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Abstract. Let G = R2 oT be the Euclidean motion group and let K(λ, t) = I0(λ)δ(t) be a distribution on G, where I0(λ) is

the Bessel function of order zero and δ(t) is the Dirac measure on SO(2) � T, the circle group. In this work, it is proved,

among other things, that the distribution K(λ, t) is tempered, positive definite, bounded and radial. Furthermore, a

description of Levy-Schoenberg Kernels on the homogenous space of SE(2) is presented.

1. Introduction

Radial distributions on a group G that is locally compact is a probability distribution that depends

on the radial distance of g ∈ G from the identity of G. It is widely applied in modeling uncertain

motion in robotics and computer vision, estimating motion distributions for visual tracking and

also analysing motion related signals.

In this research, a kind of radial distribution on SE(2) obtained as the product of Bessel function

of order zero I0 and the dirac function on SE(2) is studied. It is demonstrated that this distribution

is tempered, positive definite and bounded. I0, used in defining the radial distribution on SE(2),
is obtained by solving the Laplace-Beltrami operator ∇2 = ∂2

∂r2 +
1
r
∂
∂r +

1
r2

∂2

∂θ2 radially using the

method of separation of variable (see [3]). An explicit form of Levy-Schoenberg kernel on the the

homogenous space IR2 � SE(2)/SO(2) is given.

Preliminaries concerning the Euclidean motion group, its representation and invariant differ-

ential operators are presented in section two. Spaces of distributions on SE(2) are presented in

section three. It is also proved in this section that the Schwartz space of SE(2) is a Frechect space
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and the convolution of functions is continuous in the Schwartz space of SE(2). In section four, a

radial distribution on SE(2) is presented and is also shown to be tempered, bounded and positive

definite. Lastly, a description of positive definite Levy-Schoenberg kernel on SE(2)/SO(2) is pre-

sented in section five. These kernels are obtained by finding functions on G that are normalized,

real-valued, K-spherical and continuous imbeddable positive definite functions on G.

2. Preliminaries

2.1 Euclidean Motion Group. The Euclidean Motion group is a non-compact and non-

commutative solvable Lie group realised as a semi direct product of the additive group Rn with

the Orthogonal group O(n). This means that if S(n) denotes the group, then

S(n) = Rn oO(n).

The special Euclidean motion group is the semi direct product of Rn with the special orthogonal

group, SO(n). That is,

SE(n) = Rn o SO(n),

where SO(n) = SL(n)∩O(n).
SE(n) is also called group of transformation of the Euclidean plane. Henceforth, SE(n) is considered

for this research when n = 2. Elements of SE(2) are given by g = (x,α) ∈ SE(2), where α ∈ SO(2)

and x ∈ R2. For any g = (x1,α1) and h = (x2,α2), the group law of SE(2) is given as

gh = (x1,α1)(x2,α2) = (x1 + α1x2,α1α2)

and the inverse g−1 is given as ( [5])

g−1 = (−αT
1 , x1αT

1 ).

Elements of SE(2) may be identified as a 3× 3 homogeneous transformation matrix of the form

H(g) =

 α x
0T 1

 ,

where 0T = (0, 0). SE(2) = (R2 o SO(2)) �M ⊆ GL(3, R), where M is a subgroup of GL(3, R). An

element of SE(2) may also be presented in rectangular coordinate as follows.

g(x1, x2,φ) =


cosφ −sinφ x1

sinφ cosφ x2

0 0 1

 , φ ∈ [0, 2π], (x1, x2) ∈ R2

SE(2) is a non - compact and non- commutative Solvable Lie group [5]. Solvability of SE(2)
implies that there exist a sequence of closed subgroup G0 = G, G1, ..., Gn, Gn+1 = {e} such that Gn+1

is normal in Gk and Gk/Gk+1 is abelian [12]. Since all abelian and solvable Lie groups are amenable,

it means that the Euclidean motion group is also an amenable group. SE(n) is a group of affine

maps induced by orthogonal transformation. It is also called a group of rigid motions and plays

a fundamental role in robotic, dynamics and motion planning. The universal covering group of

SE(2) is the semi direct product group R2 oR whose multiplication is defined as

(x1,α1)(x2,α2) = (x1 + eitx2,α1 + α2)
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and its covering map is defined as

(x,α) 7→ (x, eit).

For x1, x2 ∈ R2 and α ∈ SO(2), the invariant measure on SE(n) is obtained as the product of

Lebesque measure on R2 and the Haar measure on SO(2) given as (see [2] and [4])

dµ[(x,α)] = dx1dx2dα.

Let H = L2(SE(2),µ) be the Hilbert space of square integrable functions on SE(n). For u ∈ H and

x, x′ ∈ R2, the right and left regular representations TR and TL of SE(2) are defined respectively as

(TR
(x2,α2)

u)[(x1,α2)] = u[(x1,α1)(x2,α2)]

= u[(x1 + x2α1,α1 + α2)]

and

(TL
(x2,α2)

u)[(x1,α1)] = u[(x2,α1)
−1(x1,α1)]

= u[(−x2−α′ + x12π−α′ , 2π− α2 + α1)].

Let g(ti) be the one-parameter subgroups of SE(2) generated by Xi, i = 1, 2, 3.. Then

Xiu = lim
t→0

(TL
g(ti)
− I

ti
u
)

where u is an element of the Garding domain [2]. Explicitly,

X1 = −
∂
∂x1

,

X2 = −
∂
∂x2

,

X3 = x2
∂
∂x1
− x1

∂
∂x2
−
∂
∂α

.

The generators of the left invariant Lie algebra of G are given as

Y1 = cosα
∂
∂x1

+ sinα
∂
∂x2

,

Y2 = −sinα
∂
∂x1

+ cosα
∂
∂x2

,

Y3 =
∂
∂α

,

and they obey the following commutation relations [Y1, Y2] = 0, [Y2, Y3] = Y1 and [Y3, Y1] = Y2,

where [A, B] is the standard Lie bracket defined as [A, B] = AB− BA.

The spherical function for SE(2) is the Bessel function of order zero I0 and its integral repre-

sentation is given as

J0(λ) =
1

2π

∫ 2π

0
eiλcosφdφ
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. This is obtained by solving the Laplacian

∇
2 =

∂2

∂r2 +
1
r
∂
∂r

+
1
r2
∂2

∂θ2 (2.1)

on SE(2) radially by separation of variable method.

3. Spaces of Distributions on SE(2)

In this section, descriptions of spaces of distributions and their respective topologies are pre-

sented. Further more, Fourier transform of functions on SE(2) is discussed.

3.1 The space C∞(G). Given a solvable Lie group G endowed with invariant measure dµ(g),
and g its Lie algebra. Lets denote by m the dimension of g. Fix {X1, ..., Xm} a basis of g. To each

α = (α1, ...,αm) ∈ Nm, we put |α| = α1 + ... + αn and associate a differential operator Xα, which is

left invariant, on G acting on f ∈ C∞(G), the space C∞(G) of infinitely differentiable functions on

G, by

Xα f (g) =
∂α1

∂tα1
1

...
∂αm

∂tαm
m

f (g exp(t1X1)...exp(tmXm))|t1=...=tm=0..

The space C∞(G) may be given a topology defined by a system of seminorms specified as

| f |α,m = Sup|α|≤m|Xα f (g)|.

With this topology, C∞(G) is metrizable, locally convex and complete, hence, it is a Frechet space.

This Frechet space may be denoted as ξ(G)

3.2 The space C∞c (G). This space C∞c (G) is the space of complex-valued C∞ function on G with

compact support. For any ε > 0, put

Bε =
{
(ξ,θ) ∈ G : ||ξ|| ≤ ε

}
and

Dε = D(Bε) =
{

f ∈ C∞c (G) : f (ξ,θ) = 0, i f ||ξ|| > ε
}
.

Then D(Bε) is a Frechet space with respect to the family semi norms defined as{
Pα( f ) = ‖Dα f ‖∞ : α ∈N3

}
.

D(G) =
⋃
∞

n=1D(Bn) is topologised as the strict inductive limit of D(Bn). A linear functional on

the topological vector space D(G) that is continuous is known as a distribution on G. Then D′(G)

is the space of distribution on G.

Given a manifold M and a distribution T, T is said to vanish on a subset V ⊂M, which is open,

if T = 0. Let {Uα}α∈ω represents the collection of all open sets on which T vanishes and let U stand

for the union of {Uα}α∈ω. M−U, regarded as the complement of M, is the support of T. We denote

ξ′(G) a distributions space with compact support.
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3.3 The Schwartz space S(G). Consider the Euclidean motion group SE(2) realised as R o T

where T � R/2πZ. If we choose a system of coordinates ( [10]) (x, y,θ) on G with x, y ∈ R and

θ ∈ T, then a complex - valued C∞ function f on G = SE(2) is called rapidly decreasing if for any

N ∈N and α ∈N3 we have

pN,α( f ) = Supθ∈T,ξ∈R2 | (1 + ||ξ||2)N(Dα f )(ξ,θ) |< +∞, (3.1)

where

Dα =

(
∂
∂x

)α1
(
∂
∂y

)α2
(
∂
∂θ

)α3

,

(α = (α1,α2,α3); ξ = (x, y)). The space of all rapidly decreasing functions on G is denoted

by S = S(G). Then S is a Frechet space in the topology given by the family of semi-norms

{PN,α : N ∈N,α ∈N3}. This result is stated formally with prove in the next proposition,

3.4 Proposition. The Schwartz space S(SE(2)) is a Frechet space.

Proof. Let us denote the system of seminorm defined in (5) by ||.||∞n,α, n ∈ IN, α ∈ INm. ||.||∞n,α is

countable and separable on S(SE(2)). This is because ||ς||∞0,0 = ||ς||∞
L1(G)

= 0⇒ ς = 0. This sepa-

rability condition defines a locally convex topology on S(SE(2)). Next is to prove that S(SE(2))
is a Frechet space. In order to do this, we need to show that it is complete. To this end, let

{ς}n∈IN ⊂ S(SE(2)) be a sequence that is Cauchy in nature for the semi norms ||.||∞n,α. Let Xα be as

defined in 2.1, Xαςn converges to a bounded function ςn,α uniformly for every n ∈ IN and α ∈ INm.

Next is for us to prove that

ςn,α = Xας0,0 n ∈ IN, α ∈ INm. (3.2)

The prove of (6) is to establish that ς0,0 ∈ S(SE(2)) and ςn → ς0,0 in S(SE(2)) and by implication,

it will mean that S(SE(2)) is complete. Therefore, let us prove that (6) is true. For n = 0 and α of

length one, say α = αi with all coordinates equal to zero but the ith equal to one, we have for all

t ∈ IN

ςn(gexp(tXi) = ςn(g) +
∫ t

0
Xiςn(ηXi))dη, (3.3)

when n→∞ (7) becomes

ς0,0(gexp(tXi)) = ς0,0(g) +
∫ t

0
ς0,αi(gexp(ηXi))dη. (3.4)

If we differentiate (8) with respect to t at 0, it shows that ς0,0 is continuously differentiable in the

direction Xi with

Xiς0,0(g) = ς0,αi g.

If this argument is repeated, it shows that ς0,0 ∈ C∞(G) with Xας0,0 = ς0,α, ∀α ∈ INm. This means

that for all n ∈ IN and α ∈ INm, Xαςn converges pointwise to Xας0,0. By hypothesis, Xαςn converges

to ςn,α, therefore ςn,α = Xας0,0. Since ςn,α ∈ L∞(G), this shows that ς0,0 ∈ S(SE(2)) and that ςn

converges to ς0,0 in S(SE(2)). Hence, S(SE(2)) is complete and therefore Frchet. �
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The spaceS′(G) of (continuous) linear functionals on S(G) is referred to as the space of tempered

distributions on G = SE(2). This space can be topologised by strong dual topology, which is

defined as the topology of uniform convergence on the bounded subsets of S(G) generated by the

seminorms pϕ(u) = |u(ϕ)|, where u : S(G)→ R and ϕ ∈ S(G).

Let f1, f2 ∈ S(G) or L2(G). The convolution of f1 and f2 is defined as

( f1 ∗ f2)(g) =
∫

G
f1(h) f2(h−1g)dµG(h)

=

∫
G

f1(gh) f2(h−1)dµG(h).

The convolution operation obeys the associativity property

( f1 ∗ f2) ∗ f3 = f1 ∗ ( f2 ∗ f3),

whenever all the integrals are absolutely convergent (cf: [5, 10, 11]).

The next result shows continuity of convolution of functions in S(SE(2)). It is presented below

as proposition 3.5 with proof.

3.5 Proposition. Convolution of functions is continuous from S(SE(2)) ×S(SE(2)) to S(SE(2))

Proof. Let us recall that the convolution of two functions on SE(2), provided the integral converges,

is defined as

( f1 ∗ f2)(g) =
∫

G
f1(h) f2(h−1g)dµG(h)

=

∫
G

f1(gh) f2(h−1)dµG(h).

Since the differential operators Xα are left invariant, they act on the convolution as follows

Xα( f1 ∗ f2) = f1 ∗Xα f2,

therefore,

|Xα( f1 ∗ f2)(g)| = |
∫

G
Xα f1(h) f2(h−1g)dh|

We note that SE(2) is unimodular (see [6], p.326), this means∫
G

f (hg)dg =

∫
G

f (gh)dg =

∫
G

f (g−1)dg =

∫
G

f (g)dg.

So, by putting g = hg, we get

|Xα( f1 ∗ f2)(g)| = |
∫

G
Xα f1(h) f2(h−1(hg)dh|

= |

∫
G

Xα f1(h) f2(g)dh|

≤

∫
G
|Xα f1(h) f2(g)dh|.
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We know that

Xα( f1 ∗ f2)(g) = f1 ∗Xα f2(g).

But

f1 ∗Xα f2(h) =
∫

G
f1(h)Xα(h−1g)dh.

Therefore

|Xα( f1 ∗ f2)(g)| ≤
∫

G
| f1(h)||Xα f2(g)|dh

≤

∫
G
| f1(h)|dh

C
|(1 + ||ξ||2)m|

,

because |Xα f2(g)| ≤ Cα,N
|(1+||ξ||2)m|

. Since ||ξ|| is a positive real constant, we may put QN = |(1+ ||ξ||2)N
|,

so that

|Xα( f1 ∗ f2)(g)| ≤
∫

G
| f1(h)||Xα f2(g)|dh

≤

∫
G
| f1(h)|dh

C
|(1 + ||ξ||2)N |

≤
C

QN

∫
G
| f1(h)|dh

=
C

QN
‖ f1‖L1(G)

|(1 + ||ξ||2)NXα( f1 ∗ f2)(ξ,θ)| = |(1 + ||ξ||2)N
||Xα( f1 ∗ f2)(ξ,θ)|

≤ C|| f ||L1(G) < +∞.

On taking supremum, we have

Pα,N( f1 ∗ f2) = supθ∈T,ξ∈R2 |(1 + ||ξ||2)NXα( f1 ∗ f2)(ξ,θ)| < +∞.

4. Radial Distribution on SE(2)

4.1 Definition. A function f : Rn
→ R is called radial if ∃ φ defined on [0,∞) in such a way that

f (x) = φ(|x|), ∀ x ∈ Rn. For a transformation ρ on Rn, ρ is called orthogonal if ∃ linear operator

on Rn such that 〈ρx,ρy〉 = 〈x, y〉 ∀ x, y ∈ Rn.

A Schwartz function ϕ is called radial if for all A ∈ O(n) (that is to say, for all rotations on IRn)

the following equation holds

ϕ = ϕoA.

A collection of all radial Schwartz functions is denoted asSrad(IR) andS′(IR) the space of tempered

distributions on IRn. A distribution u ∈ S′(IR) is called radial if for all A ∈ O(n), we have

u = uoA.

This means that for all Schwartz functions ϕ on IRn, we have

〈u,ϕ〉 = 〈u,ϕoA〉
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and S′rad(IR) is the space of all radial tempered distributions on IRn.

4.2 Definition. A positive definite function

f : G→ C

satisfies the following inequality ∑
i, j=1m

αiαk f (g−1
i gk) ≥ 0 (4.1)

for all subsets {g1, ..., gm} ∈ G and all sequences {α1, ...,αm} ∈ C. The integral analogue of the

inequality (5) is given by ∫
G

∫
G

f (g−1
i gk)ϕ(gi)ϕ(gk)dgidgk ≥ 0 (4.2)

where ϕ ranges over L1(G) or Cc(G). If f is a continuous functions, (9) and (10) are equivalent.

A spherical function that also satisfies (5) is referred to as positive definite spherical function.

Let (G, K)̂ stand for the set of spherical functions on G and let (G, K)̂+ denotes the subset of (G, K)̂
that is positive definite. The set (G, K)̂+ is isomorphic with R+. A measure π on (G, K)̂ such that

for f ∈ L1(G, K) the plancherel theorem holds, that is∫
(K\G/K)

| f (a)|2d(kak) =
∫
(G,K)̂

| f̂ (ϕ)|2dπ(ϕ).

π is referred to as plancherel measure and its support is the full set (G, K)̂.

4.3 Definition [7]. A positive definite distribution T on a Lie group G is a distribution that

satisfies T(φ̃ ∗ φ) ≥ 0 ∀φ ∈ D(G). If in addition to the above condition, φ ∈ Cc(K\G/K), such a

distribution is known as a K-bi-invariant distribution on G.

Let us look at the following regular distributions on SE(n)

(1) Let f be a continuous function on R2, µ a Radon measure on the compact subgroup of G.

The linear functional f ⊗ µ on D(G) defined by

ϕ 7→
〈
ϕ, f ⊗ µ

〉
=

∫
R2

∫
SO(2)

f (a)ϕ(g)dadA

is a distribution on G = SE(2), ϕ ∈ D(G).

(2) The character function χa is a linear functional on D(G) or distribution on G defined by

χa : f 7→
∞∑

n=−∞

∫
G

f (g)
(
Ua

gχn,χn
)
dg =

∞∑
n=−∞

(
Ua

gχn,χn
)
= TrUa

f ,

where

Ua
f =

∫
G

f (g)Ua
gdg.
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It is our interest in this section to show that the type of distribution mentioned in 2 above is a

radial, positive definite, tempered and bounded. We proceed as follows.

There is a relationship between the spherical function I0 of SE(2) and χa on D(G). This may

be found in [10] as theorem 3.3. It is stated here as theorem 4.4, without proof.

4.4 Theorem For any fixed σ > 0, the linear functional

χa f 7→ TrUσ
f

is a distribution on G = SE(2). In fact, χa is equal to I0(t||ξ||) ⊗ δ(t) where J0 is the Bessel function

of order 0 and δ is the Dirac measure of order zero on T � K and TrUσ
f stands for the trace of the

representation Uσ
f . That is to say, our distribution under consideration is K(λ, t) = I0(λ) ⊗ δ(t),

where λ = t||ξ||. �

S
′(SE(2)), as earlier defined, is the space of tempered distributions on SE(2). There are three

kinds of topology that can be given to S′(SE(2)), namely, strong dual topology, weak topology

and the weak ∗ topology. A tempered distribution u ∈ S′(SE(2)) is a continuous linear functional

on S(SE(2)).

Let T ∈ S′(SE(2)) and let f be an arbitrary C∞ function on G. There is a condition for

f T ∈ S′(SE(2)). This leads us to the following definition of a Lie group with polynomial growth.

4.5 Definition [1], p.7 Let G be a Lie group and let µ be the left Haar measure of G. G is said

to have polynomial growth if ∃ a compact symmetric neighborhood U of e ∈ G that generates G
and such that the sequence (µ(Un)n∈N has polynomial growth as n → ∞. A function f ∈ C∞(G)

is said to have a polynomial growth if G has a polynomial growth. A Gelfand pair (G, K) has

polynomial growth if G has polynomial growth ( [1], p.7). The Gelfand pair (SE(2), SO(2) � T) is

a pair with polynomial growth, then SE(2) is a a Lie group with polynomial growth.

Given T ∈ S′(G) and f ∈ C∞(G), the condition for f T ∈ S′(G) is that f must be a function

with polynomial growth. I0 is the spherical function on SE(2). It is bounded, positive definite

and has polynomial growth. (see [6]). Also, δ(t) ∈ C∞(G). Following this development, we have

that I0(λ)δ(t) ∈ S′(G), where λ = σ||ξ||. Further more, I0 being the spherical function of SE(2)
is also a radial function. This is because elementary spherical functions are also radial functions.

Since Io(λ) is radial, bounded and positive definite (see [6], Prop. 2.4) and K(λ, t) = I0(λ)δ(t) is

compactly supported in S′(IR) at the identity, it therefore means that it also belongs to the space of

tempered radial distributions S′rad(G) on G = SE(2).
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5. Levy-Schoenberg Kernel on SE(2)

Let G be a separable topological group and K its subgroup that is compact. G/K being the

qotient group is given the quotient topology. If g1, g2, ... are members of G, then members of G/K
will be g1K, g2K, ..., etc. In this section, we shall consider a homogenous space where G = SE(2)
and K = SO(2) and IR2 � SE(2)/SO(2)

5.1 Definition. Let S be a space that is Hausdorff. A kernel on S is a continuous complex

valued function on S× S.

5.2 Definition. A kernel on the homogenous space M(2)/SO(2) is said to be positive definite

if for any a1, ..., an ∈M(2)/SO(2) and complex numbers α1,α2, ...,αn one has

Σn
i=1Σn

j=1αiα j f (ai, a j) ≥ 0. (5.1)

5.3 Definition. A kernel f on G/K is called Levy− Schoenberg kernel if the following properties are

satisfied

(i) f (a, b) = f (b, a) ∀a, b ∈ G/K
(ii) there exists a point ξ ∈ G/K such that f (a, ξ) = 0 for all ξ ∈ G/K.

(iii) the kernel r on G/K given by r(a, b) = f (a, a) + f (b, b) − 2 f (a, b) is invariant under G. That is

r(ga, gb) = r(a, b) for all g ∈ G, a, b ∈ G/K.

(iv) f is positive definite.

Following conditions (i) and (iv), a Levy-Schoenberg kernel is real valued.

Let {ξ(a) : a ∈ IRn
} be a Gaussian process with parameter a running over the Euclidean space IRn

with center zero. That is to say, if E stands fo expectation, then E(ξ(a)) = 0, a ∈ IRn. Its covariance

is defined by the Kernel f on IRn
× IRn by

f (a, b) =
1
2
(|a|+ |b| − |a− b|), a, b ∈ IRn, (5.2)

|a| stands for the length of a ∈ IRn. (12) is an example of Levy-Schoenberg kernel. It is real,

symmetric and positive definite. IR2 in this case is seen as the homogeneous space of all rigid

motions of IR2, modulo the compact subgroup K. This means that the kernel defined by (12) lives

in IR2 � SE(2)/SO(2).

5.4 Definition. A complex valued function φ on SE(2) is said to be K-spherical if for g ∈ SE(2),
k1, k2 ∈ SO(2), one has φ(k1gk2) = φ(g) and is called normalized if φ(e) = 1. φ on SE(2) is also

said to be imbeddable if for each t ≥ 0, φt is positive definite and φt(g) → 1 for each g ∈ SE(2) as

t ↓ 0. Any imbeddable function is positive definite (see [13]).

5.5 Definition. The collection of all K-spherical functions that are continuous with complex values

that are normalized and imbeddable on SE(2) are referred to as class 1 for (SE(2), SO(2)).
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5.6 Definition. A continuous positive functions φ on SE(2) is infinitely divisible if for each

n > 0, ∃ φn on SE(2) such that φ(g) = (φn(g))n.

5.7 Definition. Class D for the pair (SE(2), SO(2)) simply means the set of all complex valued

valued continuous K-spherical, normalized, infinitely divisible positive definite function on SE(2).

Let φ be a radial function on SE(2) then φ may be lifted to a function φ∗ on SE(2)/SO(2) � IR2 by

setting φ∗ ◦π = φ where π : SE(2)→ SE(2)/SO(2) is a natural projection. This action turns φ∗ to

a radial function. φ is positive definite on SE(2), it follows that φ∗ is also positive definite on the

quotient group SE(2)/SO(2) and belongs to the class D (or 1) for the pair (IR2, {0}), implying that

φ is also in the class D (or 1) for the pair (SE(2), SO(2)).

Levy-Khinchine formula (see [13]), that explains the Fourier transforms of probability measure

on IRn that are infinitely divisible under convolution, is the description of the class D for the pair

(IRn, {0}).

Example5.8 An explicit form of φ∗ for the quotient group SE(2)/SO(2) is presented as follows. A

function φ∗ on SE(2)/SO(2) = IRn with n ≥ 2 is a radial function in the class D for the pair (IRn, {0})

and has the representation below:

φ∗(α) = exp− {g∗(a) +
∫
λ≥0

(1− In(λ|a|))dL∗(λ)} (5.3)

where In is the Bessel function and

In(t) =
Γ(n

2 )
√
π.Γ(n−1

2 )
.
∫ π

0
eitcosφSinn−2φdφ = Γ(

n
2
)(2t−1)

n−2
2 .J n−2

2
(t), t ≥ 0

g∗, L∗ are measurable functions that satisfy

(a) L∗ is a non negative measure

(b) g∗ is a function on IRn, such that g∗(a) = c|a|2, where c is a constant ≥ 0 and |a| is the length of a.

(13) is an explicit form of a radial function on the homogenous space SE(2)/SO(2). It is positive

definite, bounded and infinitely differentiable. It is compactly supported in [−1, 1], hence it is a

distribution.

Using (13) above, a kernel f on G/K = IRn is a Levy-Schoenberg kernel if f (a, b) = 1
2 (r(a, ξ)) +

r(b, ξ) − r(a, b), a, b ∈ IRn. Where r(a, b) = Ψ∗(a− b) and Ψ∗ is a function on IRn of the form

Ψ∗(a) = g∗(a) +
∫
λ≥0

(1− In(λ|a|))dL∗(λ)
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6. Conclusion

In this research, a kind of radial distribution on SE(2) was obtained as the product of Bessel

function of order zero I0 and the dirac function on SE(2). We have demonstrated that this distri-

bution is tempered, positive definite and bounded. The I0 used in defining the radial distribution

on SE(2) was obtained by solving the Laplace-Beltrami operator ∇2 = ∂2

∂r2 +
1
r
∂
∂r +

1
r2

∂2

∂θ2 radially

using the method of separation of variable (see [3]). An explicit form of Levy-Schoenberg kernel

on the the homogenous space IR2 � SE(2)/SO(2) has been given as example 5.8.
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