheme for system of coupled Burgers’ equations. Similarly, we use a non-central

difference 5-point scheme [4] to approximate the first and second-order spatial derivatives of the

system of coupled Burgers’ equation as carried out in the preceding case. For more convenience,

we re-express the governing model in Equation 2.2 in the form of an initial-boundary conditions

as follows ([30–32])

w1t = v1w1xx + η1w1w1x + α(w1w2x + w1xw2), a < x < b, (4.12)

w2t = v2w2xx + η2w2w2x + β(w1w2x + w2xw2), a < x < b, (4.13)

w1(x, 0) = f1(x), w2(x, 0) = g1(x), a ≤ x ≤ b,

w1(a, t) = f2(t), w2(a, t) = g2(t), 0 ≤ t ≤ T,

w1(b, t) = f3(t), w2(b, t) = g3(t), 0 ≤ t ≤ T,

where η j and v j are real constants, for j = 1, 2 and α and β are as explained; while the functions

f1, f2, f3, g1, g2 and g3 are known nice functions.

Now, as in the previous section, we first portray the spatial discretization by considering the

spatial variable x, and discretizing it into N + 1 equal-sized grid points as xi = xi−1 + ∆x, for i =
1, 2, ..., N. Indeed, ∆x = xi − xi−1 = 1/N is a constant, spacing, while x0 and xN are the two

end-points (specifically, the boundary points), together with x′i s for i = 2, 3, ..., (N − 1) as interior

points.

Next, to approximate the first and second-order spatial derivatives using the non-central dif-

ference 5-point scheme as matrices Υ, Λ in Equations 4.4 and 4.5 that represent approximate

first and second-order derivatives, respectively. We obtained a coupled system of ODEs when

discretizes in space and leaves time continuous. Thus, the system can be solved by the ADM [5].

Accordingly, the decomposition method decomposes the unknown functions w1(x, t), and w2(x, t)
as follows

w1(x, t) =
∞∑

n=0

w1n(x, t), (4.14)

w2(x, t) =
∞∑

n=0

w2n(x, t), (4.15)

where the components w1n , w2n , n ≥ 1 are determined recurrently.

Further, with the help of a differential operator Lt = ∂/∂t, Equations 4.12 - 4.13 are now expressed

as follows

Lt(w1t) = v1Λw1 + η1
1
2

Υ(w1)
2 + α(w1Υ(w2) + Υ(w1)w2), (4.16)

Lt(w2t) = v2Λw2 + η2
1
2

Υ(w2)
2 + β(w1Υ(w2) + Υ(w1)w2). (4.17)
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Equally, the nonlinear expressions in Equations 4.16-4.17 can be denoted as follows

N(w) =w1w1x =
∞∑

n=0

An, M(w) = w2w2x =
∞∑

n=0

Bn, (4.18)

C(w) =w1w2x =
∞∑

n=0

Cn, D(w) = w1xw2 =
∞∑

n=0

Dn, (4.19)

where An, Bn, Cn, Dn are related Adomian’s polynomials to be determined with the help of the

Adomian algorithm ([26–28]), which will then be substituted into the first derivative in Equation

4.4. More precisely, for the sake of numerical computation, the (N − 1)-term approximant is

considered as the expected recursive scheme is obtained as follows

w11 = f1(x0) + L−1
t v1Lxx(w1) + L−1

t µ1(A0) + L−1
t λ1(C0 + D0),

w21 = g1(x0) + L−1
t v2Lxx(w2) + L−1

t µ2(B0) + L−1
t λ2(C0 + D0),

w12 = f1(x1) + L−1
t v1Lxx(w1) + L−1

t µ1(A1) + L−1
t λ1(C1 + D1),

w22 = g1(x1) + L−1
t v2Lxx(w2) + L−1

t µ2(B1) + L−1
t λ2(C1 + D1),

...

w1N−1 = f1(xN−2) + L−1
t v1Lxx(w1) + L−1

t µ1(AN−2) + L−1
t λ1(CN−2 + DN−2),

w2N−1 = g2(xN−2) + L−1
t v2Lxx(w2) + L−1

t µ2(BN−2) + L−1
t λ2(CN−2 + DN−2),

(4.20)

where L−1
t =

∫ t
0 (.)dt is the inverse operator that is applied on both sides of Equations (4.16)-(4.17).

Moreover, it is thus pertinent to notice that the resultant recurrent scheme is formed based

on the zeroth components w1(x, 0) and w2(x, 0) of the imposed initial data; while the remain-

ing components w1N−1(x, t) and w2N−1(x, t) are constructed in such a way that each term follows

recurrently.

Therefore, the resulting first-order coupled system of ODEs is thus determined as follows

ẇ1i =
v1

4!(∆x)2

[
−w1i−2 + 16w1i−1 − 30w1i + 16w1i+1 −w1i+2

]
− η1(L−1

t Ai)

− α(L−1
t Ci − L−1

t Di), for i = 3(1)N − 3,

ẇ2i =
v2

4!(∆x)2

[
−w2i−2 + 16w2i−1 − 30w2i + 16w2i+1 −w2i+2

]
− η2(L−1

t Bi),

− β(L−1
t Ci − L−1

t Di), for i = 3(1)N − 3.

(4.21)

Accordingly, the m-term Adomian polynomial will be utilized computationally, to determine the

components from Equation 4.21. Additionally, upon substituting these components into Equations

4.14-4.15, one obtains the explicit expressions for w j1 , w j2 , w ji , ..., w jN−1 , for j = 1, 2, which yields the

approximate computational solution for the governing coupled model in Equations 4.12- 4.13.
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5. LinearizationMethod

In the current section, we illustrate the solution of the one-dimensional Burgers’ equation,

together with that of the coupled system of one-dimensional Burgers’ equations using the lin-

earization method, which was introduced in [15].

5.1. Burger’s equation. By applying the standard MOL procedure, we get the following nonlinear

system
∂wi

∂t
= v Λw−

1
2

Υ(w)2, i = 1..N, (5.1)

where, w = (w0, w1, w2, · · · , wN)T, Υ and Λ are presented in Equations 4.5 and 4.4.

Then, in order to solve the system in Equation 5.1, one converts it into a linear system by using

the linearization technique [15]. Firstly, the system in Equation 5.1 can be rewritten as

dW
dt

= H(Wn), W(0) = W0, (5.2)

where Wi(t) = wi, and H(W) = v ΛW− 1
2 Υ(W)2. Further, integrating Equation 5.2 using implicit

method, we have ∫ t=tn+1

t=tn

dW =

∫ t=tn+1

t=tn

H(W)dt,

Wn+1
−Wn

M t
=

[H(Wn+1) + H(Wn)]

2
,

Wn+1 = Wn +
M t[H(Wn+1) + H(Wn)]

2
, (5.3)

or equally when linearized by Taylor series reveals

H(Wn+1) = H(Wn) + Jn
H(W

n+1
−Wn) + O(4t2), (5.4)

where Jn
H is a Jacobian matrix at the nth time level. Now, when one substitutes Equation 5.4 into

Equation 5.3 yields

Wn+1 = Wn +
(
I −
4t
2

Jn
H

)−1 4t
2
[2 H(Wn)]. (5.5)

Hence, the formula in Equation 5.5 is linearized, upon which at each time step one is needed to

solve the resulting system of linear algebraic equations only.

5.2. System of coupled Burgers’ equations. Similarly, we make use of the linearization technique

to solve the governing system of coupled Burgers’ equations by primarily the system in Equation

2.2 as follows
dW1

dt
= S1(Wn

1 , Wn
2 ), W1(0) = W10 and W2(0) = W20 , (5.6)

dW2

dt
= S2(Wn

1 , Wn
2 ), W1(0) = W10 and W2(0) = W20 , (5.7)

where,

S1(W1, W2) = v1ΛW1 +
η1

2
Υ(W1)

2 + α (W1 ΥW2 + W2 (ΥW1)),
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and

S2(W1, W2) = v2ΛW2 +
η2

2
Υ(W2)

2 + β (W1 ΥW2 + W2 (ΥW1)),

Υ while Λ are presented in Equations 4.5 and 4.4. Further, integrating Equations 5.6 and 5.7, one

gets

Wn+1
1 = Wn

1 +
M t[S1(Wn+1

1 , Wn+1
2 ) + S1((Wn

1 , Wn
2 )]

2
, (5.8)

Wn+1
2 = Wn

2 +
M t[S2(Wn+1

1 , Wn+1
2 ) + S1((Wn

1 , Wn
2 )]

2
, (5.9)

or equally when linearized via the use of Taylor series yields

S1(Wn+1
1 , Wn+1

2 ) = S1(Wn
1 , Wn

2 ) + Jn
S1,1

(Wn+1
1 −Wn

1 ) + Jn
S1,2

(Wn+1
2 −Wn

2 ) + O(4t2),

S2(Wn+1
1 , Wn+1

2 ) = S2(Wn
1 , Wn

2 ) + Jn
S2,1

(Wn+1
1 −Wn

1 ) + Jn
S2,2

(Wn+1
2 −Wn

2 ) + O(4t2),
(5.10)

where, S1 = (s1
1, s2

1, ..., sN
1 ), S2 = (s1

2, s2
2, ..., sN

2 ), z1 = W1, z2 = W2, while JS1, j and JS2, j are given as

follows

JS1, j =



(
∂s1

1
∂z j,1

)n (
∂s1

1
∂z j,2

)n
· · ·

(
∂s1

1
∂z j,N

)n(
∂s2

1
∂z j,1

)n (
∂s2

1
∂z j,2

)n
· · ·

(
∂s2

1
∂z j,N

)n

...(
∂sN

1
∂z j,1

)n (
∂sN

1
∂z j,2

)n
· · ·

(
∂sN

1
∂z j,N

)n


, and JS2, j =



(
∂s1

2
∂z j,1

)n (
∂s1

2
∂z j,2

)n
· · ·

(
∂s1

2
∂z j,N

)n(
∂s2

2
∂z j,1

)n (
∂s2

2
∂z j,2

)n
· · ·

(
∂s2

2
∂z j,N

)n

...(
∂sN

2
∂z j,1

)n (
∂sN

2
∂z j,2

)n
· · ·

(
∂sN

2
∂z j,N

)n


, (5.11)

for j = 1, 2. What is more, from Equation 5.10 in Equations 5.8 and 5.9, one sees that

Wn+1
1 =Wn

1 +
(
I −
4t
2

Jn
S1,1

)−1 4t
2
[2 S1(Wn

1 , Wn
2 ) + Jn

S1,2
(Wn+1

2 −Wn
2 )],

Wn+1
2 =Wn

2 +
(
I −
4t
2

Jn
S2,2

)−1 4t
2
[2 S2(Wn

1 , Wn
2 ) + Jn

S2,1
(Wn+1

1 −Wn
1 )].

(5.12)

Consequently, since Equation 5.12 is implicit, one approximates Wn+1
j , for j = 1, 2 using Euler

method. Thus, the scheme in Equation 5.12 is then linearized, upon which at each time step one is

needed to solve the resultant system of linear algebraic equations only.

6. Error and Convergence Analysis

6.1. Error Analysis. To assess the accuracy of the Decomposition Method of Lines (DMOL), we

analyze the errors arising from both spatial and temporal discretizations. The total error E can be

expressed as:

E = Espatial + Etemporal,

where Espatial is the spatial discretization error and Etemporal is the temporal discretization error.
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Spatial Discretization Error: The spatial discretization in the DMOL method involves approximating

the partial derivatives using a non-central difference 5-point scheme. Let w(x, t) be the exact

solution and wh(x, t) be the numerical solution obtained by the DMOL method with a spatial step

size h. The spatial discretization error Espatial can be given as:

Espatial = w(x, t) −wh(x, t).

The 5-point non-central difference scheme provides an approximation to the second-order spatial

derivative wxx with an error term that is O(h4). Thus, we have:

wxx ≈
−wi−2 + 16wi−1 − 30wi + 16wi+1 −wi+2

12h2 + O(h4).

For the first-order spatial derivative wx, the scheme provides an approximation with an error term

that is O(h4):

wx ≈
−wi−2 + 8wi−1 − 8wi+1 −wi+2

12h
+ O(h4).

Thus, the spatial error for the DMOL method is O(h4).

Temporal Discretization Error: The temporal discretization involves solving the resulting system of

ordinary differential equations (ODEs) using the Adomian Decomposition Method (ADM). Let

w(t) be the exact temporal solution and w∆t(t) be the numerical solution with a time step ∆t. The

temporal discretization error Etemporal is given by:

Etemporal = w(t) −w∆t(t).

ADM provides a series solution that converges to the exact solution under certain conditions.

The error in the ADM is dependent on the number of terms N in the decomposition series. For

practical purposes, we consider a finite number of terms, leading to an error term that decreases

exponentially with the number of terms included in the series.

Combining the spatial and temporal errors, the total error E for the DMOL method is:

E = O(h4) + O(e−λN),

where λ is a positive constant depending on the problem and N is the number of terms in the

ADM series.

6.2. Convergence Analysis. The convergence of the DMOL method can be demonstrated by

showing that the numerical solution wnumerical(x, t) converges to the exact solution w(x, t) as h→ 0

and ∆t→ 0.

Spatial Convergence: As h→ 0, the spatial discretization error O(h4) tends to zero, indicating that

the DMOL method provides a spatially convergent solution.

lim
h→0

Espatial = 0.
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Temporal Convergence: Similarly, as the number of terms N in the ADM series increases, the

exponential error term O(e−λN) tends to zero, indicating temporal convergence.

lim
N→∞

Etemporal = 0.

Therefore, the combined error tends to zero as h→ 0 and N→∞:

lim
h→0,N→∞

E = 0.

Numerical Validation. To validate the theoretical error bounds and convergence properties, we

consider several test problems with known exact solutions and compare the numerical results

obtained using the DMOL method.

Consider the one-dimensional Burgers’ equation:

wt + wwx = vwxx, 0 ≤ x ≤ 1, t ≥ 0

with the initial condition:

w(x, 0) = 2v
π sin(πx)
σ+ cos(πx)

, (6.1)

and boundary conditions:

w(0, t) = w(1, t) = 0, (6.2)

that satisfies the following exact analytical solution [34]

w(x, t) =
2vπ exp−π

2vt sin(πx)

σ+ exp−π2vt cos(πx)
, (6.3)

where σ is an arbitrary constant.

We solve this equation using the DMOL method and compute the L2 and L∞ norms of the error.

Results: The results for the test problem are summarized in Table 1, showing the L2 and L∞
norms of the error for different values of h and ∆t. The errors decrease as h and ∆t decrease,

validating the theoretical error bounds and demonstrating the convergence of the DMOL method.

Finally, the error and convergence analysis for the DMOL method demonstrates that the method

is highly accurate and convergent for solving the Burgers’ equation and the coupled system of

Burgers’ equations. The theoretical error bounds and numerical results validate the effectiveness

of the DMOL method in providing reliable computational solutions with minimal errors.

h ∆t L2 L∞

0.1 0.01 2.87736×10−5 7.62714×10−5

0.05 0.005 1.04066×10−5 2.79760×10−5

0.025 0.0025 4.2981×10−6 7.5362 ×10−6

Table 1. L2 and L∞ Norms of Error for Burgers’ Equation
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7. Numerical Examples and Results

The current section exhibits the competency of the proposed method for the computational

treatment of the Burgers’ equation and the system of coupled Burgers’ equations. Indeed, certain

Initial-Boundary Value problems (IBVPs) of the governing equations will be considered for the

examination. In the same vein, the section measures the truthfulness of the proposed DMOL

schemes for the considered IBVPs by deploying L2 and L∞ norms, expressed as

L∞(w) = max
1≤i≤N−1

∣∣∣wn
i −Wn

i

∣∣∣ , (7.1)

and

L2(w) =

√√√h N−1∑
i=1

∣∣∣wn
i −Wn

i

∣∣∣2, (7.2)

respectively, as the estimators of interest.

7.1. Burgers’ equation. This subsection makes consideration of certain IBVPs for the Burgers’

equation by examining the computational efficiency of the proposed DMOL scheme on them. In

addition, various IBVPs will be examined to effectively show the computational reliability of the

devised method.

Problem 7.1. Consider the IBVP for Burgers’ equation as follows

wt − vwxx + αwwx = 0, (7.3)

that admits the following exact solitary wave structure [33]

w(x, t) =
c
α
+

(2v
α

tanh(x− ct)
)

, a ≤ x ≤ b, (7.4)

where v, α and c are arbitrary constants, with c denoting the speed of the wave.

Therefore, we computationally simulate the given IBVP using the proposed DMOL scheme and

further report the results in Tables 2 and 3, showing norm two and norm infinity error estimations

for different values of α and v with various time levels with a = 0, ∆t = 0.01, c = 0.1, and b = 1.

Moreover, Tables 2 and 3, showing the variational effect of the kinematic viscosity v. The numerical

solution obtained by the 5-point non-central DMOL and the exact solution of w(x, t) for different

values of h in Table 4. In addition, Figure 1, portrays the computational and the exact solutions of

Problem 7.1: N = 10, m = 2, ∆t = 0.001, v = 0.0001, t = 0.1, α = 1, and c = 0.05.
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Table 2. Influence of the kinematic viscosity v on the error for different values of α

at different times for w(x, t) with N = 10, m = 2 of Problem 7.1.

∆t α v t L2 L∞
DMOL Linearized DMOL Linearized

0.01

0.1

0.01
0.05 7.9250×10−5 1.3976×10−2 2.5061×10−4 1.9445×10−2

0.1 6.1679×10−5 2.6276×10−4 1.9505 ×10−4 8.3091×10−4

0.001
0.05 8.3016×10−6 4.1959×10−5 2.6252×10−5 1.3269×10−4

0.1 6.1677×10−6 2.4747×10−5 1.9504×10−5 7.8258×10−3

0.0001
0.05 8.339 ×10−7 4.178×10−6 2.637×10−6 1.3212×10−5

0.1 6.170×10−7 2.4594×10−6 1.951×10−6 7.7773×10−6

1

0.01
0.05 7.9250×10−6 1.7718×10−5 2.5061×10−5 5.6029×10−5

0.1 6.1679×10−6 1.4245×10−5 1.9505×10−5 5.0456×10−5

0.001
0.05 8.302 ×10−7 1.7537×10−6 2.6252×10−6 5.5458×10−6

0.1 6.168×10−7 1.4097×10−6 1.9504 ×10−6 4.4577 ×10−6

0.0001
0.05 8.34×10−8 1.752×10−7 2.637×10−7 5.540 ×10−7

0.1 6.17×10−8 1.408×10−7 1.951×10−7 4.453 ×10−7

Table 3. Influence of the kinematic viscosity v on the error for different values of α

at different times for w(x, t) with N = 20, m = 2 of Problem 7.1.

∆t α v t L2 L∞
DMOL Linearized DMOL Linearized

0.01

0.1

0.01
0.1 5.2887×10−5 3.1447×10−4 2.3652 ×10−4 1.4063×10−3

0.2 4.0552×10−5 1.3699×10−4 1.8136×10−4 6.1266×10−4

0.001
0.1 5.5683 ×10−6 3.0088×10−5 2.4902 ×10−5 1.3456×10−4

0.2 4.0553×10−6 1.2876×10−5 1.8136 ×10−5 5.7584×10−5

0.0001
0.1 5.597×10−7 2.9952×10−6 2.503×10−6 1.3395×10−5

0.2 4.054×10−7 1.2794×10−6 1.8130 ×10−6 5.7216×10−6

1

0.01
0.1 5.2887×10−6 1.3591×10−5 2.3652 ×10−5 6.0781×10−5

0.2 4.0552×10−6 7.2839×10−6 1.8136×10−5 3.2575×10−5

0.001
0.1 5.568×10−7 1.3454×10−6 2.4902 ×10−6 6.017×10−6

0.2 4.055×10−7 7.204×10−7 1.8136 ×10−6 3.2219 ×10−6

0.0001
0.1 5.60×10−8 1.344 ×10−7 2.503×10−7 6.011×10−7

0.2 4.05×10−8 7.2 ×10−8 1.813 ×10−7 3.218 ×10−7
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Figure 1. Comparison between DMOL and exact solutions of Problem 7.1 for N =

10, m = 2, ∆t = 0.01, α = 1, and c = 0.05.

Table 4. Comparing DMOL and exact solutions of Problem 7.1 when a = 0, b = 1

for α = 1, v = 0.01 and c = 0.1 using various mesh sizes.

∆t t h
w(x, t)

DMOL Exact

0.1 0.5

0.2 0.1132807354 0.1132695469

0.1 0.1075069583 0.1067919301

0.06666666667 0.1051102820 0.1050235024

0.02857142857 0.1021729316 0.1020781860

0.01538461538 0.1011272144 0.1010298576

0.0125 0.1008974856 0.1007995736

Problem 7.2. Consider the Burgers’ equation 7.3, subject to the following initial-boundary data

w(x, 0) = 2v
π sin(πx)
σ+ cos(πx)

, (7.5)

and

w(0, t) = w(1, t) = 0, (7.6)

that satisfies the following exact analytical solution [34]

w(x, t) =
2vπ exp−π

2vt sin(πx)

σ+ exp−π2vt cos(πx)
, (7.7)

where σ is an arbitrary constant.
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Accordingly, Table 5 shows the comparison between the computational DMOL solution with

that of the exact solution when h = 1/10 at t = 1× 10−4. In addition, Figure 2 graphically portrays

the comparison between the proposed DMOL solution and that of the available exact solution of

Problem 7.2 when m = 3, N = 10, ∆t = 0.0001, v = 0.01, t = 1× 10−4, and σ = 2. Notably, the two

solutions are found to graphically agree with each other with a precision; besides, this precision is

noted to relatively reduce as x increases, see Table 5.

Table 5. Comparing DMOL and exact solutions of Problem 7.2 when a = 0, b = 1,

and t = 1× 10−4 for m = 3, N = 10, v = 0.01 and σ = 2.

∆t x
w(x, t)

Absolute Error
DMOL Exact

0.0001

0.1 0.0065793519 0.0065793320 1.99 ×10−8

0.2 0.0131474764 0.0131474381 3.83 ×10−8

0.3 0.0196429742 0.0196429163 5.79×10−8

0.4 0.0258795481 0.0258794685 7.97 ×10−8

0.5 0.0314157250 0.0314156165 1.085 ×10−7

0.6 0.0353381534 0.0353379931 1.603 ×10−7

0.7 0.0359943265 0.0359940487 2.778 ×10−7

0.8 0.0310096154 0.0310088594 7.560×10−7

0.9 0.0185101587 0.0185098104 3.483 ×10−7

Figure 2. Comparison between the DMOL and exact solutions of Problem 7.2 when

m = 3, N = 10, ∆t = 0.0001, and σ = 2.



18 Int. J. Anal. Appl. (2025), 23:44

7.2. System of coupled Burgers’ equation. This subsection makes consideration of certain IBVPs

for the system of coupled Burgers’ equations by examining the computational efficiency of the

proposed DMOL scheme on them. In addition, various IBVPs will be examined in order to

effectively show the computational reliability of the devised method.

Problem 7.3. Consider the coupled system of IBVPs for homogeneous Burgers’ equations as follows

w1t − v1w1xx + η1w1w1x + α(w1w2x + w1xw2) = 0, a < x < b, (7.8)

w2t − v2w2xx + η2w2w2x + β(w1w2x + w2xw2) = 0, a < x < b, (7.9)

that satisfies the following exact solitary wave solution [33]

w1(x, t) = a0 − 2A
(

2α− 1
4αβ− 1

)
tanh [A(x− 2At)] ,

w2(x, t) = a0

(
2β− 1
2α− 1

)
− 2A

(
2α− 1

4αβ− 1

)
tanh [A(x− 2At)] ,

where A = a0(1− 4αβ)/2(1− 2α), with α, β and a0, as free arbitrary constants.

As proceeded, Tables 6 and 7 report the resulting norm two infinity errors as the difference

between the proposed DMOL and exact solutions of the present coupled model when a0 = 0.05,

v1 = v2 = 1, N = 10, and η1 = η2 = 2. Indeed, the proposed numerical results are found to be

in good agreement with the available exact solution. Moreover, we have shown in Figure 3 (3a)

and (3b) the graphical illustration for the acquired computational solution in comparison with the

exact solution fields w1(x, t) and w2(x, t) when the following constants are fixed: m = 2, N = 10,

∆t = 0.1, t = 0.5, α = 2, β = 3, and a = 0.1.

Table 6. Norm two and norm infinity errors of the solution pair w1(x, t) when

a = −10, b = 10, with a0 = 0.05, and m = 2 for Problem 7.3.

N ∆t α β t L2 L∞
DMOL Linearized DMOL Linearized

10

0.1

0.1 0.3
0.5 3.778 ×10−7 9.9249×10−6 2.672 ×10−7 7.0179 ×10−6

1 1.0194 ×10−5 2.9705×10−4 7.2082 ×10−6 2.1005×10−4

0.3 0.03
0.5 1.5268 ×10−5 7.0116×10−4 1.07961 ×10−5 4.9579×10−4

1 4.1054×10−5 7.2969×10−4 2.9029×10−5 5.1597 ×10−4

0.01

0.1 0.3
0.05 3.77 ×10−8 6.2538×10−6 2.66×10−8 4.4221 ×10−6

0.1 1.0194 ×10−6 3.0817×10−5 7.208 ×10−7 2.1790×10−5

0.3 0.03
0.05 1.5275×10−6 6.9953×10−5 1.0801 ×10−6 4.9464×10−5

0.1 4.1042×10−6 7.1514×10−5 2.9021×10−6 5.0568×10−5



Int. J. Anal. Appl. (2025), 23:44 19

Table 7. Norm two and norm infinity errors of the solution pair w2(x, t) when

a = −10, b = 10, with a0 = 0.05, and m = 2 for Problem 7.3.

N ∆t α β t L2 L∞
DMOL Linearized DMOL Linearized

10

0.1
0.1 0.3

0.5 2.9183 ×10−6 1.0692×10−4 2.0636 ×10−6 7.5605×10−5

1 1.0194×10−5 6.2583×10−5 7.2082×10−6 4.4253×10−5

0.3 0.03
0.5 3.1622 ×10−6 5.2490×10−5 2.2360×10−6 3.7116 ×10−5

1 4.1054×10−5 2.2508×10−5 2.9029×10−5 1.5915 ×10−5

0.01
0.1 0.3

0.05 2.919×10−7 1.0679×10−5 2.064×10−7 7.5515 ×10−6

0.1 1.0194×10−6 6.2551×10−6 7.208×10−7 4.4230×10−6

0.3 0.03
0.05 3.157×10−7 5.248 ×10−6 2.232×10−7 3.7109 ×10−6

0.1 4.1042×10−6 2.2857×10−6 2.9021×10−6 1.6162×10−6

(a) (b)

Figure 3. Comparison between DMOL and exact solutions of Problem 7.3 for m = 2,

N = 10, ∆t = 0.1 and α = 2, β = 3 at t = 0.5, with a0 = 0.1.

Problem 7.4. Let us yet consider the coupled system of IBVPs for homogeneous Burgers’ equations expressed
in 7.8- 7.9 with α = β = 5

2 and η = −2.

Moreover, this coupled IBVP is said to satisfy the following analytical exact solution [32].

w1(x, t) = w2(x, t) = λ
[
1− tanh

(
λ(60(x−

1
2
) −

9
2
λt)

)]
, x ∈ [0, 1], (7.10)

where λ is an arbitrary constant, while the imposed initial and boundary data are obtained from the given
analytical solution and t = 0; and x = 0 and x = 1 correspondingly.

This problem has large gradients moving rightward with constant velocity. In Table 8, we show

the obtained results for various values of λ. It can be seen from Table 8 that by decreasing the
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values of λ one can achieve more accurate results. On the other hand, as time grows errors get

smaller. The numerical solution obtained by DMOL and the exact solution of w(x, t) for different

values of h in Table 9. In Figure 4 (4a) and (4b), we plot the numerical solution for λ = 0.05, 0.1

and ∆t = 0.005 at t = 0.05. In Figure 5, we display the numerical and the exact solutions fileds

w1(x, t) and w2(x, t) values when N = 64 for λ = 0.01, 0.05, 0.1, 0.2 and ∆t = 0.005 at t = 0.005. We

see that for greater values of λ, large gradient regions occur in the solution.

Table 8. Comparing DMOL and exact solutions of Problem 7.4 for λ = 0.05, 0.10

and ∆t = 0.001 with N = 10, m = 5, at a = 0, b = 1 for α = β = 5
2 .

λ t
w1(x, t) = w2(x, t)

Absolute ErrorDMOL Exact

0.01

0.0010 0.0129122039 0.0129131302 9.263×10−7

0.005 0.0105993289 0.0105992855 4.34×10−8

0.01 0.0076450425 0.0076450468 4.2×10−9

0.0110 0.0070868739 0.0070868780 4.1×10−9

0.05

0.0010 0.0952155827 0.0952575144 4.1932×10−5

0.005 0.0645709808 0.0645661454 4.8354×10−6

0.01 0.0083172696 0.0083174412 1.716 ×10−7

0.0110 0.0047425873 0.0047426890 1.016×10−7

0.1

0.0010 0.1993892579 0.1995055198 1.1626×10−4

0.005 0.1537208964 0.1537081587 1.2738×10−5

0.01 0.0016325142 0.0016326600 1.457×10−7

0.0110 0.0004945246 0.0004945690 4.44 ×10−8

(a) (b)

Figure 4. Comparison between DMOL and exact solutions of Problem 7.4 when

m = 5, N = 10, ∆t = 0.001, t = 0.001, α = β = 5
2 , and λ = 0.05, 0.1.
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Figure 5. Comparison between the DMOL and exact solutions of Problem 7.4 when

m = 2, N = 64, ∆t = 0.005, t = 0.005, α = β = 5
2 , and λ = 0.01, 0.05, 0.1, 0.2.

Table 9. Comparing DMOL and exact solutions of Problem 7.4 when a = 0, b = 1

for α = β = 5/2, t = 0.005 using various mesh sizes.

∆t λ h
w1(x, t) = w2(x, t)

DMOL Exact

0.001 0.05

0.1428571429 0.0396238199 0.0394472887
0.0625 0.0816032205 0.0817577832

0.05 0.0856575627 0.0858151674
0.02777777778 0.0910361003 0.0911602136
0.01960784314 0.0925106087 0.0926179683

0.015625 0.0931462242 0.0932454726
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8. Conclusions

In conclusion, the current study proposed a new computational scheme for the solution of the

class of one-dimensional Burgers’ equations, comprising mainly the classical Burgers’ equation,

and the system of coupled Burgers’ equations. Certainly, this new approach is based upon coupling

the semi-discretization approach, through the application of the standard MOL and on the other

hand, the renowned ADM for a reliable computational treatment of the class of IBVPs under

examination. In this new approach, the semi-discretization of partial differential equations in

spatial variables is carried out by MOL, and thereafter, the ADM proceeds with the treatment of

the resulting coupled system of ODEs. Further, the study went ahead to assess the derived scheme

on several test problems, where the results obtained were compared with the available exact at

different time levels. The computational errors were also evaluated using L2 and L∞ norms. Thus,

the proposed method produces better results, as it tends to the available exact analytical solutions

so rapidly. The numerical results obtained by DMOL proved that it is indeed a very accurate,

efficient, and powerful way to solve IBVPs for different classes of partial differential equations.

Also, the devised DMOL scheme produces better results at small values, while the linearization

method produces better results at larger values. Besides, the reported figures and tables indicate

that calculations are more accurate and in conformity with the analytical solutions, in addition to

the fact that the proposed scheme outperformed several other computational approaches.
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