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Abstract. In this paper, we studied Markov chains of variable length and the convergence of persistent walk.We, also,

looked at the rate of convergence of such process. We also provide the use of variable-memory stochastic chains in risk

models.

1. Introduction

In modeling stochastic phenomena, several theories have been developed over time. Among

others, phenomena having long memory in the past, like Markov chains with variable memory

saw the light of day with [9]. This scientific approach was originally developed to overcome

the limitations of modeling using, up to now, Markov’s chain of fixed-order. Indeed, using

Markov’s chains of fixed-order to fit complex data would require a very high order. As a result, the

variable-memory chains permit to avoid the need to estimate an exponentially increasing number

of parameters required to describe a Markov’s chain of unknown order.

Markov’s variable-memory chains are very useful in several fields. Among others, in biology,

more specifically in genetics, in the reproduction process of plants or in molecular biology in

converting genes into proteins. For example, if we look at the reproductive process of a plant

in which each seedling is crossed with a hybrid plant Gg, we can define a Markov chain whose
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transition matrix is:

Σ =


GG Gg gg

GG 1/2 1/2 0

Gg 1/4 1/2 1/4

gg 0 1/2 1/2


On the other hand, if reproduction takes place with a dominant GG plant, then the transition

matrix is:

∆ =


GG Gg gg

GG 1 0 0

Gg 1/2 1/2 0

gg 0 1 0


Furthermore, Markov chains are used in actuarial science. For example, the contribution model

for a policyholder might look like this: the contribution paid for the (n + 1)-th year depends on

the policyholder’s contribution for the n-th year and the number of accidents he or she has had in

that same n-th year.

On the other hand, from a statistical point of view, the partial sum of these chains with a short

memory defines a stochastic process known as a persistent random walk. These type of processes

were first introduced by Kac and are still referred to as Kac walk or correlated random procedure.

More precisely, let (ξi)i∈N be a sequence of random variables with value in {0; 1} such that

ξ0 = · · · }−2}−1}0

ξ1 = · · · }−2}−1}0}1

· · ·

· · ·

· · ·

ξn = · · · }−2}−1}0}1 × · · · × }n,

where the sequence (}i)i∈Z represents the increments of (ξk). By introducing a memory random

variable (Mn) on }i such that

Mn = 1 + sup{0 ≤ i ≤ n, }n− j = }n,∀ j ∈ {0, · · · , i}} = inf{0 ≤ i ≤ n, }n−1 , }n}, (1.1)

the sequence (}i) is a Markov chain with transition probability

P(}i+1 = χi+1|}i = χi) (1.2)

with transition matrix

5 =

1− α α

β 1− β

 , 0 ≤ α ≤ 1, 0 ≤ β ≤ 1. (1.3)
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Set

Sn(ξ) =
n∑

i=0

}i with S0(ξ) = 1 or S0(ξ) = −1. (1.4)

The partial sum Sn(ξ) is then called a persistent random walk. If β = 1 − α, it is called a classical

random walk. It is called a Kac walk when α = β.

A vast literature on this particular type of stochastic process has appeared since the 20th century.

Under the assumptions α+ β = 1 and (}i) independent, we obtain a Bernoulli random walk.

Furthermore, assumptions α = β are studied in [3]. The limiting process of (}i) is the Integrated

Telegrated Noise (ITN) (see [4]). By asymptotic analysis in [5] and by Fourier transform in [6], we

show that this limit process allows us to represent the solution of the telegraph equation:
∂2u
∂t2 (x, t) = c2 ∂2u

∂x2 (x, t) − 2λ∂u
∂t (x, t) for all x ∈ R, t ≥ 0

u(x, 0) = f (x),
∂u
∂t

(x, 0) = 0.

(1.5)

where u(x, t) represents the voltage in a cable at point x at time t, f is a function of class C2 in R,

with bounded first and second derivatives. λ is the parameter of the process (}i).

The calculation of the probability distribution of the process Sn(ξ), and the study of the influence

of the persistence phenomenon on the first and second-order moments of the process (}i) when

it has a value in {0; 1} are studied in [1] and [2] respectively. As for the characteristic function

of the Sn(ξ) process, it is determined in [19] by Proposition 6.4 in Section 6. Moreover, several

research questions on this stochastic process remain deeply unexplored, such as the acceleration of

its convergence or the existence of its infinite-length chains. Recently, S. Herrmann and P. Vallois

studied the limit law of the Sn(ξ) random process by constructing a chain of large memory for the

random sequence (}i).

In this work, we extend the work in [] by constructing a Markov process of infinite length. We

justify the existence of such a stochastic process. We evaluate the rate of convergence of the process

Sn(ξ) in the continuous case by mean of the Chen-Stein method. Thus, the paper is organized

as follows: in section 2 we make preliminaries. In these preliminaries, we present notions and

properties on Markov chains of variable lengths and on the Kac walk. We also present the Chen-

Stein method for evaluating the rate of convergence of stochastic processes. In section 3, we

construct and justify the existence of a Markov chain of infinite length for a persistent random

walk. Section 4 is devoted to the study of the law-like convergence of the persistent random walk

via the Chen-Stein method. The rate of this convergence is evaluated. In section 5, we will discuss

the use of variable-memory stochastic chains in the study of counting processes for risk models.

2. Preliminaries

2.1. Markov chain with variable memory. This stochastic process was first introduced in lit-

erature, in 1983, by Rissanen [9]. Rissanen’s ingenious idea was the basis for large-scale data
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compression in information theory. Today, his theory is very useful for modeling in many fields.

We gave a few examples in our introduction.

Definition 2.1 (Markov chain with variable memory). A Markov Chain with Variable Memory (VLMC)
is a markov chain for which the dependence on the past is unbounded.
We call context the part of the past of the process (ξi) needed to predict the next symbol. In the following
constructions, for any x ∈ {−1; 1}, we denote the context of process (ξi) by

←−−−
pre f (x j) j∈−N.

Remark 2.1. In this definition, the context length is not limited. However, it is a deterministic function of
the string of passed symbols. The main mixing class for VLMC is ψ−mixing. In particular, non-uniform
polynomial blending when the deterministic function of the past symbol string is the natural logarithm.
Mixing is uniform exponential when the function is exponential.

2.2. Persistent random walk. We consider equation 1.4 in its entirety.

Proposition 2.1. .
The trajectory of the Kac walk is a straight line and the jump times are random variables with geometric
distribution.

Proof. For the proof, see []. �

The time spent in a state before leaving it leads us to define the stopping time of the process (τn)

by

τn = inf{i ≥ τn−1, ξi , ξτn−1}. (2.1)

We introduce the counting process (Wt, t ∈ R+) with its stopping times 2.1 by :

Wt = sup{n ≥ 1, τn ≤ t}. (2.2)

The process (Wt) is a counting process and follows a Poisson distribution of intensity λ > 0

(see [7]). An illustration of its trajectory is given in Figure 1 in [].

Proposition 2.2. Let’s assume (}0,M0) = (−1; 1). For all n ≥ 1 we have

Mt = 1 + sup{n ≥ 0,Wt−n =Wt, ∀t ∈N} (2.3)

and

Sn(ξ) = 1 + 2
n∑

i=1

1{}i=1} − n. (2.4)

Proof. It can be seen that

{Mp = 1 : p ∈N∗} = {τn; n ≥ 0}. (2.5)
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By combining 1.1, 2.2 and 2.5, we obtain 2.3.

Sn(ξ) =1 +
n∑

i=1

1{}i=1} −

n∑
i=1

1{}i=−1}

=1 +
n∑

i=1

1{}i=1} −

(
n−

n∑
i=1

1{}i=1}

)

=1 + 2
n∑

i=1

1{}i=1} − n.

�

2.3. Chen-Stein method. The Central Limit Theorem states that if the process (ξi)i≥1 is inde-

pendent and identically distributed (i.i.d), admitting a moment of order 2, with E(ξ1) = µ and

V(ξ1) = σ2 > 0 then:
(ξ1 + · · ·+ ξn) − nµ

σ
√

n
L
−→ N(0; 1). (2.6)

For a long time, the approach used to prove this theorem was to demonstrate convergence in

distribution. This approach relied heavily on Fourier methods and the study of characteristic

functions. Later, with Andrew Campbell Berry and Carl-Gustav Esseen [10] a more explicit

approximation to the normal distribution was obtained, using so-called Berry-Esseen inequalities.

However, since random variables being not always independent, new methods were developed

in 1972 by Charles Stein and in 1975 by Chen for such cases.

2.3.1. Description of Stein’s method. The starting point for Stein’s method is a characterization of the

normal distribution using expectation and an absolutely continuous function. The determination

of a so-called Stein operator linked to a differential equation and its resolution is then established.

Finally, we look for an increase in the norm of the solution obtained, as well as that of its successive

derivatives. The method makes it possible to obtain bounds between the distribution of a sum

of dependent random variables and the distribution of a random variable that follows a normal

distribution for the Kolmogorov metric:

sup
h∈H

∣∣∣∣∣∣
∫

hdP−
∫

hdQ

∣∣∣∣∣∣ = sup
h∈H

∣∣∣E[h(X)] −E[h(Y)]
∣∣∣ (2.7)

where P and Q are probability measures on the same measurable space. X and Y are random

variables with laws P and Q respectively. H is a set of functions defined on the measurable set

and having values in R.

For a more detailed account of Stein’s method, we refer readers to the article [8].

2.3.2. Description of Chen’s method. Stein’s method is similar to Chen’s method. Both methods

generalize the rare event theorem to the case where events are non-independent and the depen-

dencies between them are small. However, Chen’s method relies on Stein’s to obtain results on the

approximation of Poisson’s law in terms of expectation. An operator and then a Chen equation
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are first considered. The search for a limit in terms of the total variation distance between two

distributions is then undertaken.

For any function h defined on {−1; 1}, we define the total variation distance as:

||h|| = sup
k
|h(k)| (2.8)

where ||.|| denotes the Euclidean norm: ∀x ∈ {0, 1}, ||x|| =
√

x.x.

3. Construction of aMarkov chain with variable memory

Knowing that with Gibbs measures with continuous Holdierian interactions, we can obtain sto-

chastic chains of infinite order (see [12]), we are now witnessing new approaches to the Markov

process. Since 2004, new constructions of Markov chains have appeared. For more details on

these constructions, we refer you dear readers to the following articles: [13], [11] and [17]. In

this part of our work, starting from a stochastic chain of infinite order, we prove the existence of

a Markov chain of variable length in {0; 1}−N with a stationary distribution. Our results pursue

the following objective: Extend Hermann’s work by redefining the persistent random walk with

infinite memory length for an irreducible aperiodic chain.

In the remainder of this paper, we denote by a the set of strings in the process (}i). The following

construction is inspired by [17] (see definitions 5.2 and 5.3 in Section 5).

For all x ∈ {−1; 1}, let

(P
(
x|
←−−−
pre f (x j) j∈−N

))
(x,
←−−−
pre f (x j)∈{−1;1}2

(3.1)

a family of positive real numbers satisfying∑
x

P
(
x|
←−−−
pre f (x j) j∈−N

)
= 1. (3.2)

For all ℵ ∈ a, let us note

P
(
x|
←−−−
pre f (x j) j∈−N

)
= P(x|ℵ). (3.3)

We redefine 1.2 by positing χi+1 = x and χi =
←−−−
pre f (xi) then consider 1.4 and the stochastic process

(ξi)i∈N defined in the introduction. The stochastic process (h̄i) is a stochastic chain of infinite order

with variable-length memory.

We make the following assumptions:

(1− β)(1− α) − α2 , 0; (3.4)

∃n ∈N such that 5n is strictly positive. (3.5)

These assumptions imply that the transition matrix of the chain (}i) is invertible and, consequently,

that the chain is irreducible.

For probability family 3.1, , we have the following result
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Theorem 3.1.
Based on the above assumptions, the family

(
P
(
x|
←−−−
pre f (x j) j∈−N

))
(x,
←−−−
pre f (x j)∈{−1;1}2

admit a unique stationary

law on ({−1; 1}, {0; 1}−N,F , P).

Proof. Let’s consider P5(λ) as the characteristic polynomial of 5.

We have

P5(λ) = det(5− λI2)

=

∣∣∣∣∣∣∣1− α− λ α

β 1− β− λ

∣∣∣∣∣∣∣
= 1− β− λ− α+ αλ− λ+ λβ+ λ2

We note that 1 is an eigenvalue of 5. We can also check that 1 is an eigenvalue of t
5( t
5 denotes

the transpose of 5.) Now we just need to show that there is a single probability vector such that

the product of it and the transition matrix 5 is equal to itself.

Let ~ϑ

ϑ1

ϑ2

 be the strictly positive eigenvector associated with the eigenvalue λ = 1.(Such a vector

exists. Simply take the absolute value of the coordinates of the eigenvector associated with

eigenvalue λ = 1 for matrix t
5).

We have

ϑ1P
(
x|
←−−−
pre f (x j) j=−∞,0

)
+ ϑ2P

(
x|
←−−−
pre f (x j) j∈−N

)
− (ϑ1 − ϑ2) = 0. (3.6)

As a result
~ϑ5 = ~ϑ. (3.7)

�

Remark 3.1. The unique stationary law ν

ν1

ν2

 is therefore:

ν = lim
n→+∞

1
n + 1

n∑
k=1

5
k (3.8)

and it verifies 
(1− α)ν1 + βν2 = ν1

αν1 + (1− β)ν2 = ν2

ν1 + ν2 = 1.

(3.9)

We obtain the following corollary from the previous theorem:

Corollary 3.1. There exists a unique stationary measure ν for the process (ξi).

Justification of the Markov process: By associating the process (ξi) with the transition proba-

bility family of Theorem 3.1, equality 3.3 allows us to see that the process (ξi)i∈N eis markovian,

constructed from a stochastic chain with variable memory.
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4. Evaluation of the rate of convergence by the Chen-Stein method for aMarkov chain of

infinite length.

The need to evaluate and/or accelerate the convergence of sequences has long been fundamental

to research in applied mathematics. Today, it remains central to research in probability theory.

Indeed, in many fields we are sometimes called upon to use sequences while they show slow

convergence. Pioneers in this field of research for numerical sequences, Richardson and Aitken

followed in their footsteps for stochastic sequences. Since then, a vast literature has appeared in

this new field of research, led by Berry [14]. For a more detailed account of the historical evolution,

see [15]. With regard to linear and nonlinear stochastic processes in separable Hilbert spaces,

notable results were obtained with Jirak [16]. We have also made our contribution in this direction

in ours previous articles [20] and [23].

In this part of the paper, we focus on convergence. Thus, under the functional assumptions of

the stochastic chain (}i), we study the convergence in law of the persistent random walk 1.4. By

a conditioning argument similar to the mind of P. Cénac in [] and contrary to their approach, we

apply the Chen-Stein method to extend the previous results by evaluating the rate of convergence.

As we have already pointed out in the introduction, we consider the variable memory context of

the process (}i). Therefore, we first control the process (ξi) through its stopping times.

4.1. Control over the Markov process. Let Pi
a,b be the probability of going from state a to state b

if we make a decision d ∈ {0; 1}−N. For all i ∈ N, we denote control by the random variable Oi.

Considering a given strategy S, we define a probability on the trajectory of the controlled chain. Let

POi(d) denote the probability law on the random variable Oi. Let Ri(a), denote the set of feedback

strategies andUi(a) the set of deterministic Markov strategies. Optimal control therefore consists

in optimizing the trajectory of the process (ξi) through the following problem:

min
s∈S(.)

E
[ n−1∑

i=0

cOi(ξi)|ξ0 = a
]

(4.1)

where S(.) is the set of strategies and c is the instantaneous cost function. By virtue of Markov

strategies, let us set 
cW(a) =

∑
d∈{0;1}−N

cd(a)POi(a)(d) si W ∈ Ri(a)

cW(a) = cW(a)(a) si W ∈ Ui(a).

(4.2)

The following result controls the stopping times of the process ξi.

Proposition 4.1. Let Ji(x) be a function on {−1; 1}; 0 ≤ i ≤ n. Let’s note

Ri(x) = sup
D,Fi,i≤D≤n

E

[D−1∑
k=1

c(k)(ξk) +JDi(ξDi)|ξi = a
]

(4.3)
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and let’s rewrite the stop delay 2.1 by

Di = inf{n ≥ k ≥ i,Rk(ξk) = Jk(ξk)}. (4.4)

Di is an optimal stopping time for the process (ξi)i≥0. Furthermore

Ri(ξi) = E

[Di−1∑
k=i

c(k)(ξk) +JDi(ξDi)|ξi

]
(4.5)

Proof. Let’s consider the process (Z`)i≤`≤n defined by:

Z` = Rl(ξl)1{`<Di} +JDi(ξJi)1{Di≤`} +
`−1∑
j=i

c( j)(ξ j)1{ j<Di} (4.6)

SinceDi ≤ n, we have

Zi =Ji(ξDi) +
n−1∑
j=1

c( j)(ξ j)1{ j<Di}

=JDi(ξDi) +

Di−1∑
j=i

c( j)(ξ j).

Also, we have

Zi = Ji(ξi)1{i=Di} +JDi(ξDi)1{Di≤n} (4.7)

as i ≤ Di and JDi(ξi)1{Di=i} = Ri(ξi)1{Di=i} then Zi = Ri(ξi).

Therefore,

Z` =
(
5R`+1(ξ`) + c(`)(ξ`)

)
1{`<Di} +

l−1∑
j=i

c( j)(ξ j)1{ j<Di} +J(ξDi)1{Di≤`}

=E
[
R`+1(ξ`+1)|F`

]
1{`<Di} +

∑̀
j=i

c( j)(ξ j)1{ j<Di} +JDi(ξDi1{Di≤`}

=E
[
R`+1(ξ`+1)|F`

]
+ E

[
JDi(ξDi)1{Di≤`} +

∑̀
j=i

c j(ξ j)1{ j<Di}|Fl

]

=E
[
J`+11{`+1<Di} +JDi(ξDi)1{Di<`+1} +

∑̀
j=i

c( j)(ξ j)1{ j<Di}|F`

]
=E[Z`+1|F`]

The process Z` is therefore a discrete martingale. Hence Zi = E[Zn|Fi], for all n ≥ i.
We conclude that

Ri(ξi) = E
[
JDi(ξDi) +

Di−1∑
j=i

c( j)(ξ j)|Fi

]
(4.8)

�
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4.2. Rate of convergence using the Chen-Stein method. .

Notable results establishing convergence or evaluating the rate of convergence for Markov chains

are given by [] and []. In [], the result is that of the convergence of the persistent random walk,

where it is shown under the memory process condition (M0 = 1) that Sn(ξ) in the continuous case

converges in law to the sum of a certain independent random variable. As for the result in [], the

chain is assumed to be strongly ergodic, then by a Nagaev method coupled with a perturbation

theorem of Keller and Liverani, the rate of convergence in n−1/2 is obtained.

For our part, we evaluate the rate of convergence of the persistent random walk by applying the

Chen-Stein method and the mind of Jirak’s approach [16] to boundary setting. Recall always that

we consider 1.4 in its entire construction as well as the counting processWt. For all k ∈N,

P(Wλt = k) = e−λ×t (λt)k

k!
(4.9)

Before reporting our convergence result, we make the following assumptions:

(H1) The stopping time process (τn) is an independent random variable.

(H2) The probability measure P is ergodic.

(H3) There exists a function h that is ν-integrable from {−1; 1} into R such that ν(h) = 0.

(H4) lim inf
n→+∞

E[|Snh(ξ)|2] > 0.

Remark 4.1. Assumption (H3) allows us to hold 1.4 in the continuous case. Thus, we display Snh(ξ) =
n∑

i=1

h(}i). This hypothesis (H3) is crucial for showing convergence of the partial sum Snh(ξ) with Chen and

Stein’s method. The assumption (H4) is a non-degeneracy condition. (H1) plays the role of determining
the limit process of Snh(ξ). It allows us to approximate Snh(ξ) to a Poison distribution.
Since the process (}i) is a stochastic chain of variable length, it is necessary to guarantee the computation of
its moments. Assumption (H2) assures us of the existence of the moments of the stochastic process Snh(ξ).

Now, we state the theorem that gives the main result of our paper and also the second objective of

our work.

Theorem 4.1. Under assumptions (H1) − (H4), the persistent random walk Snh(ξ) converges to the

limit process Z =

∫ t

0

( +∞∑
k=0

(−1)ke−λt (λt)k

k!

)
dt with a convergence rate in the order of n−1/2. That is,

sup
a∈R

∣∣∣P(
Snh(ξ)

)
≤ a−Z

∣∣∣ = o(n−1/2).

Proof. For the proof, we proceed in two steps. We begin by adopting the following notations: First,

we denote parameter-dependent constants by c(:).
For all n ∈ N∗, let I1, · · · , In be independent events and Θ1, · · · , Θn the number of its events that

occur.

Then, denote by νSnh(ξ) the law of Snh(ξ) and by νP(λ) the law of
+∞∑
k=0

(−1)ke−λt (λt)k

k!
.
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We have

νSnh(ξ) = P
(
Snh(ξ) ≤ a

)
and νP(λ) = Z. (4.10)

Step 1: We prove the convergence in distribution of Snh(ξ) toZ by determining the upper bound

of the distance in total variation between νSnh(ξ) and νP(λ). To do that, we first consider equation

λϕ(n + 1) − kϕ(n) = ΘI −

+∞∑
k=1

ΘIe−λ
λk

k!
, ∀I ⊂N. (4.11)

and we denote its solution by ϕI. It is easy to see that

ϕI(n) = −
(n− 1)!
λn

+∞∑
k=n

λk

k!

(
ΘI −

+∞∑
k=1

ΘIe−λ
λk

k!

)
. (4.12)

Then, we have

νSnh(ξ)(I) −
+∞∑
k=1

ΘIe−λ
λk

k!
=

∫
N

(
ΘI −

+∞∑
k=1

ΘIe−λ
λk

k!

)
dνSnh(ξ)

=E
[
λϕI

( n∑
i=1

h(}i) + 1
)
−

n∑
i=1

h(}i)ϕI

(∑
i∈Θ

h(}i)
)]

=
n∑

i=1

E
[
λ
n
ϕI

(∑
j,i

h(} j) + }i + 1
)
− }iϕI

(∑
j,i

h(} j) + 1
)]

.

Since the stochastic process (h̄i) is non-independent, we consider both strong and weak depen-

dencies within it. Let (o) be the set of indices of variables h̄ j strongly dependent on h̄i and (e) the

set of indices of variables h̄ j weakly dependent on h̄i with

S(o)
n (ξ) =

∑
i∈(o)

h(h̄i) and S(e)
n (ξ) =

∑
i∈(e)

h(h̄i) (4.13)

Then, we have the following decomposition

Snh(ξ) = S(o)
n (ξ) + S(e)

n (ξ) (4.14)

λ
n
ϕI

(∑
j,i

h(h̄ j) + h̄i + 1
)
− h̄iϕI

(∑
j,i

h(h̄ j) + 1
)
= A(S(e)

n (ξ)) + B(S(e)
n (ξ)) + C(S(e)

n (ξ)) (4.15)

with:

A(S(e)
n (ξ)) =

λ
n
ϕI

(∑
j,i

h(h̄ j) + h̄i + 1
)
−
λ
n
ϕI

(
S(e)

n (ξ) + 1
)

B(S(e)
n (ξ)) =

λ
n
ϕI

(
S(e)

n (ξ) + 1
)
− h̄iϕI

(
S(e)

n (ξ) + 1
)

C(S(e)
n (ξ)) = h̄iϕI

(
S(e)

n (ξ) + 1
)
− h̄iϕI

(∑
j,i

h(h̄ j) + h̄i + 1
)
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Based on expression (4.15), we have

E
[
λ
n
ϕI

(∑
j,i

h(h̄ j) + h̄i + 1
)
− h̄iϕI

(∑
j,i

h(h̄ j) + 1
)]

≤
λ
n

E
[∣∣∣∣ϕI

(∑
j,i

h(h̄ j) + h̄i + 1
)
−ϕI(S

(e)
n (ξ) + 1)

∣∣∣∣]

+

∣∣∣∣∣∣E[(
λ
n
− h̄i

)
ϕI

(
(S(e)

n (ξ) + 1
)]∣∣∣∣∣∣

+ E
[
h̄i

∣∣∣∣ϕI

(
(S(e)

n (ξ) + 1
)
−ϕI

(∑
j,i

h(h̄ j) + 1
)∣∣∣∣]

For the rest of the proof, we will give the bounds of A(S(e)
n (ξ)), B(S(e)

n (ξ)) and C(S(e)
n (ξ)).

Bound for A(S(e)
n (ξ)):

We have ∣∣∣∣∣∣ϕI

(∑
j,i

h(h̄ j) + h̄i + 1
)
−ϕI

(
S(e)

n (ξ) + 1
)∣∣∣∣∣∣ ≤ ||ϕI(n + 1) −ϕI(n)||(h̄i − S(o)

n (ξ)) (4.16)

Therefore,

A(S(e)
n (ξ) ≤

λ
n

E
[
||ϕI(n + 1) −ϕI(n)||(h̄i − S(o)

n (ξ))

]
≤

1− e−λ

λ
E[(h̄i − S(o)

n (ξ))]

because, according to [22], ||ϕI(n + 1) −ϕI(n)|| ≤ 1−e−λ
λ .

Bound for B(S(S(e)
n (ξ)):

Increasing B(S(e)
n (ξ)) is based on Jensen’s inequality:∣∣∣∣∣∣∣∣λn − E[h̄i|S

(e)
n (ξ)]

∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣∣∣λn − E[h̄i|σ(X j) j∈(e)]
∣∣∣∣∣∣∣∣. (4.17)

where σ(X j) denotes the tribe on (X j). Thus, according to 4.17, we have∣∣∣∣∣∣E[(
λ
n
− h̄i

)
ϕI

(
S(e)

n (ξ) + 1
)]∣∣∣∣∣∣ =

∣∣∣∣∣∣E[(
λ
n
− E[h̄i|S

(e)
n (ξ)]

)
ϕI

(
S(e)

n (ξ) + 1
)∣∣∣∣∣∣

≤ ||ϕI|| × E
[∣∣∣∣λn − E[h̄i|S

(e)
n (ξ)]

∣∣∣∣]
≤ min

(
1,

√
2

eλ

)
× E

[∣∣∣∣λn − E[h̄i|S
(e)
n (ξ)]

∣∣∣∣].
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Bound for C(S(S(e)
n (ξ)):

Similar to the case A(S(S(e)
n (ξ)) we have∣∣∣∣∣∣ϕI

(
S(S(e)

n (ξ) + 1
)
−ϕI

(∑
j,i

h(h̄ j) + h̄i + 1
)∣∣∣∣∣∣ ≤ 1− e−λ

λ
S(o)

n (ξ). (4.18)

This gives

|νSnh(ξ) − νP(λ)| ≤ c(λ)
(
2
λ
n
+

∑
i∈	 ; j∈(o)8{i}

E(h̄ih̄ j +
∑
i∈	

∣∣∣∣∣∣∣∣λn − E(h̄i|σ(h̄ j) j∈(e))
∣∣∣∣∣∣∣∣) (4.19)

Step 2: Regarding the proof of the convergence rate evaluation in n−1/2, according to hypothesis

H3, the process (h̄i) admits a covariance operator. Therefore, we can adapt theorem 3.2 in [16] and

write:

|νSnh(ξ) − νP(λ)| ≤ c(λ)mn−1/2, ∀m ≥ E(||h̄i||
r, 2 < r ≤ 3 (4.20)

�

5. Counting processes and the infinite-time risk model

Nowadays, with the multiplicity of claims, it is more necessary than ever for the actuary to focus

more on the vulnerability of policyholders. Despite Lundberg’s early work in 1903, the theory of

ruin was born in probability theory. Numerous models have also emerged from this new theory.

These include the Cramer-Lundberg and Sparre-Anderson models. These models are mainly

characterized by two components: the number of claims (frequency) and the cost of each event

(severity).

In this part of our paperwork, we discuss the (ξi) and (Wt) processes in the following ruin model:
R(t) = u + ct− St

St =
Nt∑

i=1

Xi.
(5.1)

where:

-R(t) represents the amount of an insurance company’s reserves at time t;
- Nt the number of claims at time t;
- u is the initial capital;

- c is the rate at which premiums are received per unit of time;

- Xi is the cost of the ith claim;

- St is the insurance company’s aggregate losses.

The main questions we ask ourselves in this model are as follows: Can the processes (ξi) and

(Wt) respectively model the cost of claims and the number of claims in model (5.1) ? What are

their limitations? The following proposition on our first objective will lead us to a discussion for

the second question.
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Proposition 5.1. Given 2.2 and the process (ξi), model (5.1) over an infinite horizon can be written:

R(t) = u + ct−
Wt∑
i=1

ξi. (5.2)

Proof. The proof of this proposition derives directly from the nature and law of the process (Wt)

The proof of this proposition derives directly from the nature and law of the process (ξi). �

5.1. Discussion. While the result on the ruin model obtained through the previous proposal is

attractive at first sight, it also highlights a problem that we present and discuss.

The process (Wt) is a counting process. It is a Poisson process of intensity λ > 0 (see [7]).

P(Wdt = k) =


1− λdt + o(dt) si k = 0

λdt + o(dt) si k = 1

o(dt) si k ≥ 2

lim
t→0

o(dt)/t = 0.

(5.3)

Our model is supposed to represent the ruin of an insurance company in an infinite horizon.

However, we note that :

(i) The process (ξi) in the model is Markovian, built from a stochastic chain of variable length.

(ii) The counting process (Wt) can be a renewal process which we denote by (Bk) (i.e. a point

process: representing the instants of successive occurrences of a loss such that the inter-successive

occurrence durations are independent real random variables with the same law) verifying relation

∀k ≥ 0, (Wt ≥ k) = (Bk ≤ t). (5.4)

Let’s develop case (i) ): markovian processes are used in modeling in the field of actuarial science

(e.g. model of the contribution to be paid by an insured). However, it should be noted that

the class of stochastic processes best developed in risk modeling are independent and identically

distributed random variables (Cramer-Lundberg model, Sparre-Andersen model). Would the use

of a Markov process in ruin models therefore require homogeneous Markov chains?

In case (ii), we study the distribution of the process (Bk). The probability distribution of (Bk) is

also the probability distribution of (Wt). Indeed, if Ψk is the distribution function of (Bk), we can

show by recurrence on k that:

Ψk(x) =
∫ x

0
Ψk−1(x− y)dΨ(y) (5.5)

where F is the distribution function of the random variable representing successive inter-occurrence

times.

According to (5.4),

∀k ≥ 0, P(Wt ≥ k) = P(Bk ≤ t). (5.6)

That is to say

P(Wt ≥ k) = Ψk(t). (5.7)
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The above considerations indicate that model (5.1) is not at all a classical model in general ruin

theory. The following question arises: what type of dependence in the chain of the Markov process

(ξi) would make model (5.1) be of Cramer-Lundberg type, and what about the Gerber-Shiude

function?

6. Conclusion

In this work, we have studied stochastic chains with variable memory. We first constructed a

Markov chain from a variable-memory random chain. Then, we defined a persistent random

walk in the continuous case and showed that the limit process of this persistent walk is a Poisson

process. For this purpose, the Chen-Stein method was used. We, likewise, established a rate of

convergence in the order of
√

n ∀n ∈N for the persistent random walk.

The issue of variable-memory Markov chains in risk models was also discussed in this paper.

Indeed, we discussed the use of variable-memory Markov chains in a Crammer-Lundberg type

ruin model and on the Gerber-Shiude expected penalty function.
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