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Abstract. In this paper, we study the theory of K-frames in super Hilbert C∗-modules. We introduce the concept of

super Hilbert modules as direct sums of Hilbert C∗-modules and explore how frames and K-frames can be defined and

characterized within this framework. Our main results provide new characterizations of K-frames in super Hilbert

C∗-modules, as well as necessary and sufficient conditions under which sequences in super Hilbert C∗-modules form

K-frames. Additionally, we investigate the relationships between K-frames, minimal frames, and orthonormal bases,

offering several propositions and illustrative examples. These findings extend the existing frame theory in Hilbert

spaces to the richer structure of Hilbert C∗-modules, thereby contributing to a deeper understanding of operator theory

and functional analysis in the context of C∗-algebras.

1. Introduction and Preliminaries

The concept of frames in Hilbert spaces has been a subject of extensive research since its intro-

duction by Duffin and Schaeffer [5]. Frames generalize the notion of bases and allow for redundant

yet stable representations of elements in Hilbert spaces, which is particularly useful in signal pro-

cessing, harmonic analysis, and other applied fields. The development of frame theory has led to

numerous generalizations and extensions, including frames in Hilbert C∗-modules, K-frames, and

operator frames.

Hilbert C∗-modules, as introduced by Paschke, are generalizations of Hilbert spaces where the

inner product takes values in a C∗-algebra rather than in the field of complex numbers. These

modules provide a natural setting for extending operator theory and functional analysis to more

general contexts, particularly in relation to C∗-algebras and non-commutative geometry.

In recent years, the study of frames in Hilbert C∗-modules has gained significant attention.

Frank and Larson [8] investigated frames in Hilbert C∗-modules and established foundational
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results analogous to those in Hilbert spaces. Furthermore, the concept of K-frames was introduced

by Găvruţa [6] to address the need for frames that are compatible with a given bounded operator K,

allowing for more flexibility in applications such as sampling theory and reconstruction. For more

detailed information on frame theory, readers are recommended to consult: [2, 7, 11, 12, 15–18].

Super Hilbert modules [14], which can be viewed as the direct sum of Hilbert C∗-modules,

provide a richer structure for exploring frames and K-frames. They allow for the incorporation of

additional algebraic or topological properties that may not be present in standard Hilbert modules.

The primary objective of this paper is to investigate K-frames in the context of super Hilbert

C∗-modules. We aim to extend the existing theory of frames and K-frames to this setting, providing

new insights and generalizations. We begin by reviewing the necessary background on Hilbert

C∗-modules, super Hilbert modules, and frames. We then introduce the concept of K-frames in

super Hilbert modules and establish various characterizations and properties.

Our main contributions include:

• Providing necessary and sufficient conditions for sequences in super Hilbert modules to

be K-frames.

• Exploring the relationships between K-frames, minimal frames, and orthonormal bases in

super Hilbert modules.

• Presenting new propositions and examples that illustrate the behavior of K-frames in this

setting.

The paper is organized as follows. In Section 1, we review the necessary preliminaries on

Hilbert C∗-modules, frames, and K-frames. In Section 2, we present our main results on K-frames

in super Hilbert modules, including various propositions and their proofs. Finally, we conclude

with remarks on potential future research directions in this area.

We believe that this work contributes to the broader understanding of frame theory in the context

of Hilbert C∗-modules and provides a foundation for further exploration of operator theory and

functional analysis in settings involving C∗-algebras.

We start by defining the key structures and notations that will be used throughout the paper.

Definition 1.1 ( [4]). A C∗-algebra A is a complex Banach algebra equipped with an involution ∗ satisfying
the C∗-identity:

‖a∗a‖ = ‖a‖2 for all a ∈ A.

Definition 1.2 ( [10]). Let A be a unital C∗-algebra andH a left A-module such that the linear structures
of A andH are compatible. H is a pre-Hilbert A-module ifH is equipped with an A-valued inner product

〈·, ·〉A : H ×H → A

satisfying the following properties:

(i) For all x ∈ H , 〈x, x〉A ≥ 0, and 〈x, x〉A = 0 if and only if x = 0.
(ii) 〈ax + y, z〉A = a〈x, z〉A + 〈y, z〉A, for all a ∈ A and x, y, z ∈ H .
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(iii) 〈x, y〉A = 〈y, x〉∗A, for all x, y ∈ H .

For x ∈ H , we define ‖x‖ = ‖〈x, x〉A‖
1
2
A. If H is complete with respect to ‖ · ‖, it is called a Hilbert

A-module or a Hilbert C∗-module over A.

Definition 1.3 ( [14]). Let H0 and H1 be two Hilbert A-modules with inner products 〈·, ·〉0 and 〈·, ·〉1,
respectively. The super Hilbert module spaceH is the direct sumH = H0 ⊕H1, equipped with the inner
product

〈x, y〉 = 〈x0, y0〉0 + 〈x1, y1〉1,

where x = x0 + x1 and y = y0 + y1, with xi, yi ∈ Hi for i = 0, 1.

Definition 1.4 ( [3]). LetH and K be Hilbert A-modules over a C∗-algebra A. An operator T : H → K

is called adjointable if there exists an operator T∗ : K → H such that

〈Tx, y〉A = 〈x, T∗y〉A for all x ∈ H , y ∈ K .

The set of all adjointable operators fromH toK is denoted by End∗A(H ,K). WhenH = K , we abbreviate
End∗A(H ,H) to End∗A(H).

Definition 1.5 ( [3]). Let {xn}n≥1 be a Bessel sequence inH .

i. The analysis operator of {xn}n≥1, denoted by T, is the bounded adjointable operator defined by

T :
H −→ `2(A)

x 7→ {〈x, xn〉A}n≥1.

ii. The synthesis operator of {xn}n≥1 is the adjoint of its analysis operator, denoted by T∗. It is defined
explicitly by:

T∗ :

`2(A) −→ H

{an}n≥1 7→

+∞∑
n=1

xnan.

iii. The frame operator, denoted by S, is the composition of T∗ and T. It is defined explicitly by:

S :

H −→ H

x 7→ T∗Tx =
+∞∑
n=1

xn〈xn, x〉A.

Definition 1.6 ( [9]). A sequence {xn}n≥1 inH is said to be a frame forH if there exist constants A, B > 0

such that for all x ∈ H ,

A〈x, x〉A ≤
+∞∑
n=1

〈x, xn〉A〈xn, x〉A ≤ B〈x, x〉A.

If A = B, {xn}n≥1 is called a tight frame; if A = B = 1, it is called a Parseval frame. If only the upper
inequality holds, {xn}n≥1 is called a Bessel sequence.
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Definition 1.7 ( [13]). Let K ∈ End∗A(H). A sequence {xn}n≥1 inH is said to be a K-frame forH if there
exist constants A, B > 0 such that for all x ∈ H ,

A〈K∗x, K∗x〉A ≤
+∞∑
n=1

〈x, xn〉A〈xn, x〉A ≤ B〈x, x〉A.

The numbers A and B are called the lower and upper bounds of the K-frame, respectively.
If there exists A > 0 such that {xn}n≥1 satisfies

A〈K∗x, K∗x〉A =
+∞∑
n=1

〈x, xn〉A〈xn, x〉A for all x ∈ H ,

it is called a tight K-frame. If A = 1, it is called a Parseval K-frame.

Example 1.1. Let {en}n≥1 be an orthonormal basis for H . Define K ∈ End∗A(H) such that for all n ≥ 1,
K(en) := en+1. The sequence {K(en)}n≥1 = {en+1}n≥1 is not a frame (it is not a complete sequence).

For all x ∈ H , we have

K∗(x) =
+∞∑
n=1

〈x, K(en)〉Aen,

so

‖K∗(x)‖2 =
+∞∑
n=1

‖〈x, K(en)〉A‖
2.

Hence, {K(en)}n≥1 = {en+1}n≥1 is a Parseval K-frame forH .

Remark 1.1.

i. If K = I, then a K-frame is just an ordinary frame.
ii. An ordinary frame forH is a K-frame for any K ∈ End∗A(H).

iii. Let K ∈ End∗A(H). Every K-frame is, in particular, a Bessel sequence, so the synthesis, analysis,
and frame operators are well-defined and bounded. Unlike the frame case, the synthesis operator is
not surjective, the analysis operator is not injective, and the frame operator is not invertible.

The following results provide characterizations of K-frames in Hilbert C∗-modules.

Proposition 1.1 ( [19]). Let {xn}n≥1 be a Bessel sequence inH with frame operator S and synthesis operator
T∗. Let K ∈ End∗A(H). The following statements are equivalent:

i. {xn} is a K-frame.
ii. There exists a constant A > 0 such that AKK∗ ≤ S.

Proposition 1.2 ( [6]). Let {xn}n≥1 be a Bessel sequence inH with frame operator S and synthesis operator
T∗. Let K ∈ End∗A(H). The following statements are equivalent:

i. {xn} is a K-frame.
ii. Range(K) ⊆ Range(T∗).

Proposition 1.3 ( [6]). Let {xn}n≥1 be a Bessel sequence inH with frame operator S and synthesis operator
T∗. Let K ∈ End∗A(H). The following statements are equivalent:
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i. {xn} is a K-frame.
ii. There exists a Bessel sequence { fn}n≥1 inH such that for all x ∈ H ,

Kx =
+∞∑
n=1

xn〈 fn, x〉A.

Such a Bessel sequence is called a K-dual frame to {xn}n≥1.

Remark 1.2. Let {xn}n≥1 be a K-frame and { fn}n≥1 be a K-dual to {xn}n≥1.

i. For all x ∈ H , we have

K∗x =
+∞∑
n=1

fn〈xn, x〉A.

This means that { fn}n≥1 is a K∗-frame.
ii. {xn}n≥1 and { fn}n≥1 are interchangeable if and only if K is self-adjoint.

Proposition 1.4 ( [19]). Let {xn}n≥1 be a frame forH and K ∈ End∗A(H). Then {Kxn}n≥1 is a K-frame for
H .

Definition 1.8 ( [1]). Let K ∈ End∗A(H). A K-frame forH is said to be K-minimal if its synthesis operator
T∗ is injective.

Remark 1.3. A K-minimal frame does not contain zero elements. In other words, if {xn}n≥1 is a K-minimal
frame, then xn , 0 for all n ≥ 1.

Proposition 1.5 ( [1]). Let K ∈ End∗A(H) and {xn}n≥1 be a K-frame forH . Then the following statements
are equivalent:

i. {xn}n≥1 has a unique K-dual frame.
ii. {xn}n≥1 is a K-minimal frame.

Definition 1.9 ( [1]). Let K ∈ End∗A(H) and {xn}n≥1 be a sequence inH . The sequence {xn}n≥1 is said to
be a K-orthonormal basis if:

i. {xn}n≥1 is an orthonormal system inH .
ii. {xn}n≥1 is a Parseval K-frame.

Theorem 1.1 ( [1]). Let K ∈ End∗A(H) be an isometry and {un}n≥1 an orthonormal basis forH . Then the
following statements are equivalent:

i. {xn}n≥1 is a K-orthonormal basis forH .
ii. There exists an isometry L ∈ End∗A(H) such that Range(L) = Range(K) and for all n ≥ 1,

xn = Lun.

Proposition 1.6 ( [1]). Let K ∈ End∗A(H) and {xn}n≥1 be a K-orthonormal basis forH . Then {xn}n≥1 has
a unique K-dual frame, which is exactly {K∗xn}n≥1.

Proposition 1.7 ( [1]). Let K ∈ End∗A(H) and {xn}n≥1 be a K-orthonormal basis. Then the following
statements are equivalent:
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i. {K∗xn}n≥1 is a K∗-orthonormal basis forH .
ii. K is a co-isometry.

2. Main Results

2.1. Orthogonal Projections in Super Hilbert C∗-Modules.

Proposition 2.1. The maps

P1 :
H1 ⊕H2 −→ H1 ⊕H2

x⊕ y 7→ x⊕ 0

and

P2 :
H1 ⊕H2 −→ H1 ⊕H2

x⊕ y 7→ 0⊕ y

are orthogonal projections onH1 ⊕H2. Moreover, R(P1) = H1 ⊕ 0 and R(P2) = 0⊕H2.

Proof. We first verify that P1 is adjointable and satisfies P2
1 = P1. For any x ⊕ y, a ⊕ b ∈ H1 ⊕H2,

we have:
〈P1(x⊕ y), a⊕ b〉A = 〈x⊕ 0, a⊕ b〉A

= 〈x, a〉A + 〈0, b〉A
= 〈x⊕ y, a⊕ 0〉A.

Thus, P1 is self-adjoint (P∗1 = P1) and idempotent (P2
1 = P1). Therefore, P1 is an orthogonal

projection. Similarly, P2 is an orthogonal projection with P∗2 = P2 and P2
2 = P2. Furthermore,

R(P1) = {x⊕ 0 | x ∈ H1} := H1 ⊕ 0, R(P2) = {0⊕ y | y ∈ H2} := 0⊕H2.

�

2.2. Bessel Sequences in Super Hilbert Modules.

Proposition 2.2. Let {xn}n≥1 ⊂ H1 and {yn}n≥1 ⊂ H2 be sequences in the HilbertA-modulesH1 andH2,
respectively. The following statements are equivalent:

(i) {xn ⊕ yn}n≥1 is a Bessel sequence inH1 ⊕H2.
(ii) {xn}n≥1 and {yn}n≥1 are Bessel sequences inH1 andH2, respectively.

Proof. (i) ⇒ (ii): Assume that {xn ⊕ yn}n≥1 is a Bessel sequence in H1 ⊕H2 with Bessel bound B.

Then, {P1(xn ⊕ yn)}n≥1 = {xn ⊕ 0}n≥1 is a Bessel sequence forH1 ⊕ 0 with the same Bessel bound B.

For any x⊕ 0 ∈ H1 ⊕ 0, we have:
∞∑

n=1

〈x⊕ 0, xn ⊕ 0〉A〈xn ⊕ 0, x⊕ 0〉A ≤ B〈x⊕ 0, x⊕ 0〉A.

This implies:
∞∑

n=1

〈x, xn〉A〈x, xn〉
∗

A
≤ B〈x, x〉A.

Thus, {xn}n≥1 is a Bessel sequence inH1 with Bessel bound B. Similarly, using P2(xn ⊕ yn) = 0⊕ yn,

we can show that {yn}n≥1 is a Bessel sequence inH2 with the same Bessel bound B.
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(ii)⇒ (i): Assume that {xn}n≥1 and {yn}n≥1 are Bessel sequences inH1 andH2, with Bessel bounds

B1 and B2, respectively. Let B = max{B1, B2}. For any x⊕ y ∈ H1 ⊕H2, we have:

∞∑
n=1

‖〈x⊕ y, xn ⊕ yn〉A‖
2 =

∞∑
n=1

‖〈x, xn〉A + 〈y, yn〉A‖
2.

Using the norm inequality ‖a + b‖2 ≤ 2‖a‖2 + 2‖b‖2, this gives:

∞∑
n=1

‖〈x⊕ y, xn ⊕ yn〉A‖
2
≤ 2

∞∑
n=1

(
‖〈x, xn〉A‖

2 + ‖〈y, yn〉A‖
2
)

.

Since {xn} and {yn} are Bessel sequences, we have:

∞∑
n=1

‖〈x, xn〉A‖
2
≤ B1〈x, x〉A,

∞∑
n=1

‖〈y, yn〉A‖
2
≤ B2〈y, y〉A.

Combining these, we obtain:

∞∑
n=1

‖〈x⊕ y, xn ⊕ yn〉A‖
2
≤ 2B〈x⊕ y, x⊕ y〉A.

Thus, {xn ⊕ yn}n≥1 is a Bessel sequence inH1 ⊕H2 with Bessel bound 2B.

�

2.3. Operators and Frame Transforms in Super Hilbert Modules.

Proposition 2.3. Let {xn}n≥1 and {yn}n≥1 be Bessel sequences inH1 andH2, respectively. Let T1, T2, and
T be the synthesis operators of {xn}n≥1, {yn}n≥1, and {xn ⊕ yn}n≥1, respectively. Let θ1,θ2, and θ be the
frame transforms of {xn}n≥1, {yn}n≥1, and {xn ⊕ yn}n≥1, respectively. Let S1, S2, and S be the frame operators
of {xn}n≥1, {yn}n≥1, and {xn ⊕ yn}n≥1, respectively. Then:

(i) For all a = {an} ∈ `2(A), T(a) = T1(a) ⊕ T2(a).
(ii) For all x⊕ y ∈ H1 ⊕H2, θ(x⊕ y) = θ1(x) + θ2(y).

(iii) For all x⊕ y ∈ H1 ⊕H2, S(x⊕ y) = S1(x) + T1θ2(y) ⊕ S2(y) + T2θ1(x).

Proof. (i) For any a = {an} ∈ `2(A), we compute:

T(a) =
∞∑

n=1

(xn ⊕ yn)an =

 ∞∑
n=1

xnan

⊕
 ∞∑

n=1

ynan

 = T1(a) ⊕ T2(a).

(ii) For any x⊕ y ∈ H1 ⊕H2, we compute:

θ(x⊕ y) = {〈x⊕ y, xn ⊕ yn〉A}n≥1 = {〈x, xn〉A + 〈y, yn〉A}n≥1.

Thus:

θ(x⊕ y) = θ1(x) + θ2(y).
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(iii) The frame operator S is given by S = Tθ. From (i) and (ii), let x⊕ y ∈ H1 ⊕H2, we have:

S(x⊕ y) = Tθ(x⊕ y)

= T(θ1(x) + θ2(y))

= T(θ1(x)) + T(θ2(y))

= T1(θ1(x)) ⊕ T2(θ1(x)) + T1(θ2(y)) ⊕ T2(θ2(y))

= S1(x) ⊕ T2θ1(x) + T1θ2(y) ⊕ S2(y)

= S1(x) + T1θ2(y) ⊕ S2(y) + T2θ1(x).

Thus, the result is proven. �

Proposition 2.4. LetA be a C∗-algebra, M ∈ End∗
A
(H1 ⊕H2), and {xn ⊕ yn}n≥1 a sequence inH1 ⊕H2.

If {xn ⊕ yn}n≥1 is an M-frame forH1 ⊕H2 with bounds A and B, then:

(i) For all x ∈ H1,

A〈M∗1x, M∗1x〉A ≤
+∞∑
n=1

〈x, xn〉A〈x, xn〉
∗

A
≤ B〈x, x〉A.

(ii) For all y ∈ H2,

A〈M∗2y, M∗2y〉A ≤
+∞∑
n=1

〈y, yn〉A〈y, yn〉
∗

A
≤ B〈y, y〉A.

Here, M1 : H1 ⊕H2 →H1 and M2 : H1 ⊕H2 →H2 are linear operators such that M = M1 ⊕M2 on
H1 ⊕H2, and 〈·, ·〉A is the inner product taking values inA.

Proof. Since {xn ⊕ yn}n≥1 is an M-frame forH1 ⊕H2, by definition, for all x⊕ y ∈ H1 ⊕H2, we have:

A〈M∗(x⊕ y), M∗(x⊕ y)〉A ≤
+∞∑
n=1

〈x⊕ y, xn ⊕ yn〉A〈x⊕ y, xn ⊕ yn〉
∗

A
≤ B〈x⊕ y, x⊕ y〉A.

i. Let y = 0. Then for all x ∈ H1:

A〈M∗(x⊕ 0), M∗(x⊕ 0)〉A ≤
+∞∑
n=1

〈x⊕ 0, xn ⊕ yn〉A〈x⊕ 0, xn ⊕ yn〉
∗

A
≤ B〈x, x〉A.

Note that:

〈x⊕ 0, xn ⊕ yn〉A = 〈x, xn〉A + 〈0, yn〉A = 〈x, xn〉A.

Therefore:

+∞∑
n=1

〈x⊕ 0, xn ⊕ yn〉A〈x⊕ 0, xn ⊕ yn〉
∗

A
=

+∞∑
n=1

〈x, xn〉A〈x, xn〉
∗

A
.

Moreover, since M∗(x⊕ 0) = M∗1x⊕M∗20 = M∗1x⊕ 0, we have:
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〈M∗(x⊕ 0), M∗(x⊕ 0)〉A = 〈M∗1x, M∗1x〉A + 〈0, 0〉A = 〈M∗1x, M∗1x〉A.

Also, 〈x⊕ 0, x⊕ 0〉A = 〈x, x〉A + 〈0, 0〉 = 〈x, x〉A.

Therefore, we obtain:

A〈M∗1x, M∗1x〉A ≤
+∞∑
n=1

〈x, xn〉A〈x, xn〉
∗

A
≤ B〈x, x〉A.

ii. Similarly, let x = 0. Then for all y ∈ H2:

A〈M∗(0⊕ y), M∗(0⊕ y)〉A ≤
+∞∑
n=1

〈y, yn〉A〈y, yn〉
∗

A
≤ B〈y, y〉A.

Note that:

〈0⊕ y, xn ⊕ yn〉A = 〈0, xn〉A + 〈y, yn〉A = 〈y, yn〉A.

Therefore:
+∞∑
n=1

〈0⊕ y, xn ⊕ yn〉A〈0⊕ y, xn ⊕ yn〉
∗

A
=

+∞∑
n=1

〈y, yn〉A〈y, yn〉
∗

A
.

Moreover, since M∗(0⊕ y) = M∗10⊕M∗2y = 0⊕M∗2y, we have:

〈M∗(0⊕ y), M∗(0⊕ y)〉A = 〈0, 0〉A + 〈M∗2y, M∗2y〉A = 〈M∗2y, M∗2y〉A.

Also, 〈0⊕ y, 0⊕ y〉A = 〈0, 0〉A + 〈y, y〉 = 〈y, y〉A.

Therefore, we obtain:

A〈M∗2y, M∗2y〉A ≤
+∞∑
n=1

〈y, yn〉A〈y, yn〉
∗

A
≤ B〈y, y〉A.

�

Corollary 2.1. LetA be a C∗-algebra, and let K ∈ End∗
A
(H1) and L ∈ End∗

A
(H2), whereH1 andH2 are

HilbertA-modules. If the sequence {xn ⊕ yn}n≥1 inH1 ⊕H2 is a K ⊕ L-frame forH1 ⊕H2, then {xn}n≥1 is
a K-frame forH1, and {yn}n≥1 is an L-frame forH2.

Proof. Since {xn ⊕ yn} is a K ⊕ L-frame for H1 ⊕H2, there exist constants A, B > 0 such that, for all

x⊕ y ∈ H1 ⊕H2:

A〈(K ⊕ L)∗(x⊕ y), (K ⊕ L)∗(x⊕ y)〉A ≤
∞∑

n=1

〈x⊕ y, xn ⊕ yn〉A〈x⊕ y, xn ⊕ yn〉
∗

A
≤ B〈x⊕ y, x⊕ y〉A.

Note that (K ⊕ L)∗(x⊕ y) = K∗x⊕ L∗y.

Let y = 0. Then, for all x ∈ H1:

A〈K∗x⊕ 0, K∗x⊕ 0〉A = A〈K∗x, K∗x〉A ≤
∞∑

n=1

〈x⊕ 0, xn ⊕ yn〉A〈x⊕ 0, xn ⊕ yn〉
∗

A
≤ B〈x, x〉A.
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Since:

〈x⊕ 0, xn ⊕ yn〉A = 〈x, xn〉A + 〈0, yn〉A = 〈x, xn〉A,

we have:
∞∑

n=1

〈x⊕ 0, xn ⊕ yn〉A〈x⊕ 0, xn ⊕ yn〉
∗

A
=
∞∑

n=1

〈x, xn〉A〈x, xn〉
∗

A
.

Also, since 〈x⊕ 0, x⊕ 0〉A = 〈x, x〉A + 〈0, 0〉A = 〈x, x〉A, we obtain:

A〈K∗x, K∗x〉A ≤
∞∑

n=1

〈x, xn〉A〈x, xn〉
∗

A
≤ B〈x, x〉A.

This shows that {xn} is a K-frame forH1.

Similarly, let x = 0. Then, for all y ∈ H2:

A〈0⊕ L∗y, 0⊕ L∗y〉A = A〈L∗y, L∗y〉A ≤
∞∑

n=1

〈0⊕ y, xn ⊕ yn〉A〈0⊕ y, xn ⊕ yn〉
∗

A
≤ B〈y, y〉A.

Since:

〈0⊕ y, xn ⊕ yn〉A = 〈0, xn〉A + 〈y, yn〉A = 〈y, yn〉A,

we have:
∞∑

n=1

〈0⊕ y, xn ⊕ yn〉A〈0⊕ y, xn ⊕ yn〉
∗

A
=
∞∑

n=1

〈y, yn〉A〈y, yn〉
∗

A
.

Also, since 〈0⊕ y, 0⊕ y〉A = 〈0, 0〉A + 〈y, y〉A = 〈y, y〉A, we obtain:

A〈L∗y, L∗y〉A ≤
∞∑

n=1

〈y, yn〉A〈y, yn〉
∗

A
≤ B〈y, y〉A.

This shows that {yn} is an L-frame forH2. �

Corollary 2.2. LetA be a C∗-algebra, and let K ∈ End∗
A
(H1) and L ∈ End∗

A
(H2), whereH1 andH2 are

Hilbert A-modules. Then there exist a K-frame {xn}n≥1 for H1 and an L-frame {yn}n≥1 for H2 such that
{xn ⊕ yn}n≥1 is a K ⊕ L-frame forH1 ⊕H2.

Proof. Take any frames {xn}n≥1 in H1 and {yn}n≥1 in H2. Then {xn ⊕ yn}n≥1 is a frame for H1 ⊕H2.

By the properties of frames in HilbertA-modules, {Kxn ⊕ Lyn}n≥1 is a K ⊕ L-frame forH1 ⊕H2.

By Corollary 2.2 (which states that the components of a K ⊕ L-frame are K-frames and L-frames,

respectively), {Kxn}n≥1 is a K-frame forH1 and {Lyn}n≥1 is an L-frame forH2. �

This lemma is very useful for what follows.

Lemma 2.1. Let K ∈ End∗
A
(H1) and L ∈ End∗

A
(H2). Then (K ⊕ L)∗ = K∗ ⊕ L∗.
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Proof. Let x⊕ y, a⊕ b ∈ H1 ⊕H2. We have:

〈(K ⊕ L)(x⊕ y), a⊕ b〉A = 〈Kx⊕ Ly, a⊕ b〉A = 〈Kx, a〉A + 〈Ly, b〉A.

Using the adjoint properties in HilbertA-modules, we know:

〈Kx, a〉A = 〈x, K∗a〉A, 〈Ly, b〉A = 〈y, L∗b〉A.

Therefore:

〈(K ⊕ L)(x⊕ y), a⊕ b〉A = 〈x, K∗a〉A + 〈y, L∗b〉A = 〈x⊕ y, K∗a⊕ L∗b〉A.

Hence:

〈(K ⊕ L)(x⊕ y), a⊕ b〉A = 〈x⊕ y, (K∗ ⊕ L∗)(a⊕ b)〉A.

Thus, we conclude that (K ⊕ L)∗ = K∗ ⊕ L∗. �

The following proposition shows that there is no K⊕ L-frame forH ⊕H of the form {xn ⊕ xn}n≥1

whenever K, L , 0.

Proposition 2.5. Let A be a C∗-algebra, and let K, L ∈ End∗
A
(H), where H is a Hilbert A-module. Let

{xn ⊕ xn}n≥1 be a Bessel sequence forH ⊕H . Then:

{xn ⊕ xn}n≥1 is a K ⊕ L-frame forH ⊕H ⇐⇒ K = L = 0.

Proof. (i) Assume that K , 0 or L , 0. Without loss of generality, suppose K , 0. Let x ∈ H
such that K∗x , 0. Then:

‖(K∗ ⊕ L∗)(x⊕ (−x))‖2 = 〈K∗x⊕ L∗(−x), K∗x⊕ L∗(−x)〉A

= 〈K∗x, K∗x〉A + 〈L∗(−x), L∗(−x)〉A ≥ 〈K∗x, K∗x〉A , 0.

However, for each n ≥ 1:

〈x⊕ (−x), xn ⊕ xn〉A = 〈x, xn〉A + 〈−x, xn〉A = 〈x, xn〉A − 〈x, xn〉A = 0.

Therefore:
∞∑

n=1

〈x⊕ (−x), xn ⊕ xn〉A〈x⊕ (−x), xn ⊕ xn〉
∗

A
= 0.

Thus, the frame inequality:

A〈(K∗ ⊕ L∗)(x⊕ (−x)), (K∗ ⊕ L∗)(x⊕ (−x))〉A ≤
∞∑

n=1

〈x⊕ (−x), xn ⊕ xn〉A〈x⊕ (−x), xn ⊕ xn〉
∗

A

cannot hold because the left-hand side is non-zero while the right-hand side is zero. There-

fore, {xn ⊕ xn} is not a K ⊕ L-frame forH ⊕H .
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(ii) Conversely, suppose that K = L = 0. Then K∗ = L∗ = 0. For any x⊕ y ∈ H ⊕H , we have:

〈(K∗ ⊕ L∗)(x⊕ y), (K∗ ⊕ L∗)(x⊕ y)〉A = 〈0⊕ 0, 0⊕ 0〉A = 0.

Since {xn ⊕ xn} is a Bessel sequence, the right-hand side of the frame inequality is finite.

Therefore, the frame inequality:

0 ≤
∞∑

n=1

〈x⊕ y, xn ⊕ xn〉A〈x⊕ y, xn ⊕ xn〉
∗

A
≤ B〈x⊕ y, x⊕ y〉A

holds trivially for all x⊕ y ∈ H ⊕H . Thus, {xn ⊕ xn} is a 0⊕ 0-frame forH ⊕H .

�

This proposition demonstrates that for two frames, the direct sum of which does not constitute

a frame for the super Hilbert module H ⊕H , if {xn} is a K-frame and {yn} is an L-frame, their

combined frames {xn ⊕ yn}may not necessarily form a K ⊕ L-frame.

Here is a simple example illustrating this principle, which directly follows from Proposition 2.5.

Example 2.1. Let K ∈ End∗
A
(H) such that K , 0. Take any K-frame {xn}n≥1 forH . Then {xn ⊕ xn}n≥1 is

not a K ⊕K-frame for the super Hilbert moduleH ⊕H .

Proposition 2.6. LetA be a C∗-algebra, and let K ∈ End∗
A
(H1) and L ∈ End∗

A
(H2), whereH1 andH2

are HilbertA-modules. Let {xn}n≥1 be a K-frame forH1 and {yn}n≥1 be an L-frame forH2. Let θ1 and θ2

be the analysis operators (frame transforms) of {xn} and {yn}, respectively.
If R(θ1) ⊥ R(θ2) in `2(A), then {xn ⊕ yn}n≥1 is a K ⊕ L-frame forH1 ⊕H2.

Proof. Denote by A1 and A2 the lower frame bounds for {xn} and {yn}, respectively, and let A =

min{A1, A2}.

Since R(θ1) ⊥ R(θ2) in `2(A), for all x ∈ H1 and y ∈ H2, we have

〈θ1(x),θ2(y)〉`2(A) = 0.

Recall that the inner product in `2(A) is defined by

〈{an}, {bn}〉`2(A) =
∞∑

n=1

a∗nbn.

Therefore, for all x ∈ H1 and y ∈ H2,

∞∑
n=1

〈xn, x〉∗
A
〈yn, y〉A = 0.

This implies that

〈T2θ1(x), y〉A =
∞∑

n=1

〈yn, y〉∗
A
〈xn, x〉A = 0,

where T2 is the synthesis operator of {yn}.
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Similarly,

〈T1θ2(y), x〉A =
∞∑

n=1

〈xn, x〉∗
A
〈yn, y〉A = 0,

where T1 is the synthesis operator of {xn}.

Therefore, T2θ1 = 0 and T1θ2 = 0.

The frame operator S of {xn ⊕ yn} is given by

S(x⊕ y) = Tθ(x⊕ y) = T(θ1x⊕ θ2y) = T1θ1x⊕ T2θ2y = S1x⊕ S2y,

where T = T1 ⊕ T2 is the synthesis operator for {xn ⊕ yn}, and S1 = T1θ1 and S2 = T2θ2 are the

frame operators for {xn} and {yn}, respectively.

Then, for all x ∈ H1 and y ∈ H2,

〈S(x⊕ y), x⊕ y〉A = 〈S1x, x〉A + 〈S2y, y〉A.

Using the frame inequalities for {xn} and {yn}, we have

〈S1x, x〉A ≥ A1〈K∗x, K∗x〉A,

and

〈S2y, y〉A ≥ A2〈L∗y, L∗y〉A.

Therefore,

〈S(x⊕ y), x⊕ y〉A ≥ A1〈K∗x, K∗x〉A + A2〈L∗y, L∗y〉A ≥ A〈K∗x⊕ L∗y, K∗x⊕ L∗y〉A.

Since K ⊕ L acts onH1 ⊕H2, and (K ⊕ L)∗ = K∗ ⊕ L∗, we have

〈S(x⊕ y), x⊕ y〉A ≥ A〈(K ⊕ L)∗(x⊕ y), (K ⊕ L)∗(x⊕ y)〉A.

Thus, the lower frame condition holds for {xn ⊕ yn} as a K ⊕ L-frame. Since {xn ⊕ yn} is the direct

sum of Bessel sequences (due to {xn} and {yn} being frames), the upper frame condition is also

satisfied. Therefore, {xn ⊕ yn} is a K ⊕ L-frame forH1 ⊕H2. �

Example 2.2. Let A be a unital C∗-algebra, and let H be a Hilbert A-module that admits a countable
orthonormal basis {en}n≥1. Define submodules M and N ofH by:

M = span{e2n : n ≥ 1}, N = span{e2n−1 : n ≥ 1}.

Let P and Q be the orthogonal projections from H onto M and N, respectively. Then {Pen ⊕Qen}n≥1 is a
P⊕Q-frame forH ⊕H .

In fact, {Pen}n≥1 and {Qen}n≥1 are P-frames and Q-frames for H , respectively. Let θ1 and θ2 be their
analysis operators (frame transforms). Then for all x, y ∈ H , we have:

〈θ1(x), θ2(y)〉`2(A) =
∞∑

n=1

〈x, Pen〉
∗

A
〈y, Qen〉A = 0,

since 〈x, Pen〉
∗

A
〈y, Qen〉A = 0 because M and N are orthogonal submodules.

Therefore, R(θ1) ⊥ R(θ2) in `2(A). By Proposition 2.6, {Pen ⊕Qen}n≥1 is a P⊕Q-frame forH ⊕H .
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Proposition 2.7. LetA be a C∗-algebra, and let K ∈ End∗
A
(H1) and L ∈ End∗

A
(H2), whereH1 andH2

are HilbertA-modules. Let {xn}n≥1 be a K-frame forH1 and {yn}n≥1 be an L-frame forH2. If {xn ⊕ yn}n≥1

is a K ⊕ L-frame forH1 ⊕H2, then: R(K) ⊆ T1(N(T2)),

R(L) ⊆ T2(N(T1)),

where T1 and T2 are the synthesis operators for {xn} and {yn}, respectively.

Proof. Assume that {xn ⊕ yn} is a K⊕ L-frame forH1 ⊕H2, and let T be its synthesis operator. By the

properties of frames in Hilbert A-modules (similar to Proposition 1.9 in the Hilbert space case),

we have R(K ⊕ L) = R(T). Then for all x⊕ y ∈ H1 ⊕H2, there exists a ∈ `2(A) such that:

Kx⊕ Ly = Ta.

This implies that:

Kx = T1a, Ly = T2a,

since T = T1 ⊕ T2 and a = {an}n≥1 is in `2(A).

Now, by taking y = 0, for any x ∈ H1, there exists a ∈ `2(A) such that:

Kx = T1a, 0 = Ly = T2a.

Thus, a ∈ N(T2) (the kernel of T2). Therefore:

R(K) ⊆ T1(N(T2)).

Similarly, by taking x = 0, for any y ∈ H2, there exists a ∈ `2(A) such that:

0 = Kx = T1a, Ly = T2a.

Thus, a ∈ N(T1), and therefore:

R(L) ⊆ T2(N(T1)).

�

This proposition shows that the non-minimality of the two sequences {xn} and {yn} is necessary

for their direct sum to be a K ⊕ L-frame whenever K, L , 0.

Corollary 2.3. LetA be a C∗-algebra, and let K ∈ End∗
A
(H1) and L ∈ End∗

A
(H2), whereH1 andH2 are

HilbertA-modules. Let {xn ⊕ yn}n≥1 be a K ⊕ L-frame forH1 ⊕H2. Then:

(i) If {xn}n≥1 is K-minimal, then L = 0.
(ii) If {yn}n≥1 is L-minimal, then K = 0.

(iii) If {xn}n≥1 is K-minimal and {yn}n≥1 is L-minimal, then K = 0 and L = 0.

In particular: If K , 0 and L , 0, and at least one of {xn} or {yn} is minimal, then {xn ⊕ yn} is never a
K ⊕ L-frame for the super Hilbert moduleH1 ⊕H2.
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Proof. (i) Assume that {xn} is K-minimal. This means that the synthesis operator T1 : `2(A)→

H1 is injective, so N(T1) = {0}. By Proposition 2.7, we have:

R(L) ⊆ T2(N(T1)) = T2({0}) = {0}.

Therefore, R(L) = {0}, which implies L = 0.

(ii) Similarly, if {yn} is L-minimal, then N(T2) = {0}. By Proposition 2.7:

R(K) ⊆ T1(N(T2)) = T1({0}) = {0}.

Hence, R(K) = {0}, so K = 0.

(iii) This follows directly from parts (i) and (ii). If both sequences are minimal, then K = 0 and

L = 0.

�

Example 2.3. Let A be a unital C∗-algebra, and let {en}n≥1 and { fn}n≥1 be orthonormal bases for Hilbert
A-modulesH1 andH2, respectively. Define operators K ∈ End∗

A
(H1) and L ∈ End∗

A
(H2) by:

K(en) = e2n, L( fn) = f2n−1, ∀n ≥ 1.

Let {xn}n≥1 = {e2n} and {yn}n≥1 = { f2n−1}. Then {xn} is a K-frame for H1, and {yn} is an L-frame for H2.
However, {xn ⊕ yn} is not a K ⊕ L-frame forH1 ⊕H2.

Explanation: The sequence {xn} is minimal because its synthesis operator T1 is injective (since

{e2n} are linearly independent overA). By Corollary 2.3, since {xn} is K-minimal and K , 0, it must

be that L = 0. However, L( fn) = f2n−1 , 0, which contradicts L = 0. Therefore, {xn ⊕ yn} cannot be

a K ⊕ L-frame forH1 ⊕H2.

Corollary 2.4. If {xn}n≥1 is a Riesz basis for a HilbertA-moduleH1, then there is no sequence {yn}n≥1 in
any HilbertA-moduleH2 such that {xn ⊕ yn} is a frame forH1 ⊕H2.

Proof. In this case, K is the identity operator IH1
onH1, and L is the identity onH2. Since {xn} is a

Riesz basis, it is minimal, and its synthesis operator T1 is invertible (hence injective). By Corollary

2.3 (part (i)), since {xn} is K-minimal and K , 0, it must be that L = 0. However, L is the identity

operator onH2 and cannot be zero unlessH2 = {0}. Therefore, no such sequence {yn} exists. �

2.4. K-Duality, L-Duality, and K ⊕ L-Duality.

We examine the relationship between K-duality, L-duality, and K ⊕ L-duality in the context of

Hilbert A-modules. This subsection focuses on establishing connections between these concepts

and their role in the structure of frames and operators within super Hilbert modules.
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Proposition 2.8. Let K ∈ End∗
A
(H1) and L ∈ End∗

A
(H2). Let {xn ⊕ yn}n≥1 be a K⊕ L-frame forH1 ⊕H2.

Then {an ⊕ bn}n≥1 is a K ⊕ L-dual frame to {xn ⊕ yn} if and only if {an} is a K-dual frame to {xn} and {bn} is
an L-dual frame to {yn}.

Proof. Suppose {an ⊕ bn} is a K ⊕ L-dual frame to {xn ⊕ yn}. Then for all x⊕ y ∈ H1 ⊕H2:

Kx⊕ Ly =
∞∑

n=1

〈x⊕ y, an ⊕ bn〉A(xn ⊕ yn).

This equality decomposes into:Kx =
∑
∞

n=1〈x, an〉Axn + 〈y, bn〉Axn,

Ly =
∑
∞

n=1〈x, an〉Ayn + 〈y, bn〉Ayn.

However, since x ∈ H1 and y ∈ H2 are independent, and an ∈ H1, bn ∈ H2, the cross terms vanish

(because 〈y, an〉A = 0 and 〈x, bn〉A = 0). Therefore, we have:Kx =
∑
∞

n=1〈x, an〉Axn,

Ly =
∑
∞

n=1〈y, bn〉Ayn.

Thus, {an} is a K-dual frame to {xn}, and {bn} is an L-dual frame to {yn}.

Conversely, if {an} is a K-dual frame to {xn} and {bn} is an L-dual frame to {yn}, then for all x ∈ H1

and y ∈ H2: Kx =
∑
∞

n=1〈x, an〉Axn,

Ly =
∑
∞

n=1〈y, bn〉Ayn.

Therefore, for all x⊕ y ∈ H1 ⊕H2:

Kx⊕ Ly =
∞∑

n=1

(〈x, an〉Axn ⊕ 〈y, bn〉Ayn) =
∞∑

n=1

〈x⊕ y, an ⊕ bn〉A(xn ⊕ yn).

Thus, {an ⊕ bn} is a K ⊕ L-dual frame to {xn ⊕ yn}. �

Proposition 2.9. Let K ∈ End∗
A
(H1) and L ∈ End∗

A
(H2), whereH1 andH2 are HilbertA-modules. Let

{xn}n≥1 be a K-frame forH1 with K-dual frame { fn}n≥1, and {yn}n≥1 be an L-frame forH2 with L-dual frame
{gn}n≥1. Then the following statements are equivalent:

i. {xn ⊕ yn}n≥1 is a K ⊕ L-frame forH1 ⊕H2 with K ⊕ L-dual frame { fn ⊕ gn}n≥1.
ii. T2θ1 = 0H1 and T1θ2 = 0H2 , where T1 and T2 are the synthesis operators of {xn} and {yn},

respectively, and θ1 and θ2 are the analysis operators of { fn} and {gn}, respectively.
Proof.

(i)⇒ (ii): Assume that {xn ⊕ yn} is a K ⊕ L-frame for H1 ⊕H2 with K ⊕ L-dual frame { fn ⊕ gn}. Then

for all x⊕ y ∈ H1 ⊕H2, we have:

Kx⊕ Ly =
∞∑

n=1

〈x⊕ y, fn ⊕ gn〉A · (xn ⊕ yn).
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The inner product in the HilbertA-moduleH1 ⊕H2 splits as:

〈x⊕ y, fn ⊕ gn〉A = 〈x, fn〉A + 〈y, gn〉A.

Therefore,

Kx⊕ Ly =
∞∑

n=1

(〈x, fn〉A + 〈y, gn〉A) · (xn ⊕ yn).

Expanding the right-hand side, we get:

Kx =
∞∑

n=1

〈x, fn〉Axn +
∞∑

n=1

〈y, gn〉Axn,

Ly =
∞∑

n=1

〈x, fn〉Ayn +
∞∑

n=1

〈y, gn〉Ayn.

However, since xn ∈ H1 and yn ∈ H2, and 〈y, gn〉Axn ∈ H1, the term
∑

n〈y, gn〉Axn is inH1.

Similarly, 〈x, fn〉Ayn ∈ H2.

Therefore, we have: Kx = T1θ1(x) + T1θ2(y),

Ly = T2θ1(x) + T2θ2(y).

Since Kx = T1θ1(x) + T1θ2(y) and Kx =
∑

n〈x, fn〉Axn +
∑

n〈y, gn〉Axn, we can write:

Kx = T1θ1(x) + T1θ2(y).

Similarly,

Ly = T2θ1(x) + T2θ2(y).

But since x ∈ H1 and y ∈ H2, and θ2(y) ∈ `2(A), T1θ2(y) ∈ H1, and T2θ1(x) ∈ H2.

For the equality to hold for all x ∈ H1 and y ∈ H2, it must be that:T1θ2(y) = 0H1 , ∀y ∈ H2,

T2θ1(x) = 0H2 , ∀x ∈ H1.

Therefore, T1θ2 = 0H1 and T2θ1 = 0H2 .

(ii)⇒ (i): Assume that T1θ2 = 0 and T2θ1 = 0. Then for all x ∈ H1 and y ∈ H2, we have:

Kx = T1θ1(x) + T1θ2(y) = T1θ1(x) + 0 =
∞∑

n=1

〈x, fn〉Axn,

Ly = T2θ1(x) + T2θ2(y) = 0 + T2θ2(y) =
∞∑

n=1

〈y, gn〉Ayn.

Therefore,

Kx⊕ Ly =
∞∑

n=1

(〈x, fn〉Axn ⊕ 〈y, gn〉Ayn) .
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Since 〈x⊕ y, fn ⊕ gn〉A = 〈x, fn〉A + 〈y, gn〉A, we can write:

Kx⊕ Ly =
∞∑

n=1

〈x⊕ y, fn ⊕ gn〉A · (xn ⊕ yn).

Therefore, {xn ⊕ yn} is a K ⊕ L-frame forH1 ⊕H2 with K ⊕ L-dual frame { fn ⊕ gn}.

�

2.5. K ⊕ L-Minimal Frames.

In this part, we study K ⊕ L-minimal frames for super Hilbert modules over a C∗-algebraA.

The following result establishes a necessary and sufficient condition for an M-frame inH1 ⊕H2

to be an M-minimal frame.

Proposition 2.10. Let M ∈ End∗
A
(H1 ⊕H2). Let {xn ⊕ yn}n≥1 be an M-frame for H1 ⊕H2. Then the

following statements are equivalent:

(i) {xn ⊕ yn}n≥1 is an M-minimal frame forH1 ⊕H2.
(ii) N(T1)∩N(T2) = {0},

where T1 and T2 are the synthesis operators of {xn} and {yn}, respectively.

Proof. Let T : `2(A)→H1 ⊕H2 be the synthesis operator of {xn ⊕ yn}, defined by

T(a) =
∞∑

n=1

(xn ⊕ yn)an = T1(a) ⊕ T2(a),

for all a = {an} ∈ `2(A).

Then,

N(T) = {a ∈ `2(A) : T(a) = 0} = {a ∈ `2(A) : T1(a) = 0 and T2(a) = 0} = N(T1)∩N(T2).

Recall that a frame is minimal if its synthesis operator is injective, i.e., N(T) = {0}.
Therefore,

{xn ⊕ yn} is an M-minimal frame ⇐⇒ N(T) = {0} ⇐⇒ N(T1)∩N(T2) = {0}.

�

The following result provides a sufficient condition for {xn ⊕ yn} to be a K⊕ L-minimal frame for

H1 ⊕H2.

We will need the following lemma.

Lemma 2.2. Let H be a Hilbert A-module, and let A, B ⊆ H be closed submodules. Then the following
statements are equivalent:

(i) A = B⊥.
(ii) (a) A ⊥ B,

(b) A⊥ ∩ B⊥ = {0}.
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Proof. (i)⇒ (ii): Assume that A = B⊥. Then A ⊆ B⊥, so A ⊥ B. Also, A⊥ = (B⊥)⊥ = B, so

A⊥ ∩ B⊥ = B∩ B⊥ = B∩ B⊥ = {0}.

(ii) ⇒ (i): Assume that A ⊥ B and A⊥ ∩ B⊥ = {0}. Since A ⊥ B, we have A ⊆ B⊥. Let x ∈ B⊥.

Then x ∈ (A⊥)⊥, because if x ∈ A⊥, then x ∈ A⊥ ∩ B⊥ = {0}, so x = 0. Therefore, x ∈ A. Thus,

B⊥ ⊆ A, and since A ⊆ B⊥, we have A = B⊥.

�

Proposition 2.11. Let K ∈ End∗
A
(H1) and L ∈ End∗

A
(H2), and let {xn} be a K-frame forH1 and {yn} be

an L-frame forH2. Let θ1 and θ2 be the analysis operators of {xn} and {yn}, respectively. If R(θ1) = R(θ2)⊥

in `2(A), then {xn ⊕ yn} is a K ⊕ L-minimal frame forH1 ⊕H2.

Proof. Since R(θ1) = R(θ2)⊥, we have R(θ1) ⊥ R(θ2) and, by Lemma 2.2, R(θ1)
⊥
∩R(θ2)⊥ = {0}.

Recall that θ∗i is the synthesis operator Ti, so N(Ti) = N(θ∗i ) = (R(θi))
⊥.

Thus,

N(T1) = R(θ1)
⊥ = R(θ2), N(T2) = R(θ2)

⊥ = R(θ1).

Since R(θ1)
⊥
∩R(θ2)⊥ = {0}, it follows that N(T1)∩N(T2) = {0}.

By Proposition 2.10, {xn ⊕ yn} is a K ⊕ L-minimal frame forH1 ⊕H2. �

Example 2.4. The following example illustrates an instance of a K ⊕ L-minimal frame for a super Hilbert
module. LetA be a unital C∗-algebra, and letH1 andH2 be countably generated HilbertA-modules with
orthonormal bases {en}n≥1 and { fn}n≥1, respectively.

Define sequences {xn}n≥1 ⊂ H1 and {yn}n≥1 ⊂ H2 as follows, for all n ≥ 1:

xn =

0 if n is odd,

en if n is even.

yn =

0 if n is even,

fn if n is odd.

Define operators K ∈ B(H1) and L ∈ B(H2) by:

K(en) = e2n, ∀n ≥ 1,

L( fn) = f2n−1, ∀n ≥ 1.

We need to verify that K and L are adjointable operators.
Firstly, define K∗ on the basis elements e2n by:

K∗(e2n) = en, ∀n ≥ 1,

and K∗(ek) = 0 if k is odd.
Similarly for L∗:
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L∗( f2n−1) = fn, ∀n ≥ 1,

and L∗( fk) = 0 if k is even.
One can verify that K and K∗ satisfy the adjoint relationship:

〈Kx, y〉A = 〈x, K∗y〉A, ∀x, y ∈ H1,

and similarly for L and L∗ onH2.
Now, for any x ∈ H1:

‖K∗x‖2 = ‖〈K∗x, K∗x〉A‖ =

∥∥∥∥∥∥∥
∞∑

n=1

〈K∗x, en〉
∗

A
〈K∗x, en〉A

∥∥∥∥∥∥∥ .

But K∗x =
∑
∞

n=1〈x, Ken〉Aen, and since Ken = e2n, we have:

K∗x =
∞∑

n=1

〈x, e2n〉Aen.

Therefore,

‖K∗x‖2 =

∥∥∥∥∥∥∥
∞∑

n=1

〈x, e2n〉
∗

A
〈x, e2n〉A

∥∥∥∥∥∥∥ =
∞∑

n=1

‖〈x, e2n〉A‖
2.

Similarly, for y ∈ H2:

‖L∗y‖2 =
∞∑

n=1

‖〈y, f2n−1〉A‖
2.

Therefore, for all x ∈ H1:

‖K∗x‖2 =
∞∑

n=1

‖〈x, xn〉A‖
2,

since xn = en when n is even and xn = 0 when n is odd.
Similarly for y ∈ H2:

‖L∗y‖2 =
∞∑

n=1

‖〈y, yn〉A‖
2.

Thus, {xn} is a K-frame forH1, and {yn} is an L-frame forH2.
Now, let’s compute the analysis operators θ1 and θ2.
For x ∈ H1:

θ1(x) = {〈xn, x〉A}n≥1 =

 0, if n is odd,

〈en, x〉A, if n is even.

Thus, θ1(x) has non-zero entries only at even positions.
Therefore, the range R(θ1) is the submodule of `2(A) spanned by {δ2n}n≥1, where {δn} is the standard

orthonormal basis of `2(A).
Similarly, for y ∈ H2:
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θ2(y) = {〈yn, y〉A}n≥1 =

 〈 fn, y〉A, if n is odd,

0, if n is even.

Thus, θ2(y) has non-zero entries only at odd positions.
Therefore, R(θ2) is the submodule of `2(A) spanned by {δ2n−1}n≥1.
Since R(θ1) and R(θ2) are orthogonal in `2(A), and R(θ1) = R(θ2)⊥, we can apply Proposition 2.11

to conclude that {xn ⊕ yn} is a K ⊕ L-minimal frame forH1 ⊕H2.

2.6. K ⊕ L-Orthonormal Bases.

In this section, we investigate K ⊕ L-orthonormal bases for super Hilbert modules over a C∗-
algebraA.

Proposition 2.12. Let {xn}n≥1 and {yn}n≥1 be two orthonormal systems in HilbertA-modulesH1 andH2,
respectively. Then {xn ⊕ yn}n≥1 is never an orthonormal system for the super Hilbert moduleH1 ⊕H2.

Proof. For any n ≥ 1,

〈xn ⊕ yn, xn ⊕ yn〉A = 〈xn, xn〉A + 〈yn, yn〉A = 1A + 1A = 2 · 1A , 1A.

Thus, {xn ⊕ yn} cannot be an orthonormal system forH1 ⊕H2.

�

The following result provides necessary conditions on {xn} and {yn} for {xn ⊕ yn} to be a K ⊕ L-

orthonormal basis.

Proposition 2.13. Let K ∈ End∗
A
(H1) and L ∈ End∗

A
(H2), where H1 and H2 are Hilbert A-modules.

Let {xn ⊕ yn} ⊂ H1 ⊕H2.

(i) If K = 0 and L , 0, then:

{xn ⊕ yn} is a K ⊕ L-orthonormal basis ⇐⇒

∀n ≥ 1, xn = 0,

{yn} is an L-orthonormal basis forH2.

(ii) If K , 0 and L = 0, then:

{xn ⊕ yn} is a K ⊕ L-orthonormal basis ⇐⇒

∀n ≥ 1, yn = 0,

{xn} is a K-orthonormal basis forH1.

(iii) If K , 0 and L , 0, and {xn ⊕ yn} is a K ⊕ L-orthonormal basis, then:
(a) {K∗(xn) ⊕ L∗(yn)} is the unique K ⊕ L-dual frame to {xn ⊕ yn}.
(b) {xn} is a non-minimal K-frame forH1 whose {K∗(xn)} is a K-dual frame.
(c) {yn} is a non-minimal L-frame forH2 whose {L∗(yn)} is an L-dual frame.
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Proof. (i) Assume K = 0 and L , 0, and that {xn ⊕ yn} is a K ⊕ L-orthonormal basis. Then, for

all x⊕ y ∈ H1 ⊕H2,

‖L∗(y)‖2 = ‖K∗(x) ⊕ L∗(y)‖2 =

∥∥∥∥∥∥∥
∞∑

n=1

〈x⊕ y, xn ⊕ yn〉A · (xn ⊕ yn)

∥∥∥∥∥∥∥ .

Taking y = 0, we have

‖K∗(x)‖2 = ‖K∗(x) ⊕ 0‖2 =
∞∑

n=1

‖〈x, xn〉A‖
2 = 0.

Since K = 0, K∗ = 0, so ‖K∗(x)‖2 = 0 for all x ∈ H1, which is consistent. However, the sum∑
∞

n=1 ‖〈x, xn〉A‖
2 = 0 implies 〈x, xn〉A = 0 for all n and all x ∈ H1. Therefore, xn = 0 for all

n ≥ 1.

Next, for all y ∈ H2,

‖L∗(y)‖2 =
∞∑

n=1

‖〈y, yn〉A‖
2.

Also, for all n, m ≥ 1,

〈yn, ym〉A = 〈xn ⊕ yn, xm ⊕ ym〉A = δn,m · 1A.

Hence, {yn} is an L-orthonormal basis forH2.

Conversely, if xn = 0 for all n ≥ 1 and {yn} is an L-orthonormal basis forH2, then {xn ⊕ yn}

is a K ⊕ L-orthonormal basis forH1 ⊕H2.

(ii) The proof is similar to that of part (i) by interchanging the roles of K and L, andH1 andH2.

(iii) Assume K , 0 and L , 0, and {xn ⊕ yn} is a K ⊕ L-orthonormal basis. Then, by definition,

for all x⊕ y ∈ H1 ⊕H2,

Kx⊕ Ly =
∞∑

n=1

〈x⊕ y, xn ⊕ yn〉A · (xn ⊕ yn).

This implies that

Kx =
∞∑

n=1

〈x, xn〉Axn + 〈y, yn〉Axn,

Ly =
∞∑

n=1

〈x, xn〉Ayn + 〈y, yn〉Ayn.

However, since xn ∈ H1 and yn ∈ H2 are orthogonal elements (modules overA), the cross

terms vanish, and we have:

Kx =
∞∑

n=1

〈x, xn〉Axn,

Ly =
∞∑

n=1

〈y, yn〉Ayn.

Thus, {xn} and {yn} are frames forH1 andH2, respectively.
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(a) The dual frame {K∗(xn) ⊕ L∗(yn)} satisfies:

Kx⊕ Ly =
∞∑

n=1

〈x⊕ y, K∗(xn) ⊕ L∗(yn)〉A · (xn ⊕ yn).

Since K∗(xn) = K∗(xn) and L∗(yn) = L∗(yn), this shows that {K∗(xn) ⊕ L∗(yn)} is the unique

K ⊕ L-dual frame of {xn ⊕ yn}.

(b) Since the synthesis operator T1 of {xn} is not injective (as {xn ⊕ yn} is an orthonormal

basis but xn alone does not span H1 minimally due to the presence of yn), {xn} is a non-

minimal K-frame forH1. The set {K∗(xn)} serves as a K-dual frame to {xn}.

(c) Similarly, {yn} is a non-minimal L-frame for H2, and {L∗(yn)} is an L-dual frame to

{yn}.

�

By the above proposition, we deduce that if {xn ⊕ yn}n≥1 is a K⊕L-orthonormal basis forH1 ⊕H2,

then {K∗(xn)⊕ L∗(yn)}n≥1 is a K∗ ⊕ L∗-frame forH1 ⊕H2. One may wonder under which conditions

{K∗(xn) ⊕ L∗(yn)} is a K∗ ⊕ L∗-orthonormal basis.

We will need the following lemmas.

Lemma 2.3. Let K ∈ End∗
A
(H1) and L ∈ End∗

A
(H2), where H1 and H2 are Hilbert A-modules. Then

the following statements are equivalent:

(i) K ⊕ L is an isometry inH1 ⊕H2.
(ii) K and L are both isometries.

Proof.(i)⇒ (ii) Assume that K ⊕ L is an isometry inH1 ⊕H2. Then for all x⊕ y ∈ H1 ⊕H2, we have:

〈Kx⊕ Ly, Kx⊕ Ly〉A = 〈x⊕ y, x⊕ y〉A.

This implies:

〈Kx, Kx〉A + 〈Ly, Ly〉A = 〈x, x〉A + 〈y, y〉A.

Since this holds for all x ∈ H1 and y ∈ H2, we have:

〈Kx, Kx〉A = 〈x, x〉A, ∀x ∈ H1,

and

〈Ly, Ly〉A = 〈y, y〉A, ∀y ∈ H2.

Therefore, K and L are isometries.

(ii)⇒ (i) Assume that K and L are both isometries. Then for all x ∈ H1 and y ∈ H2:

〈Kx⊕ Ly, Kx⊕ Ly〉A = 〈Kx, Kx〉A + 〈Ly, Ly〉A = 〈x, x〉A + 〈y, y〉A = 〈x⊕ y, x⊕ y〉A.

Therefore, K ⊕ L is an isometry inH1 ⊕H2.

�

Lemma 2.4. Let K ∈ End∗
A
(H1) and L ∈ End∗

A
(H2). Then the following statements are equivalent:



24 Int. J. Anal. Appl. (2025), 23:19

(i) K ⊕ L is a co-isometry inH1 ⊕H2.
(ii) K and L are both co-isometries.

Proof. Recall that an adjointable operator K is a co-isometry if KK∗ = IH1
.

We have:

(K ⊕ L)(K∗ ⊕ L∗) = KK∗ ⊕ LL∗.

Thus, K ⊕ L is a co-isometry if and only if KK∗ = IH1
and LL∗ = IH2 , i.e., K and L are both

co-isometries.

�

Proposition 2.14. Let K ∈ End∗
A
(H1) and L ∈ End∗

A
(H2). Let {xn ⊕ yn}n≥1 be a K⊕ L-orthonormal basis

for the super Hilbert moduleH1 ⊕H2. Then the following statements are equivalent:

(i) {K∗(xn) ⊕ L∗(yn)}n≥1 is a K∗ ⊕ L∗-orthonormal basis.
(ii) K and L are both co-isometries.

Proof. First, note that since {xn ⊕ yn} is a K ⊕ L-orthonormal basis, we have for all x⊕ y ∈ H1 ⊕H2:

Kx⊕ Ly =
∞∑

n=1

〈x⊕ y, xn ⊕ yn〉A · (xn ⊕ yn).

Consider the sequence {K∗(xn) ⊕ L∗(yn)}. We aim to show that this sequence is a K∗ ⊕ L∗-
orthonormal basis if and only if K and L are co-isometries.

(i) Suppose {K∗(xn) ⊕ L∗(yn)} is a K∗ ⊕ L∗-orthonormal basis for H1 ⊕H2. Then, for all x ⊕ y ∈
H1 ⊕H2:

K∗x⊕ L∗y =
∞∑

n=1

〈x⊕ y, K∗(xn) ⊕ L∗(yn)〉A · (K∗(xn) ⊕ L∗(yn)).

Since K∗(xn) ⊕ L∗(yn) = (K∗ ⊕ L∗)(xn ⊕ yn), the above equation becomes:

K∗x⊕ L∗y =
∞∑

n=1

〈x⊕ y, (K∗ ⊕ L∗)(xn ⊕ yn)〉A · (K∗xn ⊕ L∗yn).

This suggests that K∗ ⊕ L∗ acts similarly to a frame operator associated with {xn ⊕ yn}.

Since {K∗(xn) ⊕ L∗(yn)} is a K∗ ⊕ L∗-orthonormal basis, it follows that K∗ ⊕ L∗ is an isometry.

Therefore, K∗ and L∗ are isometries, which implies that K and L are co-isometries (since the adjoint

of an isometry is a co-isometry).

(ii) Conversely, if K and L are co-isometries, then K∗ and L∗ are isometries. Therefore, K∗ ⊕ L∗ is

an isometry, and the sequence {K∗(xn) ⊕ L∗(yn)} is an orthonormal system.

To show that it is a K∗ ⊕ L∗-orthonormal basis, we need to verify that it satisfies the frame

condition. Since {xn ⊕ yn} is a complete system in H1 ⊕H2, and K∗ ⊕ L∗ is an isometry, it follows

that {K∗(xn) ⊕ L∗(yn)} is also complete.

Therefore, {K∗(xn) ⊕ L∗(yn)} is a K∗ ⊕ L∗-orthonormal basis.

�
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Conclusion

In this paper, we have explored the concept of K-frames in the context of super Hilbert modules

over a C∗-algebra A. We have established relationships between K-frames, L-frames, and K ⊕ L-

frames, and provided several propositions and examples to illustrate these concepts. The results

extend known theories in Hilbert spaces to Hilbert A-modules, opening avenues for further

research in operator theory and functional analysis within the framework of C∗-algebras.
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