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Abstract. This paper is concerned with the concepts of upper quasi θ(τ1, τ2)-continuous multifunctions and lower

quasi θ(τ1, τ2)-continuous multifunctions. Furthermore, several characterizations of upper quasi θ(τ1, τ2)-continuous

multifunctions and lower quasi θ(τ1, τ2)-continuous multifunctions are considered.

1. Introduction

The notion of continuity is an important concept in general topology as well as all branches of

mathematics. Semi-open sets [44], preopen sets [47], α-open sets [49], β-open sets [1] and θ-open

sets [76] play an important role in the research of generalizations of continuity. Using these notions

many authors introduced and studied various types of generalizations of continuity for functions

and multifunctions. Levine [44] introduced and studied the notion of semi-continuous functions.

Arya and Bhamini [2] introduced the concept of θ-semi-continuity as a generalization of semi-

continuity. Noiri [51] and Jafari and Noiri [35] have further investigated some characterizations

of θ-semi-continuous functions. Marcus [46] introduced and investigated the notion of quasi

continuous functions. The concepts of (Λ, sp)-open sets, s(Λ, sp)-open sets, p(Λ, sp)-open sets,

α(Λ, sp)-open sets, β(Λ, sp)-open sets and b(Λ, sp)-open sets were studied in [16]. Viriyapong and

Boonpok [80] investigated some characterizations of (Λ, sp)-continuous functions by utilizing the

notions of (Λ, sp)-open sets and (Λ, sp)-closed sets. Dungthaisong et al. [34] introduced and studied

the concept of g(m,n)-continuous functions. Duangphui et al. [33] introduced and investigated the
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notion of (µ,µ′)(m,n)-continuous functions. Furthermore, several characterizations of almost (Λ, p)-
continuous functions, strongly θ(Λ, p)-continuous functions, almost strongly θ(Λ, p)-continuous

functions, θ(Λ, p)-continuous functions, weakly (Λ, b)-continuous functions, θ(?)-precontinuous

functions, ?-continuous functions, θ-I -continuous functions, almost (g, m)-continuous functions

and pairwise M-continuous functions were presented in [69], [73], [4], [63], [8], [9], [15], [23], [27]

and [28], respectively. Popa [55] introduced and studied the notion of almost quasi continuous

functions. Neubrunnovaá [48] showed that quasi continuity is equivalent to semi-continuity due to

Levine [44]. Popa and Stan [57] introduced and investigated the notion of weakly quasi continuous

functions. Weak quasi continuity is implied by quasi continuity and weak continuity [45] which

are independent of each other. In [3], the present authors introduced and investigated the concept

of (τ1, τ2)-continuous functions. Moreover, some characterizations of almost (τ1, τ2)-continuous

functions, weakly (τ1, τ2)-continuous functions, slightly (τ1, τ2)s-continuous functions, slightly

(τ1, τ2)-continuous functions, δ(τ1, τ2)-continuous functions, faintly (τ1, τ2)-continuous functions

and almost weakly (τ1, τ2)-continuous functions were investigated in [5], [6], [61], [67], [58], [68]

and [37], respectively. Kong-ied et al. [42] introduced and studied the notion of almost quasi

(τ1, τ2)-continuous functions. Chiangpradit et al. [31] introduced and investigated the concept of

weakly quasi (τ1, τ2)-continuous functions. Srisarakham et al. [66] introduced and studied the

notion of quasi θ(τ1, τ2)-continuous functions.

In 1975, Popa [56] extended the concept of quasicontinuous functions to the setting of mul-

tifunctions. In particular, Popa and Noiri [53] introduced the concept of almost quasi con-

tinuous multifunctions and investigated some characterizations of such multifunctions. Noiri

and Popa [52] introduced and studied the notion of weakly quasi continuous multifunctions.

Popa and Noiri [54] introduced the notion of θ-quasicontinuous multifunctions and investi-

gated several further properties of such multifunctions. Some characterizations of upper θ-

quasicontinuous multifunctions and lower θ-quasicontinuous multifunctions were investigated

in [50]. Laprom et al. [43] introduced and investigated the concept of β(τ1, τ2)-continuous multi-

functions. Furthermore, some characterizations of (τ1, τ2)α-continuous multifunctions, (τ1, τ2)δ-

semicontinuous multifunctions, almost weakly (τ1, τ2)-continuous multifunctions, ?-continuous

multifunctions, β(?)-continuous multifunctions, weakly quasi (Λ, sp)-continuous multifunctions,

α-?-continuous multifunctions, almostα-?-continuous multifunctions, almost quasi?-continuous

multifunctions, weakly α-?-continuous multifunctions, sβ(?)-continuous multifunctions, weakly

sβ(?)-continuous multifunctions, θ(?)-quasi continuous multifunctions, almost ı?-continuous

multifunctions, weakly (Λ, sp)-continuous multifunctions, α(Λ, sp)-continuous multifunctions,

almost α(Λ, sp)-continuous multifunctions, almost β(Λ, sp)-continuous multifunctions, (τ1, τ2)-

continuous multifunctions, almost (τ1, τ2)-continuous multifunctions, weakly (τ1, τ2)-continuous
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multifunctions, weakly quasi (τ1, τ2)-continuous multifunctions, s-(τ1, τ2)p-continuous multifunc-

tions, weakly s-(τ1, τ2)-continuous multifunctions, almost nearly quasi (τ1, τ2)-continuous mul-

tifunctions, almost nearly (τ1, τ2)-continuous multifunctions, rarely s-(τ1, τ2)p-continuous multi-

functions, s-(τ1, τ2)-continuous multifunctions and nearly (τ1, τ2)-continuous multifunctions were

established in [81], [24], [20], [25], [19], [79], [7], [14], [21], [13], [11], [12], [18], [22], [10], [39], [17],

[75], [62], [40], [72], [64], [78], [59], [36], [32], [41], [30] and [71], respectively. Khampakdee et

al. [38] introduced and investigated the concept of c-(τ1, τ2)-continuous multifunctions. Pue-on

et al. [65] introduced and studied the notion of almost quasi (τ1, τ2)-continuous multifunctions.

Quite recently, Pue-on et al. [60] introduced the concepts of upper quasi θ(τ1, τ2)-continuous

multifunctions and lower quasi θ(τ1, τ2)-continuous multifunctions. In this paper, we investi-

gate several characterizations of upper quasi θ(τ1, τ2)-continuous multifunctions and lower quasi

θ(τ1, τ2)-continuous multifunctions.

2. Preliminaries

Throughout the present paper, spaces (X, τ1, τ2) and (Y, σ1, σ2) (or simply X and Y) always mean

bitopological spaces on which no separation axioms are assumed unless explicitly stated. Let A
be a subset of a bitopological space (X, τ1, τ2). The closure of A and the interior of A with respect

to τi are denoted by τi-Cl(A) and τi-Int(A), respectively, for i = 1, 2. A subset A of a bitopological

space (X, τ1, τ2) is called τ1τ2-closed [26] if A = τ1-Cl(τ2-Cl(A)). The complement of a τ1τ2-closed

set is called τ1τ2-open. Let A be a subset of a bitopological space (X, τ1, τ2). The intersection

of all τ1τ2-closed sets of X containing A is called the τ1τ2-closure [26] of A and is denoted by

τ1τ2-Cl(A). The union of all τ1τ2-open sets of X contained in A is called the τ1τ2-interior [26]

of A and is denoted by τ1τ2-Int(A). A subset A of a bitopological space (X, τ1, τ2) is said to

be τ1τ2-clopen [26] if A is both τ1τ2-open and τ1τ2-closed. A subset A of a bitopological space

(X, τ1, τ2) is said to be (τ1, τ2)r-open [81] (resp. (τ1, τ2)s-open [24], (τ1, τ2)p-open [24], (τ1, τ2)β-
open [24]) if A = τ1τ2-Int(τ1τ2-Cl(A)) (resp. A ⊆ τ1τ2-Cl(τ1τ2-Int(A)), A ⊆ τ1τ2-Int(τ1τ2-Cl(A)),

A ⊆ τ1τ2-Cl(τ1τ2-Int(τ1τ2-Cl(A)))). The complement of a (τ1, τ2)r-open (resp. (τ1, τ2)s-open,

(τ1, τ2)p-open, (τ1, τ2)β-open) set is called (τ1, τ2)r-closed (resp. (τ1, τ2)s-closed, (τ1, τ2)p-closed,

(τ1, τ2)β-closed). A subset A of a bitopological space (X, τ1, τ2) is said to be α(τ1, τ2)-open [77] if

A ⊆ τ1τ2-Int(τ1τ2-Cl(τ1τ2-Int(A))). The complement of an α(τ1, τ2)-open set is said to be α(τ1, τ2)-
closed. Let A be a subset of a bitopological space (X, τ1, τ2). A point x ∈ X is called a (τ1, τ2)θ-cluster
point [81] of A if τ1τ2-Cl(U)∩A , ∅ for every τ1τ2-open set U containing x. The set of all (τ1, τ2)θ-

cluster points of A is called the (τ1, τ2)θ-closure [81] of A and is denoted by (τ1, τ2)θ-Cl(A). A

subset A of a bitopological space (X, τ1, τ2) is said to be (τ1, τ2)θ-closed [81] if (τ1, τ2)θ-Cl(A) = A.

The complement of a (τ1, τ2)θ-closed set is said to be (τ1, τ2)θ-open. The union of all (τ1, τ2)θ-open

sets of X contained in A is called the (τ1, τ2)θ-interior [81] of A and is denoted by (τ1, τ2)θ-Int(A).

Lemma 2.1. [81] For a subset A of a bitopological space (X, τ1, τ2), the following properties hold:

(1) If A is τ1τ2-open in X, then τ1τ2-Cl(A) = (τ1, τ2)θ-Cl(A).
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(2) (τ1, τ2)θ-Cl(A) is τ1τ2-closed in X.

Let A be a subset of a bitopological space (X, τ1, τ2). A point x ∈ X is called a θ(τ1, τ2)s-cluster
point of A if (τ1, τ2)-sCl(U) ∩ A , ∅ for every (τ1, τ2)s-open set U containing x. The set of all

θ(τ1, τ2)s-cluster points of A is called the θ(τ1, τ2)s-closure of A and is denoted by θ(τ1, τ2)-sCl(A).

A subset A of a bitopological space (X, τ1, τ2) is said to be θ(τ1, τ2)s-closed if θ(τ1, τ2)-sCl(A) = A.

The complement of a θ(τ1, τ2)s-closed set is said to be θ(τ1, τ2)s-open. The union of all θ(τ1, τ2)s-

open sets of X contained in A is called theθ(τ1, τ2)s-interior of A and is denoted byθ(τ1, τ2)-sInt(A).

By a multifunction F : X→ Y, we mean a point-to-set correspondence from X into Y, and always

assume that F(x) , ∅ for all x ∈ X. For a multifunction F : X → Y, we shall denote the upper and

lower inverse of a set B of Y by F+(B) and F−(B), respectively, that is, F+(B) = {x ∈ X | F(x) ⊆ B}
and F−(B) = {x ∈ X | F(x)∩ B , ∅}.

3. Characterizations of upper and lower quasi θ(τ1, τ2)-continuous multifunctions

In this section, we investigate some characterizations of upper quasi θ(τ1, τ2)-continuous mul-

tifunctions and lower quasi θ(τ1, τ2)-continuous multifunctions.

Definition 3.1. [60] A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is said to be upper quasi θ(τ1, τ2)-
continuous if for each x ∈ X and each σ1σ2-open set V of Y containing F(x), there exists a (τ1, τ2)s-open
set U of X containing x such that F((τ1, τ2)-sCl(U)) ⊆ σ1σ2-Cl(V).

Lemma 3.1. [60] For a multifunction F : (X, τ1, τ2)→ (Y, σ1, σ2), the following properties are equivalent:

(1) F is upper quasi θ(τ1, τ2)-continuous;
(2) θ(τ1, τ2)-sCl(F−(σ1σ2-Int((σ1, σ2)θ-Cl(B)))) ⊆ F−((σ1, σ2)θ-Cl(B)) for every subset B of Y;
(3) θ(τ1, τ2)-sCl(F−(σ1σ2-Int(σ1σ2-Cl(V)))) ⊆ F−(σ1σ2-Cl(V)) for every σ1σ2-open set V of Y;
(4) θ(τ1, τ2)-sCl(F−(σ1σ2-Int(K))) ⊆ F−(K) for every (σ1, σ2)r-closed set K of Y;
(5) F+(V) ⊆ θ(τ1, τ2)-sInt(F+(σ1σ2-Cl(V))) for every σ1σ2-open set V of Y;
(6) θ(τ1, τ2)-sCl(F−(σ1σ2-Int(K))) ⊆ F−(K) for every σ1σ2-closed set K of Y;
(7) θ(τ1, τ2)-sCl(F−(V)) ⊆ F−(σ1σ2-Cl(V)) for every σ1σ2-open set V of Y.

For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), a multifunction ClF~ : (X, τ1, τ2) → (Y, σ1, σ2)

is defined in [26] as follows: ClF~(x) = σ1σ2-Cl(F(x)) for each x ∈ X.

Definition 3.2. [26] A subset A of a bitopological space (X, τ1, τ2) is said to be:

(1) τ1τ2-paracompact if every cover of A by τ1τ2-open sets of X is refined by a cover of A which consists
of τ1τ2-open sets of X and is τ1τ2-locally finite in X;

(2) τ1τ2-regular if for each x ∈ A and each τ1τ2-open set U of X containing x, there exists a τ1τ2-open
set V of X such that x ∈ V ⊆ τ1τ2-Cl(V) ⊆ U.

Lemma 3.2. [26] If F : (X, τ1, τ2) → (Y, σ1, σ2) is a multifunction such that F(x) is τ1τ2-regular and
τ1τ2-paracompact for each x ∈ X, then ClF+

~ (V) = F+(V) for each σ1σ2-open set V of Y.
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Lemma 3.3. [26] For a multifunction F : (X, τ1, τ2)→ (Y, σ1, σ2), ClF−~(V) = F−(V) for each σ1σ2-open
set V of Y.

Theorem 3.1. Let F : (X, τ1, τ2) → (Y, σ1, σ2) be a multifunction such that F(x) is σ1σ2-paracompact
and σ1σ2-regular for each x ∈ X. Then, the following properties are equivalent:

(1) F is upper quasi θ(τ1, τ2)-continuous;
(2) ClF~ is upper quasi θ(τ1, τ2)-continuous.

Proof. We put G = ClF~. Suppose that F is upper quasi θ(τ1, τ2)-continuous. It follows from

Lemmas 3.1, 3.2 and 3.3 that for every σ1σ2-open set V of Y,

G+(V) = F+(V) ⊆ θ(τ1, τ2)-sInt(F+(σ1σ2-Cl(V)))

= θ(τ1, τ2)-sInt(G+(σ1σ2-Cl(V))).

By Lemma 3.1, G is upper quasi θ(τ1, τ2)-continuous.

Conversely, suppose that G is upper quasi θ(τ1, τ2)-continuous. It follows from Lemmas 3.1,

3.2 and 3.3 that for every σ1σ2-open set V of Y,

F+(V) = G+(V) ⊆ θ(τ1, τ2)-sInt(G+(σ1σ2-Cl(V)))

= θ(τ1, τ2)-sInt(F+(σ1σ2-Cl(V))).

Thus by Lemma 3.1, F is upper quasi θ(τ1, τ2)-continuous. �

Definition 3.3. [60] A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is said to be lower quasi θ(τ1, τ2)-
continuous if for each x ∈ X and each σ1σ2-open set V of Y such that F(x) ∩ V , ∅, there exists a
(τ1, τ2)s-open set U of X containing x such that σ1σ2-Cl(V)∩ F(z) , ∅ for every z ∈ (τ1, τ2)-sCl(U).

Theorem 3.2. Let F : (X, τ1, τ2) → (Y, σ1, σ2) be a multifunction such that F(x) is σ1σ2-paracompact
and σ1σ2-regular for each x ∈ X. Then, the following properties are equivalent:

(1) F is lower quasi θ(τ1, τ2)-continuous;
(2) ClF~ is lower quasi θ(τ1, τ2)-continuous.

Proof. The proof is similar to that of Theorem 3.1 and is thus omitted. �

Definition 3.4. A bitopological space (X, τ1, τ2) is said to be τ1τ2-Urysohn if for each pair of distinct points
x and y in X, there exist τ1τ2-open sets U and V such that x ∈ U, y ∈ V and τ1τ2-Cl(U)∩ τ1τ2-Cl(V) = ∅.

Lemma 3.4. If A and B are disjoint τ1τ2-compact subsets of a τ1τ2-Urysohn space (X, τ1, τ2), then there
exist τ1τ2-open sets U and V of X such that A ⊆ U, B ⊆ V and τ1τ2-Cl(U)∩ τ1τ2-Cl(V) = ∅.

Definition 3.5. A bitopological space (X, τ1, τ2) is called (τ1, τ2)s-Hausdorff if for each pair of distinct
points x and y in X, there exist τ1τ2-open sets U and V such that x ∈ U, y ∈ V and U ∩V = ∅.

A subset A of a bitopological space (X, τ1, τ2) is called (τ1, τ2)s-regular if A is (τ1, τ2)s-open and

(τ1, τ2)s-closed.
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Lemma 3.5. Let (X, τ1, τ2) be a bitopological space and A ⊆ X. If A is a (τ1, τ2)s-regular set of X, then
(τ1, τ2)-sCl(A) is (τ1, τ2)s-regular.

Lemma 3.6. A bitopological space (X, τ1, τ2) is (τ1, τ2)s-Hausdorff if and only if for each pair of distinct
points x and y in X, there exist (τ1, τ2)s-regular sets U and V such that x ∈ U, y ∈ V and U ∩V = ∅.

A multifunction F : (X, τ1, τ2)→ (Y, σ1, σ2) is said to be injective if x , y implies F(x)∩ F(y) = ∅.

Theorem 3.3. If F : (X, τ1, τ2)→ (Y, σ1, σ2) is an upper quasi θ(τ1, τ2)-continuous injective multifunc-
tion into a σ1σ2-Urysohn space (Y, σ1, σ2) and F(x) is σ1σ2-compact for each x ∈ X, then (X, τ1, τ2) is
(τ1, τ2)s-Hausdorff.

Proof. For any distinct points x and y of X, we have F(x) ∩ F(y) = ∅, since F is injective. Since

F(x) is σ1σ2-compact for each x ∈ X and (Y, σ1, σ2) is σ1σ2-Urysohn, by Lemma 3.4, there exist

σ1σ2-open sets V and W such that F(x) ⊆ V, F(y) ⊆ W and σ1σ2-Cl(V) ∩ σ1σ2-Cl(W) = ∅. Since F
is upper quasi θ(τ1, τ2)-continuous, there exist (τ1, τ2)s-open sets U and G of X containing x and

y, respectively, such that F((τ1, τ2)-sCl(U)) ⊆ σ1σ2-Cl(V) and F((τ1, τ2)-sCl(G)) ⊆ σ1σ2-Cl(W).

Thus,

(τ1, τ2)-sCl(G)∩ (τ1, τ2)-sCl(U) = ∅

becauseσ1σ2-Cl(V)∩σ1σ2-Cl(W) = ∅. By Lemmas 3.5 and 3.6, (X, τ1, τ2) is (τ1, τ2)s-Hausdorff. �

Corollary 3.1. If (Y, σ1, σ2) is a σ1σ2-Urysohn space and f : (X, τ1, τ2)→ (Y, σ1, σ2) is a quasi θ(τ1, τ2)-
continuous injection, then (X, τ1, τ2) is (τ1, τ2)s-Hausdorff.

Definition 3.6. For a multifunction F : (X, τ1, τ2)→ (Y, σ1, σ2), the graph G(F) = {(x, F(x)) | x ∈ X} is
calledθ(σ1, σ2)s-closed if for each (x, y) ∈ (X×Y)−G(F), there exist a (τ1, τ2)s-open set U of X containing
x and a σ1σ2-open set V of Y containing y such that [(τ1, τ2)-sCl(U) × σ1σ2-Cl(V)]∩G(F) = ∅.

Lemma 3.7. A multifunction F : (X, τ1, τ2)→ (Y, σ1, σ2) has a θ(σ1, σ2)s-closed graph if and only if for
each (x, y) ∈ (X×Y)−G(F), there exist a (τ1, τ2)s-open set U of X containing x and a σ1σ2-open set V of
Y containing y such that F((τ1, τ2)-sCl(U))∩ σ1σ2-Cl(V) = ∅.

Theorem 3.4. If (Y, σ1, σ2) is a σ1σ2-Urysohn space and F : (X, τ1, τ2) → (Y, σ1, σ2) is an upper
quasi θ(τ1, τ2)-continuous multifunction such that F(x) is σ1σ2-compact for each x ∈ X, then G(F) is
θ(σ1, σ2)s-closed.

Proof. Let (x0, y0) ∈ (X × Y) − G(F). Then, y0 ∈ Y − F(x0). Since (Y, σ1, σ2) is a σ1σ2-Urysohn,

for each y ∈ F(x0), there exist σ1σ2-open sets V(y) and W(y) such that y ∈ V(y), y0 ∈ W(y) and

σ1σ2-Cl(V(y)) ∩ σ1σ2-Cl(W(y)) = ∅. The family {V(y) | y ∈ F(x0)} is a σ1σ2-open cover of F(x0)

and there exist a finite number of points, say, y1, y2, ..., yn in F(x0) such that F(x0) ⊆
n
∪

i=1
V(yi).

Put V =
n
∪

i=1
V(yi) and W =

n
∩

i=1
W(yi). Then, V and W are σ1σ2-open sets, y0 ∈ W, F(x0) ⊆ V

and σ1σ2-Cl(V) ∩ σ1σ2-Cl(W) = ∅. Since F is upper quasi θ(τ1, τ2)-continuous, there exists a
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(τ1, τ2)s-open set U of X containing x0 such that F((τ1, τ2)-sCl(U)) ⊆ σ1σ2-Cl(V). Thus, we have

F((τ1, τ2)-sCl(U))∩ σ1σ2-Cl(W) = ∅ and by Lemma 3.7, G(F) is θ(σ1, σ2)s-closed. �

Definition 3.7. For a function f : (X, τ1, τ2)→ (Y, σ1, σ2), the graph G( f ) = {(x, f (x)) | x ∈ X} is called
θ(σ1, σ2)s-closed if for each (x, y) ∈ (X × Y) −G( f ), there exist a (τ1, τ2)s-open set U of X containing x
and a σ1σ2-open set V of Y containing y such that [(τ1, τ2)-sCl(U) × σ1σ2-Cl(V)]∩G( f ) = ∅.

Lemma 3.8. A function f : (X, τ1, τ2) → (Y, σ1, σ2) has a θ(σ1, σ2)s-closed graph if and only if for each
(x, y) ∈ (X × Y) −G( f ), there exist a (τ1, τ2)s-open set U of X containing x and a σ1σ2-open set V of Y
containing y such that f ((τ1, τ2)-sCl(U))∩ σ1σ2-Cl(V) = ∅.

Corollary 3.2. If (Y, σ1, σ2) is a σ1σ2-Urysohn space and f : (X, τ1, τ2)→ (Y, σ1, σ2) is a quasi θ(τ1, τ2)-
continuous function, then G( f ) is θ(σ1, σ2)s-closed in X.

Definition 3.8. A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is said to be upper θ(τ1, τ2)-continuous
if for each x ∈ X and each σ1σ2-open set V of Y such that F(x) ⊆ V, there exists a τ1τ2-open set U of X
containing x such that F(τ1τ2-Cl(U)) ⊆ σ1σ2-Cl(V).

Definition 3.9. A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is said to be lower θ(τ1, τ2)-continuous if
for each x ∈ X and each σ1σ2-open set V of Y such that F(x) ∩V , ∅, there exists a τ1τ2-open set U of X
containing x such that σ1σ2-Cl(V)∩ F(z) , ∅ for every z ∈ τ1τ2-Cl(U).

Theorem 3.5. Let G, H : (X, τ1, τ2) → (Y, σ1, σ2) be multifunctions. Assume that the following four
conditions:

(1) (Y, σ1, σ2) is a σ1σ2-Urysohn space,
(2) G is upper θ(τ1, τ2)-continuous and H is upper quasi θ(τ1, τ2)-continuous,
(3) G(x) and H(x) are σ1σ2-compact for each x ∈ X, and
(4) G(x)∩H(x) , ∅ for each x ∈ X

are satisfied. Then a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), defined by F(x) = G(x) ∩H(x) for each
x ∈ X, is upper quasi θ(τ1, τ2)-continuous.

Proof. Let x ∈ X and V be any σ1σ2-open set of Y such that F(x) ⊆ V. Then, G(x) − V and

H(x) − V are disjoint σ1σ2-compact sets. By Lemma 3.4, there exist σ1σ2-open sets W and W′

such that G(x) − V ⊆ W, H(x) − V ⊆ W′ and σ1σ2-Cl(W) ∩ σ1σ2-Cl(W′) = ∅. Since G is upper

θ(τ1, τ2)-continuous, there exists a τ1τ2-open set U′ of X containing x such that F(τ1τ2-Cl(U′)) ⊆
σ1σ2-Cl(W ∪V). Since H is upper quasi θ(τ1, τ2)-continuous, there exists a (τ1, τ2)s-open set U′′

of X containing x such that F((τ1, τ2)-sCl(U′′)) ⊆ σ1σ2-Cl(W′ ∪V). Let U = U′ ∩U′′. Then, U is a

(τ1, τ2)s-open set containing x. If x0 ∈ (τ1, τ2)-sCl(U), then x0 ∈ τ1τ2-Cl(U′) ∩ (τ1, τ2)-sCl(U′′). If

y ∈ F(x0) for each x0 ∈ (τ1, τ2)-sCl(U), then

y ∈ σ1σ2-Cl(W ∪V)∩ σ1σ2-Cl(W′′ ∪V) = [σ1σ2-Cl(W′)∩ σ1σ2-Cl(W′′)]∪ σ1σ2-Cl(V).

Since σ1σ2-Cl(W′) ∩ σ1σ2-Cl(W′′) = ∅, we have y ∈ σ1σ2-Cl(V) and hence F((τ1, τ2)-sCl(U)) ⊆

σ1σ2-Cl(V). Thus, F is quasi θ(τ1, τ2)-continuous. �
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Definition 3.10. [70] A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is said to be upper weakly quasi
(τ1, τ2)-continuous at a point x ∈ X if for each σ1σ2-open set V of Y such that F(x) ⊆ V and each τ1τ2-open
set U of X containing x, there exists a nonempty τ1τ2-open set G such that G ⊆ U, F(G) ⊆ σ1σ2-Cl(V).
A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is said to be upper weakly quasi (τ1, τ2)-continuous if F is
upper weakly quasi (τ1, τ2)-continuous at each point of X.

Lemma 3.9. [70] For a multifunction F : (X, τ1, τ2)→ (Y, σ1, σ2), the following properties are equivalent:

(1) F is upper weakly quasi (τ1, τ2)-continuous;
(2) for each x ∈ X and each σ1σ2-open set V of Y such that F(x) ⊆ V, there exists a (τ1, τ2)s-open set

U of X containing x such that F(U) ⊆ σ1σ2-Cl(V);
(3) τ1τ2-Int(τ1τ2-Cl(F−(σ1σ2-Int(K)))) ⊆ F−(K) for every σ1σ2-closed set K of Y;
(4) F+(V) ⊆ (τ1, τ2)-sInt(F+(σ1σ2-Cl(V))) for every σ1σ2-open set V of Y;
(5) (τ1, τ2)-sCl(F−(V)) ⊆ F−(σ1σ2-Cl(V)) for every σ1σ2-open set V of Y.

Definition 3.11. [70] A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is said to be lower weakly quasi
(τ1, τ2)-continuous at a point x ∈ X if for each σ1σ2-open set V of Y such that F(x) ∩ V , ∅ and
each τ1τ2-open set U of X containing x, there exists a nonempty τ1τ2-open set G such that G ⊆ U,
σ1σ2-Cl(V) ∩ F(z) , ∅ for every z ∈ G. A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is said to be lower
weakly quasi (τ1, τ2)-continuous if F is lower weakly quasi (τ1, τ2)-continuous at each point of X.

Lemma 3.10. [70] For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), the following properties are equiva-
lent:

(1) F is lower weakly quasi (τ1, τ2)-continuous;
(2) for each x ∈ X and each σ1σ2-open set V of Y such that F(x) ∩V , ∅, there exists a (τ1, τ2)s-open

set U of X containing x such that U ⊆ F−(σ1σ2-Cl(V));
(3) τ1τ2-Int(τ1τ2-Cl(F+(σ1σ2-Int(K)))) ⊆ F+(K) for every σ1σ2-closed set K of Y;
(4) F−(V) ⊆ (τ1, τ2)-sInt(F−(σ1σ2-Cl(V))) for every σ1σ2-open set V of Y;
(5) (τ1, τ2)-sCl(F+(V)) ⊆ F+(σ1σ2-Cl(V)) for every σ1σ2-open set V of Y.

Definition 3.12. [29] A multifunction F : (X, τ1, τ2)→ (Y, σ1, σ2) is called upper almost quasi (τ1, τ2)-
continuous at a point x ∈ X if for each σ1σ2-open set V of Y such that F(x) ⊆ V and each τ1τ2-open set U
of X containing x, there exists a nonempty τ1τ2-open set G such that G ⊆ U, F(G) ⊆ (σ1, σ2)-sCl(V). A
multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is called upper weakly quasi (τ1, τ2)-continuous if F is upper
almost quasi (τ1, τ2)-continuous at each point of X.

Lemma 3.11. [29] For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), the following properties are equiva-
lent:

(1) F is upper almost quasi (τ1, τ2)-continuous;
(2) for each x ∈ X and every σ1σ2-open set V of Y such that F(x) ⊆ V, there exists a (τ1, τ2)s-open set

U of X containing x such that F(U) ⊆ (σ1, σ2)-sCl(V);
(3) F+(V) is (τ1, τ2)s-open in X for every (σ1, σ2)r-open set V of Y;
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(4) F+(V) ⊆ (τ1, τ2)-sInt(F+((σ1, σ2)-sCl(V))) for every σ1σ2-open set V of Y;
(5) (τ1, τ2)-sCl(F−(σ1σ2-Cl(σ1σ2-Int(σ1σ2-Cl(B))))) ⊆ F−(σ1σ2-Cl(B)) for every subset B of Y;
(6) F+(V) ⊆ τ1τ2-Cl(τ1τ2-Int(F+((σ1, σ2)-sCl(V)))) for every σ1σ2-open set V of Y.

Definition 3.13. [29] A multifunction F : (X, τ1, τ2)→ (Y, σ1, σ2) is called lower almost quasi (τ1, τ2)-
continuous at a point x ∈ X if for each σ1σ2-open set V of Y such that F(x)∩V , ∅ and each τ1τ2-open set U
of X containing x, there exists a nonempty τ1τ2-open set G such that G ⊆ U, (σ1, σ2)-sCl(V)∩F(z) , ∅ for
every z ∈ G. A multifunction F : (X, τ1, τ2)→ (Y, σ1, σ2) is called lower almost quasi (τ1, τ2)-continuous
if F is lower weakly quasi (τ1, τ2)-continuous at each point of X.

Lemma 3.12. [29] For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), the following properties are equiva-
lent:

(1) F is lower almost quasi (τ1, τ2)-continuous;
(2) for each x ∈ X and every σ1σ2-open set V of Y such that F(x)∩V , ∅, there exists a (τ1, τ2)s-open

set U of X containing x such that U ⊆ F−((σ1, σ2)-sCl(V));
(3) F−(V) is (τ1, τ2)s-open in X for every (σ1, σ2)r-open set V of Y;
(4) F−(V) ⊆ (τ1, τ2)-sInt(F−((σ1, σ2)-sCl(V))) for every σ1σ2-open set V of Y;
(5) (τ1, τ2)-sCl(F+(σ1σ2-Cl(σ1σ2-Int(σ1σ2-Cl(B))))) ⊆ F+(σ1σ2-Cl(B)) for every subset B of Y;
(6) F−(V) ⊆ τ1τ2-Cl(τ1τ2-Int(F−((σ1, σ2)-sCl(V)))) for every σ1σ2-open set V of Y.

Theorem 3.6. If a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is upper weakly quasi (τ1, τ2)-continuous
and lower almost quasi (τ1, τ2)-continuous, then F is upper quasi θ(τ1, τ2)-continuous.

Proof. Let x ∈ X and V be any σ1σ2-open set of Y containing F(x). Since F is upper weakly

quasi (τ1, τ2)-continuous, by Lemma 3.9 there exists a (τ1, τ2)s-open set U of X containing x such

that F(U) ⊆ σ1σ2-Cl(V) and hence U ⊆ F+(σ1σ2-Cl(V)). Since F is lower almost quasi (τ1, τ2)-

continuous and σ1σ2-Cl(V) is a (σ1, σ2)r-closed set of Y, by Lemma 3.12 we have F+(σ1σ2-Cl(V))

is (τ1, τ2)s-closed in X. Thus,

(τ1, τ2)-sCl(U) ⊆ F+(σ1σ2-Cl(V))

and hence F((τ1, τ2)-sCl(U)) ⊆ σ1σ2-Cl(V). This shows that F is upper quasi θ(τ1, τ2)-continuous.

�

Theorem 3.7. If a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is lower weakly quasi (τ1, τ2)-continuous
and upper almost quasi (τ1, τ2)-continuous, then F is lower quasi θ(τ1, τ2)-continuous.

Proof. Let x ∈ X and V be any σ1σ2-open set of Y such that F(x) ∩ V , ∅. Since F is lower

weakly quasi (τ1, τ2)-continuous, by Lemma 3.10 there exists a (τ1, τ2)s-open set U of X con-

taining x such that U ⊆ F−(σ1σ2-Cl(V)). Since F is upper almost quasi (τ1, τ2)-continuous and

σ1σ2-Cl(V) is a (σ1, σ2)r-closed set of Y, by Lemma 3.11 F−(σ1σ2-Cl(V)) is (τ1, τ2)s-closed in X
and hence (τ1, τ2)-sCl(U) ⊆ F−(σ1σ2-Cl(V)). This implies that σ1σ2-Cl(V) ∩ F(z) , ∅ for every

z ∈ (τ1, τ2)-sCl(U). Thus, F is lower quasi θ(τ1, τ2)-continuous. �
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Definition 3.14. [74] A bitopological space (X, τ1, τ2) is said to be (τ1, τ2)s-regular if for each (τ1, τ2)s-
closed set F of X and each x < F, there exist disjoint (τ1, τ2)s-open sets V and V such that x ∈ U and
F ⊆ V.

Lemma 3.13. [74] A bitopological space (X, τ1, τ2) is (τ1, τ2)s-regular if and only if for each x ∈ X and each
(τ1, τ2)s-open set U containing x, there exists a (τ1, τ2)s-open set V such that x ∈ V ⊆ (τ1, τ2)-sCl(V) ⊆ U.

Theorem 3.8. If a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is upper weakly quasi (τ1, τ2)-continuous
and (X, τ1, τ2) is (τ1, τ2)s-regular, then F is upper quasi θ(τ1, τ2)-continuous.

Proof. Let x ∈ X and V be any σ1σ2-open set of Y containing F(x). Since F is upper weakly

quasi (τ1, τ2)-continuous, by Lemma 3.9, there exists a (τ1, τ2)s-open set U of X containing x
such that F(U) ⊆ σ1σ2-Cl(V). By Lemma 3.13, there exists a (τ1, τ2)s-open set W such that

x ∈ W ⊆ (τ1, τ2)-sCl(W) ⊆ U. Thus, F((τ1, τ2)-sCl(W) ⊆ σ1σ2-Cl(V) and hence F is upper quasi

θ(τ1, τ2)-continuous. �

Theorem 3.9. If a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is lower weakly quasi (τ1, τ2)-continuous
and (X, τ1, τ2) is (τ1, τ2)s-regular, then F is lower quasi θ(τ1, τ2)-continuous.

Proof. The proof is similar to that of Theorem 3.8. �

Recall that a collection U of subsets of a bitopological space (X, τ1, τ2) is said to be τ1τ2-locally
finite [26] if every x ∈ X has a τ1τ2-neighbourhood which intersects only finitely many elements of

U .

Definition 3.15. A subset A of a bitopological space (X, τ1, τ2) is called τ1τ2-almost regular if for each
x ∈ A and each (τ1, τ2)r-open set U of X containing x, there exists a τ1τ2-open set V such that x ∈ V ⊆
τ1τ2-Cl(V) ⊆ U.

Definition 3.16. A subset A of a bitopological space (X, τ1, τ2) is called τ1τ2-nearly paracompact if every
cover of A by (τ1, τ2)r-open sets of X has a τ1τ2-open τ1τ2-locally finite refinement which covers A.

Lemma 3.14. Let (X, τ1, τ2) be a bitopological space. If A is a τ1τ2-almost regular τ1τ2-nearly paracompact
set of X and U is a (τ1, τ2)r-open set such that A ⊆ U, then there exists a τ1τ2-open set V such that
A ⊆ V ⊆ τ1τ2-Cl(V) ⊆ U.

Theorem 3.10. If a multifunction F : (X, τ1, τ2)→ (Y, σ1, σ2) is upper weakly quasi (τ1, τ2)-continuous
and F(x) is τ1τ2-almost regular τ1τ2-nearly paracompact in Y for each x ∈ X, then F is upper almost quasi
(τ1, τ2)-continuous.

Proof. Let V be any (σ1, σ2)r-open set of Y and F(x) ⊆ V. Since F(x) is τ1τ2-almost regular τ1τ2-

nearly paracompact, by Lemma 3.14 there exists a σ1σ2-open set W of Y such that F(x) ⊆ W ⊆

σ1σ2-Cl(W) ⊆ V. Thus, x ∈ U ⊆ F+(V) and hence F+(V) is (τ1τ2)s-open in X. It follows from

Lemma 3.11 that F is upper almost quasi (τ1, τ2)-continuous. �
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Definition 3.17. A bitopological space (X, τ1, τ2) is said to be S -(τ1, τ2)-closed if every (τ1, τ2)s-open
cover {Uγ | γ ∈ Γ}, there exists a finite subset Γ0 of Γ such that X = ∪{τ1τ2-Cl(Uγ) | γ ∈ Γ0}.

Theorem 3.11. Let F : (X, τ1, τ2) → (Y, σ1, σ2) be a surjective multifunction and F(x) is σ1σ2-compact
for each x ∈ X. If F is upper weakly quasi (τ1, τ2)-continuous and lower almost quasi (τ1, τ2)-continuous
and (X, τ1, τ2) is S -(τ1, τ2)-closed, then (Y, σ1, σ2) is quasi (σ1, σ2)-H -closed.

Proof. Let {Vγ | γ ∈ Γ} be any σ1σ2-open cover of Y. For each x ∈ X, F(x) is σ1σ2-compact and there

exists a finite subset Γ(x) of Γ such that F(x) ⊆ ∪{Vγ | γ ∈ Γ(x)}. Now, put

V(x) = ∪{Vγ | γ ∈ Γ(x)}.

Then, V(x) is σ1σ2-open in Y and F(x) ⊆ V(x). It follows from Theorem 3.6 that F is upper quasi

θ(τ1, τ2)-continuous. By Lemma 3.1, x ∈ F+(V(x)) ⊆ θ(τ1, τ2)-sInt(F+(σ1σ2-Cl(V(x)))). Since

θ(τ1, τ2)-sInt(F+(σ1σ2-Cl(V(x))))

is (τ1, τ2)s-open in X, we have {θ(τ1, τ2)-sInt(F+(σ1σ2-Cl(V(x))) | x ∈ X} is a (τ1, τ2)s-open cover

of X. Since (X, τ1, τ2) is S -(τ1, τ2)-closed, there exists a finite number of points, say, x1, x2, ..., xn in

X such that

X =
n
∪

i=1
(θ(τ1, τ2)-sInt(F+(σ1σ2-Cl(V(xi)))))

=
n
∪

i=1
τ1τ2-Cl(F+(σ1σ2-Cl(V(xi))))

= τ1τ2-Cl(
n
∪

i=1
F+(σ1σ2-Cl(V(xi)))).

Thus,

X = (τ1, τ2)-sCl(
n
∪

i=1
F+(σ1σ2-Cl(V(xi)))) ⊆ (τ1, τ2)-sCl(F+(

n
∪

i=1
σ1σ2-Cl(V(xi))))

= (τ1, τ2)-sCl(F+(
n
∪

i=1
V(xi))).

Since σ1σ2-Cl(
n
∪

i=1
V(xi)) is (σ1, σ2)r-closed in Y, by Lemma 3.12 F+(σ1σ2-Cl(

n
∪

i=1
V(xi))) is (τ1, τ2)s-

closed in X. Therefore, we have

Y = F(X) = F(F+(σ1σ2-Cl(
n
∪

i=1
V(xi))))

⊆ σ1σ2-Cl(
n
∪

i=1
V(xi))

=
n
∪

i=1
σ1σ2-Cl(V(xi))

=
n
∪

i=1
∪γ∈Γ(xi) σ1σ2-Cl(Vγ).

This shows that (Y, σ1, σ2) is quasi (σ1, σ2)-H -closed. �
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