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Abstract. In the world of economic evolution, world economics depends on the manufacturing industries for their source

of income. Besides this, all manufacturing industries aim to achieve maximum profit with minimum cost. An optimal

three-stage economic production quantity model with time-dependent deterioration and trapezoidal and triangular

demands is described in this paper. Shortages are not allowed; all cost values depend on time, and demand depends

on trapezoidal and triangular demand. However, trapezoidal demand is described mainly in this paper. Practically,

many products like automobiles, electronic devices, vegetables, biomedicines, fruits, fancy products, dairy products,

etc. exhibit trapezoidal demand. A direct inverse relationship between the trapezoidal demand and production rate

describes the demand rate. This study intends to delight consumers and reduce total costs. Our conclusions are

illustrated using numerical examples, extensive prediction with the help of MATLAB software R2021b, and sensitivity

analysis for all parameters.

1. Introduction

In our daily lives, deteriorating items are prevalent issues. Recently, many researchers have

investigated inventory models for decaying objects. Wee [35] defined degrading items as those that

over time become damaged, evaporative, invalid, expired, decayed, devalued, and so on. Based on
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the explanation deteriorating items can be categorized into two different groups. Vegetables, meat,

fruit, flowers, medicines, and other such items fall into the first category of goods that deteriorate,

expire, become damaged, or evaporate over time. The second category deals with the introduction

of new products, such as mobile phones, computer chips, fashion products, and seasonal goods,

among other such items. Whitin [36] was the first to investigate the issue of degrading inventory

products. He focused on the deterioration of fancy products at the end of the storage period.

Finally, Ghare and Schrader [10] found that the use of degrading goods was strongly related to

a negative exponential function of time in their studies. Inventory models for degrading objects

were explored in various areas by many researchers, including Cheng et al. [6], Hung [14], Cheng

and Wang [5], and Deng et al. [9].

In the worldwide commercial market, demand has been demonstrated to be one of the most

important considerations when making decisions about inventory and production. Recently,

it has been classified into deterministic demand and probabilistic demand. There have been

studies on many different kinds of consumption tendency forms, such as time-dependent demand

(Resh et al. [29]; Hennery, [12]; Mishra et al. [19], Akhilesh Kumar et al. [3]), constant demand

(Padmanabhan [22]; Chuang & Lin, [8], price-stock dependent demand (Wee & Law [34]; Abad [1]

and [2], Pervin et al. [23], Pervin et al. [26]), ramp type demand (Hill [13], Mandal [17], Chakraborty

et al. [4]), stochastic demand (Mohammedi et al. [20], Roy et al. [31]), quadratic demand (Pervin

et al. [24]), composite demand (Pervin et al. [25]), variable demand (Roy et al. [30]), exponential

demand (Preethi Jawla and Singh [27], Rajendra Kumar [28]).

Among them, trapezoidal demand is a specific type of time-dependent demand. This study

proposed a three-stage production inventory model to minimize total cost and deterioration for

deteriorating items with trapezoidal demand. The demand function of the trapezoidal type has

three stages: initial stage, the product of demand is increased, second stage the product of demand

is constant and third stage the product of demand is declined. For example, fruits, pharmaceutical

items, vegetables, electronic goods, seafood products, etc., frequently exhibit this demand pattern.

Particularly, cool beverages, and ice creams that generally used in all weather conditions, but sell

are more during the summer season. But its sales are sluggish during the cold and rainy season.

Cheng and Wang [5] initially proposed trapezoidal demand in the modeling of an inventory

control problem. Using partially backlogged shortages as well as the impact of degradation,

Cheng et al. [6] enhanced the model of Cheng and Wang [5]. Later on, Lin [15] constructed an

inventory model with the trapezoidal demand pattern. Singh and Pattanayak [32], and Chuang et

al. [7] subsequently examined inventory models considered the trapezoidal demand for decaying

products.

Mishra [18] established an inventory model for degrading items considering preservation tech-

nology for deterioration and trapezoidal demand. Wu et al. [37] established two-level inventory

models that included a trapezoidal demand, fully backlogged, and time-dependent degradation.

Vandana and Srivastava [33] recently established an inventory model for degrading items with an
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extensive backlog and trapezoidal demand under inflationary conditions. Xu et al. [39] examined

an inventory model for nonperishable items with a backlog partially and trapezoidal demand.

Kumar [15] investigated a fuzzy inventory model of trapezoidal demand and time-dependent

holding costs with shortages. Mandal et al. [17] established an inventory model to prevent tech-

nology from deterioration and trapezoidal demand under shortages. The ordering model and

joint pricing with decaying items and partially backlogged shortfalls under trapezoidal demand

were explored by Xu et al. [38].

This article is organized as follows: In section 2, explains the motivation and contribution of the

proposed work. Section 3, describes the research gap in the proposed model. Section 4, explains

the problem description of the proposed model. In section 5, notations and assumptions, which are

used throughout this article are described. In section 6, mathematical modeling and its solution to

minimize the total inventory cost is established. In sections 7 and 8, computational algorithm and

procedure for the proposed model. In section 9, numerical examples, section 10 derives sensitivity

analysis, graphical representation, and their observations for models are provided. Section 11,

explains the overall findings of the work. In section 12, the conclusion, real-life applications, and

future research are discussed. In the Appendix, derived hessian matrix of the proposed model.

2. Motivation and Contribution

The motivation of this paper is to maximize profits for manufacturers by implementing an

optimal three-stage EPQ model. This model considers time-dependent deterioration and both

triangular and trapezoidal demand patterns. While triangular demand is considered, the main

focus is on trapezoidal demand to achieve profitable growth and stable economic progress during

periods of fluctuation.

This paper presents a three-stage EPQ inventory model that incorporates time-dependent dete-

rioration and both triangular and trapezoidal demand. The model aims to reduce the deteriorating

rate and associated costs, as well as the holding cost, optimum cost, production period, and pro-

duction cost. By minimizing these factors, the overall total cost of production can be reduced.

Additionally, this model not only reduces costs but also decreases production time, resulting in

a more efficient and cost-effective process. In comparison, other inventory models that are based

on constant demand, price, and time-dependent factors often have high initial costs and minimal

production outcomes and gains.
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3. Literature Review

Table 1. Related work of the proposed model
Author Name Production Level Demand Type Backlog Deterioration

Akhilesh Kumar et al. [3] - Time-dependent No backlog -

Mandal et al. [17] Single level Ramp-type Complete backlog Constant

Xu et al. [39] Single level Trapezoidal Partial backlog Constant

Xu et al. [38] Single level Trapezoidal Partial backlog Constant

Chakraborty et al. [4] Two level Ramp-type Partial backlog Weibull distribution

Padmanabhan [22] Two level Constant Partial backlog -

Wee [35] Single level Constant Partial backlog Constant

Preethi et al. [27] Single level Exponential Partial backlog -

Wu et al. [37] Single level Trapezoidal Complete backlog Time-dependent

Hung [14] Two level Ramp-type Partial backlog Weibull distribution

Chuang et al. [7] Single level Constant With & Without backlog Constant

Lin [16] Two level Trapezoidal Complete backlog Constant

Chuang et al. [8] Two level Ramp-type Complete backlog Constant

Cheng et al. [6] Single level Trapezoidal Complete backlog Constant

Cheng et al. [5] Two level Trapezoidal Partial backlog Time-dependent

Pervin et al. [23] Two level Stock dependent Partial backlog Constant

Pervin et al. [24] - Quadratic Complete backlog Constant

Pervin et al. [26] Single level Price and stock dependent Partial backlog Constant

Pervin et al. [25] Single level Composite No backlog Weibull-distribution

Rajendra Kumar et al. [28] - Exponential Partial backlog -

Kumar [15] - Time-dependent Partial backlog Constant

Mandal et al. [17] Single level Trapezoidal Complete backlog Constant

Mishra [18] - Trapezoidal No backlog Constant

Mishra et al. [19] Single level Time-dependent Partial backlog Constant

Vandana et al. [33] Two level Trapezoidal Complete backlog Constant

Proposed Model Three level Trapezoidal No backlog Time-dependent

Based on Table 1, most of the researchers constructed models of production inventory that

included time-dependent, price-dependent, and constant demand. In this proposed model, a

three-stage production inventory model with trapezoidal demand, production cost, deteriorating

cost, and holding cost values depending on time has developed.

This paper intends to establish a deterministic production inventory model with the most crucial

decision parameter being the demand for trapezoidal type. This model intends to minimize

total cost and reduce deterioration rate and production period time for a three-stage production
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inventory system that follows trapezoidal demand. Also, a finite planning horizon and the

production rate are inversely proportional to the demand rate.

4. Problem Description

Figure 1. Description of the proposed model

Figure 1, explains the impact of COVID-19, people have volunteered to get vaccinated to prevent

the spread of the disease and protect themselves. However, due to the severity of COVID-19, there

was demand for vaccines was very high. After that, the people were not interested in coming

forward for preventive injections because of the rumors spread about those drugs. So the demand

for those drugs also remained steady but not decreased. Later, as the virulence of corona decreased,

the need for vaccinations also decreased. When the second wave of COVID is even more intense

than before, the need for vaccinations starts to rise again for preventive measures. Then, as the

severity of the coronavirus decreased all the people got vaccinated. So the demand for preventive

medicine also started to decrease. In the pandemic situation, the demand for preventive medicines

like Covaxin and Covishield was very high. During that time even though the people eagerly came

forward to get vaccinated in large numbers, the government found it difficult to provide enough

medicines to the people and suffered a lot. For this insufficiency, some strikes also happened at

that time. If we used trapezoidal demand in such a difficult crisis, that critical situation can be

avoided. A good solution can be reached by applying this trapezoidal demand method to not

cause this type of crisis in the future.
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5. Notations and Assumptions

5.1. Notations.

• Consider maximum inventory levels are Q1, Q2 and Q3 at time t1, t2 and t3.

• Cp is the production cost of an inventory management system.

• Ch is the cost of unit-level holding.

• Cd is the depreciation cost per unit.

• µ1 and µ2 is the trapezoidal time period per unit.

• δ1 and δ2 is the trapezoidal demand parameter.

• θ is the deterioration rate per unit.

• T is the total production period.

• Co is the ordering cost per unit time.

5.2. Assumptions.

• Inventory models deal with a single item. The replenishment rate is countable and the lead

time is negligible. Demand directly affects the rate of production. Planning horizons can

be as long as you like.

• The function I(t) represents a stock level at any point in time between [0, T].
• In an inventory system considered to be no backlog.

• The demand is appraised to be trapezoidal type, say D(t), where

D(t) =


δ1 + δ2t; 0 ≤ t ≤ µ1

δ1 + δ2µ1; µ1 ≤ t ≤ µ2

δ1 − δ2t; µ2 ≤ t ≤ T.

where δ1 and δ2 are scaling variables for demand rate. During [0,µ1] demand increases

concerning time, then it stabilizes during [µ1,µ2], and thereafter it decreases as t increases

during [µ2, T].
• There must be no variation in the rate of degradation.

• Inventory system is pretended to be a manufacturing inventory system, with an initial stock

level is zero at time t = 0. The manufacturing process begins at time t = 0 and continues

until time t = t1. The stock level reaches its first maximum say Q1 at time t = t1. Similarly,

at time t = t2 and t = t3 the stock level attains its second and third maximum levels say, Q2

and Q3.

6. MathematicalModel with Solution

Model: 0 ≤ t1 ≤ µ1 ≤ µ2 ≤ t2 ≤ t3 ≤ T
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Figure 2. Inventory system of the proposed model.

Figure 2, shows how the inventory level has changed over time. Then t1, t2, t3 and T are the

successive periods from the start to the end of production respectively. Among these, µ1 and µ2

are trapezoidal period parameters and the interval time between µ1 and µ2 is referred to as the

period when trapezoidal demand is observed. At time t = 0, the first manufacturing setup has

no inventory. The stock level rises during time t1 as a result of production inferior demand and

diminution until the extremum stock level is attained at time t = t1. During the interval (0, t1)

production and demand increase at the rate of P −D. During the interval (t1, t2) production and

demand rises with respect to ”x” time of P−D. At time t2 and t3, demand and production increase

at the rate of ”y” time of P −D respectively, where x and y are positive constants. Therefore, the

maximum inventory level in t2 and t3 is equal to x(P −D)t2 and y(P −D)t3 respectively. During

the period t1 to t2, we apply the trapezoidal demand as a result of production less cost.

From Figure 2, during time (0, T) inventory levels are governed by the following differential

equations,

dI(t)
dt

+ θI(t) = (γ− 1)(δ1 + δ2t); 0 ≤ t ≤ t1 (6.1)

dI(t)
dt

+ θI(t) = x(γ− 1)(δ1 + δ2t); t1 ≤ t ≤ µ1 (6.2)

dI(t)
dt

+ θI(t) = x(γ− 1)(δ1 + δ2µ1); µ1 ≤ t ≤ µ2 (6.3)

dI(t)
dt

+ θI(t) = x(γ− 1)(δ1 − δ2t); µ2 ≤ t ≤ t2 (6.4)

dI(t)
dt

+ θI(t) = y(γ− 1)(δ1 − δ2t); t2 ≤ t ≤ t3 (6.5)

dI(t)
dt

+ θI(t) = (−δ1 + δ2t); t3 ≤ t ≤ T. (6.6)
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The first-order differential equations can be solved by using initial and boundary conditions

are, I(t) = 0 at t = 0, I(t) = 0 at t = T and due to continuities at t = t1, t = µ1, t = µ2, and t = t2

to get the inventory levels of the above equations. The following equations are given by,

I(t) =
(γ− 1)(θδ1 + θδ2t− δ2 + e−θt[−θδ1 + δ2])

θ2 , (6.7)

I(t) =
x(γ− 1)(θδ1 + θδ2t− δ2)

θ2 , (6.8)

I(t) =
(γ− 1)((1 + x)(δ1 + δ2µ1))

θ
, (6.9)

I(t) =
x(γ− 1)(θδ1 − θδ2t + δ2)

θ2 , (6.10)

I(t) =
y(γ− 1)(θδ1 − θδ2t + δ2)

θ2 , (6.11)

I(t) =
−θδ1 + θδ2t− δ2 + eθ(T−t)[θδ1 − θδ2T + δ2]

θ2 . (6.12)

6.1. Maximum Inventory. The maximum inventory levels at t = t1, t = t2 and t = t3, are

deliberate as follows:

I(t1) = Q1 =
(γ− 1)(θδ1 + θδ2t1 − δ2 + e−θt1 [−θδ1 + δ2])

θ2 , (6.13)

I(t2) = Q2 =
x(γ− 1)(θδ1 − θδ2t2 + δ2)

θ2 , (6.14)

I(t3) = Q3 =
y(γ− 1)(θδ1 − θδ2t3 + δ2)

θ2 . (6.15)

6.2. Total Cost. It is associated with the Cost of Production (PC), Cost of Holding (HC), Cost of

Deterioration (DC), and Cost of Ordering (OC). Therefore,

TC= PC+OC+HC+DC. (6.16)

where,

PC =
Cp

2


∫ t1

0 (γ− 1)(δ1 + δ2t)dt +
∫ µ1

t1
x(γ− 1)(δ1 + δ2t)dt

+
∫ µ2

µ1
x(γ− 1)(δ1 + δ2µ1)dt +

∫ t2

µ2
x(γ− 1)(δ1 − δ2t)dt

+
∫ t3

t2
y(γ− 1)(δ1 − δ2t)dt +

∫ T
t3
(−δ1 + δ2t)dt

,

=
Cp

2

 (γ− 1)

 xδ2µ2
2 + 2xδ2µ1µ2 − xδ2µ2

1 + ((1− x)(2δ1t1 + δ2t2
1))

+((x− y)(2δ1t2 − δ2t2
2)) + y(2δ1t3 − δ2t2

3)


+(T(−2δ1 + δ2T) + t3(2δ1 − δ2t3))

 . (6.17)

OC =
C0

T
. (6.18)
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HC = Ch
T


∫ t1

0 (λ1 + λ2t)I (t) dt +
∫ µ1

t1
(λ1 + λ2t)I (t) dt +

∫ µ2

µ1
(λ1 + λ2t)I (t) dt

+
∫ t2

µ2
(λ1 + λ2t)I (t) dt +

∫ t3

t2
(λ1 + λ2t)I (t) dt +

∫ T
t3
(λ1 + λ2t)I (t) dt

 ,

=
Ch

T



(γ− 1)



[
(3λ1δ1t2

1+2λ2δ1t3
1)

6

]
+

 1
6θ2

 x((µ1 − t1)(((θδ1 − δ2)(6λ1 + 3λ2(µ1 + t1)))

+3λ1θδ2(µ1 + t1) + 2λ2θδ2(µ1 + t1)
2

 
+

 1
2θ

 ((1 + x)(δ1 + δ2µ1))((µ2 − µ1)

(2λ1 + λ2(µ2 + µ1)))

 
+

 1
6θ2

 x((t2 − µ2)(((θδ1 + δ2)(6λ1 + 3λ2(t2 + µ2)))

−3θλ1δ2(t2 + µ2) − 2θλ2δ2(t2 + µ2)2))

 
+

 1
6θ2

 y((t3 − t2)(((θδ1 + δ2)(6λ1 + 3λ2(t3 + t2)))

−3θλ1δ2(t3 + t2) − 2θλ2δ2(t3 + t2)2))

 


+

[
1

2θ2

[
(θδ1 − θδ2T + δ2)((T − t3)(2λ1 + λ2(T + t3)))

] ]



. (6.19)

DC = θCd
T

[ ∫ t1

0 I (t) dt +
∫ µ1

t1
I (t) dt +

∫ µ2

µ1
I (t) dt +

∫ t2

µ2
I (t) dt +

∫ t3

t2
I (t) dt +

∫ T
t3

I (t) dt
]

,

=
θCd

T


(γ− 1)



[
δ1t2

1
2

]
+

[
1

2θ2

[
x((µ1 − t1)(2(θδ1 − δ2) + θδ2(µ1 + t1)

] ]
+

[
1
θ

[
((1 + x)(δ1 + δ2µ1)(µ2 − µ1))

] ]
+

[
1

2θ2

[
x((t2 − µ2)(2(θδ1 + δ2) − θδ2(t2 + µ2)))

] ]
+

[
1

2θ2

[
y((t3 − t2)(2(θδ1 + δ2) − θδ2(t3 + t2)))

] ]


+

[
(θδ1−θδ2T+δ2)(T−t3)

θ2

]


. (6.20)

7. Computational Procedure

This section describes a method for evaluating the inventory strategy that reduces the overall

cost per unit of time.

• The item’s lifespan is assumed to be comprised of trapezoidal demand, time-dependent

deterioration, and a preservation factor,

(i.e., )
dI(t)

dt
+ θI(t) = (γ− 1)(δ1 + δ2t), 0 ≤ t ≤ t1.

• To calculate inventory level by using differential equations and boundary conditions. The

stock level at any time t, equations (4.7) to (4.12) represent I(t).
• At time t = t1, t = t2 and t = t3, the inventory level reaches its maximum say, Q1, Q2 and

Q3.

• From equations (4.17), (4.18), (4.19) and (4.20) the estimated costs such as production,

ordering, holding, and deteriorating costs are obtained.

• In this model, the total cost is associated with production, ordering, holding, and deterio-

rating costs.
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• From equations (4.17), (4.18), (4.19) and (4.20) to get the values of t1, t2, t3, T, and TC by

using partial differentiation of the equation (4.16) with respect to t1, t2, t3, T.

• Finally, t1, t2, t3 and T give optimal total cost proven by positive definite of the Hessian

Matrix.

8. Computational Algorithm

Step 1: Consider the values of following parameters Cp, Co, Cd, Ch, x, y, θ, δ1, δ2,λ1,λ2,µ1,µ2 and

β.

Step 2: From the equation(4.16), to find

∂TC
∂t1

,
∂TC
∂t2

,
∂TC
∂t3

and
∂TC
∂T

.

Step 3: Using steps 1 and 2, to determine the values of t1, t2, t3 and T with the help of equations

(4.17), (4.18), (4.19), (4.20).

Step 4: Using step 3, finally substituting the values in equation (4.16), to get the total cost value.

Step 5: Evaluate different principal minor of the Hessian matrix. Here, consider TC=F,

H =



∂2(F)
∂t2

1

∂2(F)
∂t1∂t2

∂2(F)
∂t1∂t3

∂2(F)
∂t1∂T

∂2(F)
∂t2∂t1

∂2(F)
∂t2

2

∂2(F)
∂t2∂t3

∂2(F)
∂t2∂T

∂2(F)
∂t3∂t1

∂2(F)
∂t3∂t2

∂2(F)
∂t2

3

∂2(F)
∂t3∂T

∂2(F)
∂T∂t1

∂2(F)
∂T∂t2

∂2(F)
∂T∂t3

∂2(F)
∂T2


at the point (t1, t2, t3 and T).

Step 6: Thus, the t1, t2, t3 and T gives optimal total cost proven by positive definite of the Hessian

matrix,

H11 > 0; H22 > 0; H33 > 0 and H44 > 0.

If the Hessian matrix is positive definite at the point (t1, t2, t3, and T) gives a global optimal solution.

Step 7: Find TC(t1, t2, t3 and T) which is the optimal total cost for the system. (See Appendix)

9. Numerical Analysis

Numerical examples to validate the proposed model are presented in this section.
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9.1. Case 1: Consider, Cp = Rs.200, C0 = Rs.200, Cd = Rs.200, Ch = Rs.20, x = 10, y = 12, β =

20, θ = 0.02, δ1 = 2, δ2 = 3, µ1 = 0.07, µ2 = 1.01, λ1 = 0.02, λ2 = 0.03.

The optimum values of t1 = 0.0423, t2 = 1.0514, t3 = 1.0835, T = 1.1207, PC = Rs.78, 829,

OC = Rs.178, HC = Rs.400, DC = Rs.48, 144 and the optimum total cost is TC = Rs.1, 27, 551 and

the optimum of maximum order quantities are, Q1 = 14, 14, 000 units, Q2 = 16, 07, 400 units and

Q3 = 16, 95, 700 units.

From the instance, an analysis of the ideal quantity, cycle time, and rate of deteriorative goods

may be deduced that when the rate of deterioration of the goods increases, while the overall cost

increases, the cycle time and ideal quantity decrease.

9.2. Case 2: In this case, the trapezoidal demand becomes triangular demand when µ1 = µ2.

Consider, Cp = Rs.200, C0 = Rs.200, Cd = Rs.200, Ch = Rs.20, x = 10, y = 12, β = 20, θ =

0.02, δ1 = 2, δ2 = 3, µ1 = µ2 = 0.02, λ1 = 0.02, λ2 = 0.03.

The optimum values of t1 = 0.0104, t2 = 0.0392, t3 = 0.0534, T = 1.7851, PC = Rs.37, 445,

OC = Rs.112, HC = Rs.184, DC = Rs.6, 27, 520 and the optimum total cost is TC = Rs.6, 65, 261

and the optimum of maximum order quantities are, Q1 = 13, 98, 200 units, Q2 = 14, 42, 900 units
and Q3 = 17, 31, 000 units.

9.3. Observations from Case 1 and Case 2:

• The above example explains that the ordering cost, holding cost and production cost in

case 1 is 52.49%, 58.92%, and 54.25% lower than in case 2.

• But, on the comparison between the trapezoidal and triangular demand by deteriorating

cost and total cost were found to be 92.27% and 80.83% higher than the trapezoidal method

value from the triangular method.

• As the above examples illustrate, this trapezoidal demand is more profitable at a lower cost

than the triangular demand.

9.4. Comparison of trapezoidal and triangular demand in graphical representation:

Observations from graphic representation:

• From Figure 2, the triangular method clearly describes that decrease in production cost,

optimum cost, and holding cost at the beginning but an increase in deteriorated cost and

total cost finally. It concludes that the triangular method is more expensive than the

trapezoidal method.

• From Figure 3, compared to the triangular, the trapezoidal is much less expensive in total

cost.
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Figure 3. Graphic Representation of Case 1 and Case 2.

Figure 4. Graphic Representation of Case 1 and Case 2 in percentage level.

10. Sensitivity Analysis

10.1. Sensitivity Analysis for Case 1:

Observations from Table 2:

• In Table 2, the parameter x shows that the values of cycle time, holding cost, cost of

production and deteriorating cost are piling up, but the value of ordering cost is decreased.

• Next, when looking at the parameter of y, its values of cycle time, total cost, and deterio-

rating cost are increased, but its values of holding cost, production cost and ordering cost

remain low in Table 2.
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Table 2. Sensitivity analysis for case 1 parameters

Par. % value t1 t2 t3 T PC OC HC DC TC
x -50% 0.0197 0.0812 1.0527 1.0721 48,807 187 220 36,581 85,795

-25% 0.0276 1.0194 1.0743 1.0934 66,914 183 307 46,380 1,13,783

100% 0.0423 1.0514 1.0835 1.1207 78,829 178 400 48,144 1,27,551

+25% 0.0614 1.0683 1.0989 1.1384 86,426 176 463 60,466 1,47,530

+50% 0.0798 1.0782 1.1024 1.1455 91,387 175 483 85,205 1,77,250

y -50% 0.0089 0.1231 1.0081 1.0623 82,537 188 497 21,260 1,04,482

-25% 0.0172 0.1869 1.0314 1.1022 80,502 181 432 36,076 1,17,191

100% 0.0423 1.0514 1.0835 1.1207 78,829 178 400 48,144 1,27,551

+25% 0.0523 1.0528 1.0921 1.1298 77,166 177 378 51,706 1,29,427

+50% 0.0620 1.0603 1.0996 1.1300 75,618 177 362 65,801 1,41,957

γ -50% 0.0657 1.0751 1.0999 1.1395 36,299 176 224 25,837 62,536

-25% 0.0518 1.0605 1.0904 1.1274 57,410 177 353 32,291 90,231

100% 0.0423 1.0514 1.0835 1.1207 78,829 178 400 48,144 1,27,551

+25% 0.0310 1.0422 1.0802 1.1198 80,063 179 414 57,245 1,37,901

+50% 0.0293 1.0386 1.0795 1.1009 82,177 182 474 62,934 1,45,767

θ -50% 0.0286 1.0902 1.1031 1.1433 79,427 175 171 65,630 1,45,403

-25% 0.0394 1.0731 1.0798 1.1378 78,931 176 291 58,509 1,37,907

100% 0.0423 1.0514 1.0835 1.1207 78,829 178 400 48,144 1,27,551

+25% 0.0492 1.0457 1.0921 1.1192 77,842 179 413 37,401 1,15,856

+50% 0.0518 1.0244 1.0909 1.1074 77,095 181 429 37,223 1,14,943

δ1 -50% 0.0807 1.0321 1.0274 1.1620 11,981 172 127 26,129 38,409

-25% 0.0612 1.0422 1.0483 1.1593 37,101 173 248 39,870 77,392

100% 0.0423 1.0514 1.0835 1.1207 78,829 178 400 48,144 1,27,551

+25% 0.0377 1.0573 1.0921 1.1181 80,616 179 423 51,765 1,32,983

+50% 0.0301 1.0608 1.0996 1.1092 98,914 180 458 55,667 1,55,219

δ2 -50% 0.0568 0.0611 1.0902 1.1374 78,504 176 472 26,920 1,06,072

-25% 0.0491 1.0288 1.0890 1.1251 78,572 178 420 33,317 1,12,487

100% 0.0423 1.0514 1.0835 1.1207 78,829 178 400 48,144 1,27,551

+25% 0.0385 1.0690 1.0821 1.1182 79,453 179 368 55,817 1,35,817

+50% 0.0300 1.0707 1.0800 1.1055 81,175 181 342 66,771 1,48,469

µ1 -50% 0.0281 1.0748 1.0912 1.1528 75,285 173 288 48,543 1,24,289

-25% 0.0378 1.0611 1.0861 1.1463 76,925 174 342 48,310 1,25,751

100% 0.0423 1.0514 1.0835 1.1207 78,829 178 400 48,144 1,27,551

+25% 0.0485 1.0480 1.0764 1.1192 80,979 179 408 26,817 1,08,382

+50% 0.0539 1.0428 1.0700 1.1061 83,154 181 415 17,291 1,01,041

µ2 -50% 0.0140 1.0698 1.0989 1.1081 32,308 180 474 28,334 61,297

-25% 0.0211 1.0600 1.0923 1.1114 52,321 180 429 46,935 99,865

100% 0.0423 1.0514 1.0835 1.1207 78,829 178 400 48,144 1,27,551

+25% 0.0574 1.0521 1.0801 1.1246 81,280 178 381 52,963 1,34,802

+50% 0.0601 1.0492 1.0784 1.1305 85,469 177 271 60,495 1,46,412

λ1 -50% 0.0861 1.0249 1.0372 1.0942 78,925 183 213 34,482 1,13,802

-25% 0.0598 1.0431 1.0589 1.1125 78,849 180 390 36,338 1,15,757

100% 0.0423 1.0514 1.0835 1.1207 78,829 178 400 48,144 1,27,551

+25% 0.0374 1.0692 1.0914 1.1281 78,395 177 427 51,854 1,30,853

+50% 0.0317 1.0711 1.0967 1.1304 78,017 177 479 56,229 1,34,902

λ2 -50% 0.0166 1.0231 1.0478 1.0888 82,219 184 488 56,166 1,39,057

-25% 0.0257 1.0379 1.0654 1.1053 80,800 181 432 49,040 1,30,453

100% 0.0423 1.0514 1.0835 1.1207 78,829 178 400 48,144 1,27,551

+25% 0.0641 1.0680 1.0901 1.1281 77,227 177 324 47,575 1,25,303

+50% 0.0714 1.0722 1.0972 1.1304 76,401 177 301 38,549 1,15,428
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• Thirdly, the deteriorating items θ define that t1, holding cost, and ordering cost values are

proliferated, but the values of t2, t3, T, production cost, cost of deteriorating and total cost

are becoming smaller.

• Parameter of γ concludes that the values of ordering cost, deteriorating cost, total cost,

production cost and holding cost are made high and the periodicity t1, t2, t3, and T values

are decreased.

• In the λ1 parameter, the values of cycle time(t1, t3, T), holding cost, deteriorating cost and

total cost become greater, while the values of production cost, ordering cost and t2 are very

low.

• All of the cost values have been lowered and yet the cycle time values have been increased

in the λ2 parameter by its value gained.

• The parameters µ1 and µ2 maintain the same amount of inventory level which means t1,

total cost, production cost, and deteriorating cost are increased but t2, t3, ordering cost and

holding cost are decreased.

• An increase in the value of parameter δ1 leads to an increase in the value of all costs, t2 and

t3, otherwise the value of t1 and T are declined.

• In the values of δ2 implies when its value is raised with t2 and cost values are also raised in

its value but the values of t1, t3, T and holding cost are dropped.

• In the parameter θ, describes how the increase of holding cost and ordering cost leads to a

decrease in the production cost and total cost (including deterioration cost) given maximum

profit to the manufacturer with minimum cost.

• Also, the λ2 parameter seems to support the above concept, but all the costs are completely

reduced here.

• Especially in the parameters θ, β, and δ1, the holding cost and ordering cost are increased

simultaneously. It conveys that the holding of things is one of the liabilities of the manu-

facturer, but in addition fact that holding things creates demand in the market, increasing

the value of ordering cost seems profitable.

10.2. Sensitivity Analysis for Case 2:

Observations from Table 3:

• In Table 3, the parameter of x denotes that if the cyclic time increases, all of the cost values

decrease.

• If the cycle time and production cost decrease, holding cost, deterioration cost, ordering

cost, and total cost will increase in the parameter y.

• The parameter of γ concludes that if production cost and periodicity have increased their

values, the deteriorating cost and total cost also while the ordering cost and holding cost

values become high to low.
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Table 3. Sensitivity analysis for case 2 parameters

Par. % value t1 t2 t3 T PC OC HC DC TC
x -50% 0.0034 0.0104 0.0533 1.3218 43,849 151 379 6,52,110 6,96,489

-25% 0.0071 0.0173 0.0533 1.5633 41,436 128 341 6,43,830 6,85,735

100% 0.0104 0.0392 0.0534 1.7851 37,445 112 184 6,27,520 6,65,261

+25% 0.1498 0.2130 0.2915 1.8338 34,148 109 153 5,76,730 6,11,140

+50% 0.2190 0.4651 0.5482 1.8612 32,832 107 127 4,67,340 5,00,406

y -50% 0.1814 0.2753 0.3172 1.8778 85,009 107 129 2,88,140 3,73,385

-25% 0.1098 0.1573 0.2242 1.8012 84,268 108 137 3,46,370 4,30,883

100% 0.0104 0.0392 0.0534 1.7851 37,445 112 184 6,27,520 6,65,261

+25% 0.0064 0.0245 0.0333 1.6960 24,486 115 357 7,53,480 7,78,438

+50% 0.0055 0.0216 0.0299 1.5143 21,532 118 376 8,39,510 8,61,536

γ -50% 0.0766 0.0882 0.2564 1.8183 43,135 110 117 7,50,860 7,94,222

-25% 0.0520 0.0625 0.1778 1.8056 40,138 111 146 7,17,920 7,58,315

100% 0.0104 0.0392 0.0534 1.7851 37,445 112 184 6,27,520 6,65,261

+25% 0.0068 0.0213 0.0421 1.6139 31,803 124 265 5,92,550 6,24,742

+50% 0.0031 0.0091 0.0201 1.4188 25,921 141 293 4,95,860 5,22,215

θ -50% 0.0347 0.0613 0.1826 1.8961 41,646 105 263 7,11,410 7,53,424

-25% 0.0260 0.0438 0.0963 1.8184 40,522 110 211 6,31,320 6,72,163

100% 0.0104 0.0392 0.0534 1.7851 37,445 112 184 6,27,520 6,65,261

+25% 0.0076 0.0268 0.0431 1.6923 31,777 118 175 5,92,800 6,24,870

+50% 0.0057 0.0179 0.0334 1.6359 25,659 122 116 5,56,620 5,82,517

δ1 -50% 0.0104 0.0392 0.0534 1.7851 37,445 112 184 6,27,520 6,65,261

-25% 0.0104 0.0392 0.0534 1.7851 37,445 112 184 6,27,520 6,65,261

100% 0.0104 0.0392 0.0534 1.7851 37,445 112 184 6,27,520 6,65,261

+25% 0.0104 0.0392 0.0534 1.7851 37,445 112 184 6,27,520 6,65,261

+50% 0.0104 0.0392 0.0534 1.7851 37,445 112 184 6,27,520 6,65,261

δ2 -50% 0.0104 0.0392 0.0534 1.7851 37,445 112 184 6,27,520 6,65,261

-25% 0.0104 0.0392 0.0534 1.7851 37,445 112 184 6,27,520 6,65,261

100% 0.0104 0.0392 0.0534 1.7851 37,445 112 184 6,27,520 6,65,261

+25% 0.0104 0.0392 0.0534 1.7851 37,445 112 184 6,27,520 6,65,261

+50% 0.0104 0.0392 0.0534 1.7851 37,445 112 184 6,27,520 6,65,261

µ1 -50% 0.0104 0.0392 0.0534 1.7851 37,445 112 184 6,27,520 6,65,261

-25% 0.0104 0.0392 0.0534 1.7851 37,445 112 184 6,27,520 6,65,261

100% 0.0104 0.0392 0.0534 1.7851 37,445 112 184 6,27,520 6,65,261

+25% 0.0104 0.0392 0.0534 1.7851 37,445 112 184 6,27,520 6,65,261

+50% 0.0104 0.0392 0.0534 1.7851 37,445 112 184 6,27,520 6,65,261

µ2 -50% 0.0104 0.0392 0.0534 1.7851 37,445 112 184 6,27,520 6,65,261

-25% 0.0104 0.0392 0.0534 1.7851 37,445 112 184 6,27,520 6,65,261

100% 0.0104 0.0392 0.0534 1.7851 37,445 112 184 6,27,520 6,65,261

+25% 0.0104 0.0392 0.0534 1.7851 37,445 112 184 6,27,520 6,65,261

+50% 0.0104 0.0392 0.0534 1.7851 37,445 112 184 6,27,520 6,65,261

λ1 -50% 0.0104 0.0392 0.0534 1.7851 37,445 112 184 6,27,520 6,65,261

-25% 0.0104 0.0392 0.0534 1.7851 37,445 112 184 6,27,520 6,65,261

100% 0.0104 0.0392 0.0534 1.7851 37,445 112 184 6,27,520 6,65,261

+25% 0.0104 0.0392 0.0534 1.7851 37,445 112 184 6,27,520 6,65,261

+50% 0.0104 0.0392 0.0534 1.7851 37,445 112 184 6,27,520 6,65,261

λ2 -50% 0.0042 0.0156 0.0532 1.4446 42,974 138 238 6,41,670 6,85,020

-25% 0.0085 0.0296 0.0533 1.6780 39,342 119 199 6,33,040 6,72,700

100% 0.0104 0.0392 0.0534 1.7851 37,445 112 184 6,27,520 6,65,261

+25% 0.0450 0.0710 0.0840 1.8247 35,740 109 169 6,18,770 6,54,788

+50% 0.0462 0.1742 0.1921 1.9323 30,147 103 153 6,10,060 6,40,463
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• The parameter of θ denotes the cyclic time, production cost, holding cost and deteriorating

cost is decreasing, but its order cost will increase. Mention, the ordering cost value will rise

based on the above things as possible.

• In Table 3 implies that, the parameters of δ1, δ2,µ1,µ2 and λ1 have the same total cost in

their respective rows.

• The above parameters also have the same holding cost, ordering cost, deteriorating cost

and periodicity values as shown here.

• In the parameter of λ2 given the observation that, if the production cost decreases, all of

the remaining costs of the total cost, deteriorating cost, ordering cost and holding cost will

fall while the T, t1, t2 and t3 values will be raised.

Figure 5. Comparison between the demands in the parameter x.

Figure 6. Comparison between the demands in parameter y.
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Figure 7. Comparison between the demands in parameter γ.

Figure 8. Comparison between the demands in parameter θ.

Figure 9. Comparison between the demands in parameter δ1.
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Figure 10. Comparison between the demands in parameter δ2.

Figure 11. Comparison between the demands in parameter µ1.

Figure 12. Comparison between the demands in parameter µ2.
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Figure 13. Comparison between the demands in parameter λ1.

Figure 14. Comparison between the demands in parameter λ2.

10.3. Graphical representations based on sensitivity analysis and parameters:

Observations from graphical representations:

• Comparing both trapezoidal and triangular demand, trapezoidal demand is found to be

lower than triangular demand based on cost values.

• In trapezoidal demand, the parameters (λ2,µ1 and θ) cost values are gradually decreased.

However, the remaining parameter’s cost values are increased.

• In triangular demand, the parameters µ1,µ2, δ1, δ2 and λ1 have the same level of cost values

in all percentages there are no changes between them.

• The parameters x,θ,γ and λ2 cost values are decreased but the y parameter has increased

from its low-cost value to high-cost value in triangular demand.
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11. Managerial Insights:

z After considering all the parameters in this paper, it has been found that the cost of triangu-

lar demand is significantly higher than the cost of trapezoidal demand. The only exception

to this is during the time period between µ1 and µ2, where both demands show the same

rate of demand and cost values.

z Additionally, as the deteriorating rate decreases, there is a decrease in holding and pro-

duction costs. This leads to the conclusion that the total cost of production is dependent

on production, ordering and the deteriorating rate. Upon comparing all the cost values, it

is evident that the holding cost is the highest. While this may seem like an advantage, it

results in a reduction of all other cost values, especially the total cost. This highlights the

fact that holding inventory is a liability for manufacturers, but it also creates demand in

the market. Therefore, increasing the value of ordering costs can be profitable.

z Overall, the optimal three-stage EPQ model with time-dependent triangular and trape-

zoidal demand in the operating method is a significant improvement over the normal time

or triangular-dependent model.

12. Conclusion

The development of world economies is heavily reliant on their manufacturing industries.

The manufacturing sector plays a crucial role in contributing to the global economy. This study

proposes a three-stage production inventory model that aims to reduce total costs and degradation

for degrading items, while considering trapezoidal demand. Trapezoidal demand refers to the

fluctuation of a product’s production over time, which is influenced by factors such as market

price, demand, quality, durability, societal importance and value.

This type of demand is commonly observed in various manufacturing sectors, including elec-

tronics, sports, beverages, pharmaceuticals, and dairy and meat products. By incorporating this

type of demand, manufacturing industries can stabilize their expenses and reduce fluctuations. In

conclusion, this paper suggests that using the trapezoidal demand method can reduce total costs

and maximize profits in the manufacturing industry.

Real life applications:
This application method has been implemented to become a practical element even in our daily

life, we can know with the following examples:

(i) In the agriculture industry, machinery equipment such as harvesters experience trapezoidal

demand. During the harvesting period, there is a higher demand for these machines, but

after the season ends, the demand returns to normal levels. This shows that agricultural

machinery is a prime example of trapezoidal demand.

(ii) Similarly, in the biomedical field, advanced machines are constantly in demand at every

stage of progress. For instance, implantable pacemakers and defibrillators, biomedical
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imaging, drug delivery systems, joint replacement implants, and tissue-engineered skin are

all examples of trapezoidal demand in the medical world. As new technology advances, the

demand for these machines peaks and then gradually decreases as newer, more advanced

machines are introduced.

(iii) A strong illustration of trapezoidal demand can be seen in the market for stationary items.

This demand experiences a spike at the start of the academic year but does not decrease

significantly throughout the year. Instead, it maintains a consistent demand index until the

end of the school year, when it begins to decline. This pattern repeats itself each year, with

demand rising again at the start of the next academic year.

(iv) Another perfect example of trapezoidal demand is new and updated mobile and computer

software. Whenever new software is introduced to the market, even if they have an interest

in the initial stage, there is a situation where the old software becomes incompatible with

the latest mobile phones or computers is the main motto of buying activities. As a result,

users are forced to switch to the new software. For instance, Apple software applications

designed for the iPhone4s will not function on the iPhone 11 Pro. Similarly, older Microsoft

software applications that are compatible with Windows 7 will not work on the newer

Windows 10. Thus, with the introduction of new software, there is a surge in demand as

people make the switch and this demand stabilizes until the next new software variant is

released. After the release of the new one, it will turn to high.

For future research directions, this production inventory model can be extended in a fuzzy

environment, time-dependent demand, stochastic demand, inflation, and applying various dete-

rioration rates among others.

Appendix A. Appendix

H =
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∂T2


We get the values of all partial derivatives by using Matlab R2021b.

∂2(F)
∂t1∂t2

= 0;
∂2(F)
∂t1∂t3

= 0;
∂2(F)
∂t2∂t1

= 0;
∂2(F)
∂t2∂t3

= 0;
∂2(F)
∂t3∂t1

= 0;

∂2(F)
∂t3∂t2

= 0;
∂2(F)
∂T∂t1

= 0;
∂2(F)
∂T∂t2

= 0;
∂2(F)
∂T∂t3

= 0.
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∂2(F)
∂t2

1

=


[ Cp

2

[
2δ2γ− 2xδ2γ− 2δ2 + 2xδ2

] ]
+

Ch
T (γ− 1)

[
λ1δ1 + 2λ2δ1t1 +

x
θ2

[
(θδ1 − δ2)(−λ2) − θλ1δ2 − 2θλ2δ2t1

] ]
+
θCd

T (γ− 1)
[
δ1 +

x
θ2

[
−θδ1 + δ2 − θδ2

] ]
 ;

∂2(F)
∂t1∂T

=

 −Ch
T2 (γ− 1)

[
λ1δ1t1 + λ2δ1t2

1 +
x
θ2

[
(θδ1 − δ2)(−λ1 − λ2t1) − θλ1δ2t1 − θλ2δ2t2

1

] ]
−
θCd
T2 (γ− 1)

[
δ1t1 +

x
θ2

[
−θδ1 + δ2 − θδ2t1

] ]  ;

∂2(F)
∂t2

2

=



[
Cp(γ− 1)

[
(x− y)(−δ2)

] ]
+

Ch
T (γ− 1)

 x
θ2

[
(θδ1 + δ2)λ2 − θλ1δ2 − 2θλ2δ2t2

]
+

y
θ2

[
(θδ1 + δ2)(−λ2) + θλ1δ2 + 2θλ2δ2t2

] 
+

Cd
T (γ− 1)

[
(y− x)(δ2)

]
 ;

∂2(F)
∂t2∂T

=


−Ch
T2 (γ− 1)

 x
θ2

[
(θδ1 + δ2)(λ1 + λ2t2) − θλ1δ2t2 − θλ2δ2t2

2

]
+

y
θ2

[
(θδ1 + δ2)(−λ1 − λ2t2) + θλ1δ2t2 + θλ2δ2t2

2

] 
−
θCd
T2 (γ− 1)

[
x
θ2

[
θδ1 + δ2 − θδ2t2

]
+

y
θ2

[
−θδ1 − δ2 + θδ2t2

] ]
 ;

∂2(F)
∂t2

3

=


[

Cp(γ− 1)(−δ2) − δ2

]
+ Ch

Tθ2


[

y(γ− 1)(θδ1 + δ2)λ2 − θλ1δ2 − 2θλ2δ2t3

]
+ 1
θ2

[
(−λ2)(θδ1 − θδ2T + δ2)

] 
+ Cd
θT

[
y(γ− 1)(−θδ2)

]
 ;

∂2(F)
∂t3∂T

=


−Ch
T2θ2


[

y(γ− 1)(θδ1 + δ2)(λ1 + λ2t3) − θλ1δ2t3 − θλ2δ2t2
3

]
+ 1
θ2

[
(−λ1 − λ2t3)(θδ1 − θδ2T + δ2)

] 
+−Cd
θT2

[ [
y(γ− 1)(θδ1 + δ2) − θδ2t3

]
− θδ1 + θδ2T − δ2

]
 ;

∂2(F)
∂T2 =

[
Cpδ2 +

2C0
T3 + 2Ch

θ2T3

[
(θδ1 − θδ2 + δ2)(λ1 + λ2)

]
+ 2Cd

θT3

[
θδ1 − θδ2 + δ2

] ]
.

H =



56, 52, 700 0 0 −39, 98, 200

0 1, 03, 020 0 9, 35, 680

0 0 7, 93, 190 −63, 45, 900

0 0 0 53, 813


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H11 = 56, 52, 700 > 0.

H22 =


56, 52, 700 0

0 1, 03, 020

 ,

= 5.82341154E + 11 > 0.

H33 =



56, 52, 700 0 0

0 1, 03, 020 0

0 0 7, 93, 190


,

= 4.61907180E + 17 > 0.

H44 =



56, 52, 700 0 0 −39, 98, 200

0 1, 03, 020 0 9, 35, 680

0 0 7, 93, 190 −63, 45, 900

0 0 0 53, 813



,

= 2.48566111E + 21 > 0.

As per the principles of the Hessian matrix,

H11 > 0; H22 > 0; H33 > 0 and H44 > 0.

Therefore, t1, t2, t3 and T gives optimal total cost.
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