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Abstract. In this paper we introduce the concepts of complex fuzzy dynamic graphs, complex fuzzy diagonal matrices

and complex fuzzy Laplacian matrices. We use these graphs and their laplacian matrices as mathematical framework

for applications in Sciences, especially signals processing. We define absolute average eigenvalues of the Complex

Laplacian matrices and explore the properties of these matrices with their eigenvalues. We develop an algorithm using

the absolute eigenvalues of the Laplacian matrices and apply this algorithm to signal and systems. Our study begins

by establishing the theoretical foundation of complex fuzzy dynamic graphs, highlighting their role to model within

dynamic systems including two dimensional uncertainties. We investigates the complex fuzzy Laplacian matrices

obtain from these graphs. Our main focus is on the absolute eigenvalues of these matrices, which hold a vital role into

the graph’s structural characteristics and behavior. In the context of signals processing, the research demonstrates how

these absolute eigenvalues serve as essential matrices for system characterization. This study presents novel methods to

analyze signals on complex fuzzy dynamic graphs. These methods are particularly relevant in scenarios where signals

are influenced by dynamic and uncertain environments.

1. Introduction

The mathematical models play an invaluable role in the study of complex systems, where

uncertainties and dynamic interactions are involved. The study of complex fuzzy dynamic graphs,

complex fuzzy sets, complex fuzzy Laplacian matrices and the absolute eigenvalues, provide an

elegant platform to represent and analyze the complex relationships within dynamic systems.

This amalgamation possess the power of complex fuzzy logic to handle ambiguous and vague

information and to illustrate complex interconnections. In this context, the analysis of complex

fuzzy Laplacian matrices, particularly emphasizing on their absolute eigenvalues, holds a huge
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significance. Understanding the eigenvalue spectrum provides deep insights into the structure,

stability, and behavior of complex systems represented by these graphs. Moreover, the application

of these mathematical constructs in the domain of signals processing intensifies their practical role,

enabling efficient extraction and analysis of information from real-world data.

The roots of complex fuzzy sets can be traced back to the pioneering work of Lotfi A. Zadeh in the

1960s [8], where he introduced fuzzy sets as a mathematical framework to handle uncertainty and

vagueness. Fuzzy sets allow to represent of imprecise information using degrees of membership,

providing a way out from the binary nature of classical set theory. Over the years, this concept

evolved, incorporating complex numbers to handle both the uncertainty and ambiguity present

in various real-world applications [15]. The mixing of complex concepts into fuzzy sets paved the

way for the development of complex fuzzy sets, which have found applications in diverse fields in-

cluding control systems, decision-making, signals and pattern recognition [1–7]. Simultaneously,

the study of graphs provide mathematical structures consisting of nodes connected by edges and

are used to model relationships between different entities. Traditional graphs, however, do not

possess the capability to handle imprecise and uncertain data. With the advent of fuzzy logic,

complex fuzzy graphs emerged as an extension of classical graphs, where edges and/or nodes

are assigned complex fuzzy values, allowing the representation of complex fuzzy relationships

involving two dimensional data, for instance the edge of friendship between two friends involves

two dimensions, one representing the strength of friendship and other representing the emotions

in friendship. In recent decades, researchers have delved into the synergy between complex num-

bers and fuzzy logic, leading to the formulation of complex fuzzy graphs [9]- [14]. Complex fuzzy

graphs incorporate the nuances of both complex numbers and fuzzy logic, enabling the represen-

tation of dynamic, uncertain relationships with a high degree of accuracy and flexibility. These

graphs offer a more realistic representation of complex systems where uncertainties, imprecision,

and dynamic interactions are prevalent [16]- [18]. This study explores into the complex systems

of complex fuzzy dynamic graphs, exploring their theoretical foundations, the characteristics of

their Laplacian matrices, and their applications in signals processing. By investigating the abso-

lute average eigenvalues of these matrices, the study aims to unravel the underlying structures of

complex systems. Furthermore, the research extends its focus to practical applications, demon-

strating how these mathematical constructs can be harnessed to process and interpret signals in

real-world scenarios. Through this exploration, a deeper understanding of complex systems and

their manifestations in signals will be achieved, paving the way for innovative solutions in fields

ranging from telecommunications to biological signal analysis.

In this paper we are emphasizing one practical applications of the proposed methodologies with

various aspects. Through extensive simulations and real-world case studies, the effectiveness of

the presented approaches in extracting relevant information from complex signals is validated.

Additionally, the research investigates the robustness of these methods in the presence of noise

and uncertainties, showcasing their applicability in practical, noisy environments. This research
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contributes not only to the theoretical advancement of complex fuzzy dynamic graphs and their

Laplacian matrices but also to the broader field of signals processing. The insights derived from

this study have the potential to revolutionize how we understand and analyze complex systems,

making it invaluable for researchers and practitioners working at the intersection of graph theory,

fuzzy mathematics, and signals processing.

All fuzzy sets deal with only one dimensional data involving certain uncertainties. To deal with

two dimensional data in 2002, Ramot et al. [5] introduced a new concept of a complex fuzzy set.

Mathematically complex fuzzy sets is denoted and defined as:

µS(t) = rS(x)eιωS(t)

where rS(t) amplitude term representing fuzzy sets whileωS(t) is a real valued function. There-

fore µS(t) is a complex valued function whose range is the unit disc. There is an addition of one

more dimension in it as compare to the traditional fuzzy set. The phase term addresses the wave

type phenomenon of this set which makes it more applicable than the fuzzy set.

2. Complex Fuzzy Sets and Complex Fuzzy LaplacianMatrices

A modulus of complex fuzzy set is given as

|µS(t)| = |rS(x)eιωS(t)| = rS(x)
√

cos2(ωS(t)) + sin2(ωS(t))

where rS(t) is a fuzzy set and ωS(t) is a real valued function.

Let G = (V, E) be a simple (undirected) graph on vertices 1, 2, ..., n. Then the n× n matrix, called

the complex adjacency matrix A(G) of G (or simply A), is defined by

A(G) = [ai j],

ai j =


1 if {i, j} ∈ E
µS(t) if the edge is not sure

0 {i, j} < E

Fuzzy Degree
In fuzzy graph theory, the fuzzy degree of a vertex in a fuzzy graph is a measure that indicates

the degree of membership of the vertex in the graph. In a traditional (non-fuzzy) graph, the degree

of a vertex represents the number of edges incident to that vertex. However, in a fuzzy graph,

edges have degrees of membership indicating the strength or intensity of relationships between

vertices.

The fuzzy degree of a vertex takes into account not only the number of adjacent vertices but

also the fuzzy strengths of those relationships. Here’s how you can calculate the fuzzy degree of

a vertex in a fuzzy graph:

For a given vertex v, sum up the degrees of membership of all edges incident to v. These are the

fuzzy strengths of the relationships connecting v to other vertices in the graph.
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Fuzzy Degree(v) =
∑

edges e incident to v
Degree of Membership(e)

The degree of membership of an edge indicates the strength of the relationship represented by

that edge in the fuzzy graph.

We can normalize the fuzzy degree if the degrees of membership of the edges are on a different

scale. Normalization ensures that the fuzzy degree is comparable across different vertices and

graphs.

Normalized Fuzzy Degree(v) = Fuzzy degree(v)
Maximum possible degree

Normalization divides the fuzzy degree of a vertex by the maximum possible fuzzy degree in

the graph, providing a value between 0 and 1.

The fuzzy degree of a vertex in a fuzzy graph is a crucial measure, especially when analyzing

the centrality or importance of vertices in a network where relationships have varying strengths.

It allows for a more nuanced understanding of the connectivity and influence of vertices in fuzzy

graphs, where the relationships are not simply present or absent but exist with varying degrees of

intensity or fuzziness.

In the context of fuzzy graphs, where edges have degrees of membership indicating the strength

of relationships between vertices, the Handshaking Lemma can be adapted to accommodate these

fuzzy relationships.

Lemma 2.1. Let G(p, q) be a complex fuzzy graph and V is the set of fuzzy vertices, then∑
v∈V

Fuzzy Degree(v) = 2× Fuzziness in all edges

Proof. Let us use induction on size of G = (V, E).

|µS(t)|+ |µS(t)| = 2(|µS(t)|) = 2(Fuzziness in all edges)

If a person may or may not shakes hand to two people, then

Then total fuzziness in edges

|µ1
S(t)|+ |µ

2
S(t)|+ |µ

1
S(t)|+ |µ

2
S(t)| = 2(|µ1

S(t)|+ |µ
2
S(t)|) = 2(Fuzziness in all edges)

Let the result is true for n. A person may or may not shacks hands with n people.
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|µ1
S(t)|+ |µ

2
S(t)|+ ... + |µn

S(t)|+ |µ
1
S(t)|+ |µ

2
S(t)|+ ... + |µn

S(t)|

= 2(|µ1
S(t)|+ |µ

2
S(t)|+ ... + |µn

S(t)|)

= 2(Fuzziness in total edges)

Add one more vertex and edge that is v shakes hand with n+1 persons (adding one more n+1)

Shaking hand with more person (adding one more edge), mathematically

|µ1
S(t)|+ |µ

2
S(t)|+ ... + |µn

S(t)|+ |µ
1
S(t)|+ |µ

2
S(t)|+ ...

+|µn
S(t)| + |µ

n+1
S (t)| + |µn+1

S (t)|

= 2(|µ1
S(t)|+ |µ

2
S(t)|+ ... + |µn

S(t)|+ |µ
n+1
S (t)|) = 2(Fuzziness in total edges)

�

This proof shows that the total strength of relationships (total edge fuzziness) in a fuzzy graph

is equal to the sum of the strengths of relationships of all vertices (fuzzy degrees). It adapts

the traditional Handshaking Lemma to accommodate the fuzzy nature of relationships in fuzzy

graphs.

Example 2.1. Consider the following complex fuzzy graph
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A =


0 0.5 + 0.6i 0.3 + 0.9i 0.1 + 0.1i

0.5 + 0.6i 0 0.1 + 0.3i 0.2 + 0.3i
0.3 + 0.9i 0.1 + 0.3i 0 0

0.1 + 0.1i 0.2 + 0.3i 0 0


The eigenvalues of this matrix are:

0.6466 + 1.2501i, 4.2738× 10−2 + 0.11438i, − 0.2196− 0.456 53i, − 0.46974− 0.90799i

The complex energy of the this graph is the sum of eigenvalues

The multiplicative inverse of the matrix with trace 0 and rank 4 is.
0 0 0.348 31− 1.1573i −0.561 80 + 0.89888i

0 0 −0.04494 4 + 0.47191i 1.685 4− 2.6966i

0.348 31− 1.1573i −449.4 4 + 0.47191i −0.270 82− 0.85297i −0.450 83 + 3.3573i

−0.561 80 + 0.89888i 1.685 4− 2.6966i −0.450 83 + 3.357 i 2.158 8− 4.8024i


The singular values are: [1.447 5, 1.087 0, 0.478 73, 0.118 16]

In robotics and sensor networks, graphs model connectivity and relationships between different

sensors or robotic agents. Singular values can be applied to optimize sensor placements, network

connectivity, and localization algorithms.
0 0.5 + 0.6i 0.3 + 0.9i 0.1 + 0.1i

0.5 + 0.6i 0 0.1 + 0.3i 0.2 + 0.3i

0.3 + 0.9i 0.1 + 0.3i 0 0

0.1 + 0.1i 0.2 + 0.3i 0 0




0 0.5 + 0.6i 0.3 + 0.9i 0.1 + 0.1i

0.5 + 0.6i 0 0.1 + 0.3i 0.2 + 0.3i

0.3 + 0.9i 0.1 + 0.3i 0 0

0.1 + 0.1i 0.2 + 0.3i 0 0


The trace usual product of matrices is −1.92 + 2.68i with transpose


−0.83 + 1.16i −0.25 + 0.23i −0.13 + 0.21i −0.08 + 0.27i
−0.25 + 0.23i −0.24 + 0.78i −0.39 + 0.63i −0.01 + 0.11i
−0.13 + 0.21i −0.39 + 0.63i −0.8 + 0.6i −0.13 + 0.21i
−0.08 + 0.27i −0.01 + 0.11i −0.13 + 0.21i −0.05 + 0.14i


Example 2.2. Consider the following complex fuzzy graph
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The complex fuzzy adjacency of this graph

ACFAM =


0 1

2 i 1
2 0

1
2 i 0 1

3 i 0
1
2

1
3 i 0 1

4

0 0 1
4 0


The eigenvalues:

1

6 6
√

173
746 496

√
3
√

1433 + 1201 735
80 621 568

√√√√√√ 9
(

173
746 496

√
3
√

1433 + 1201 735
80 621 568

) 2
3

−
7
24

3
√

173
746 496

√
3
√

1433 + 1201 735
80 621 568 −

3839
20 736

+

1

6 6
√

173
746 496

√
3
√

1433 + 1201 735
80 621 568

4

√√√√√√√√√√√√√ 9

 173
746 496

√
3
√

1433

+ 1201 735
80 621 568


2
3

−
7
24

3
√

173
746 496

√
3
√

1433 + 1201 735
80 621 568 −

3839
20 736√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√

3839
20 736

√√√√√
9
(

173
746 496

√
3
√

1433 + 1201 735
80 621 568

) 2
3

−
7
24

3
√

173
746 496

√
3
√

1433 + 1201 735
80 621 568 −

3839
20 736

−
1
2

√
6
√

173
13 824

√
3
√

1433 + 1201 735
1492 992

−
7

12
3
√

173
746 496

√
3
√

1433 + 1201 735
80 621 568

√√√√√√√√√√√√√ 9

 173
746 496

√
3
√

1433

+ 1201 735
80 621 568


2
3

−
7

24
3
√

173
746 496

√
3
√

1433 + 1201 735
80 621 568 −

3839
20 736

−9
(

173
746 496

√
3
√

1433 + 1201 735
80 621 568

) 2
3

√√√√√
9
(

173
746 496

√
3
√

1433 + 1201 735
80 621 568

) 2
3

−
7
24

3
√

173
746 496

√
3
√

1433 + 1201 735
80 621 568 −

3839
20 736

,

1

6 6
√

173
746 496

√
3
√

1433 + 1201 735
80 621 568

√√√√√√ 9
(

173
746 496

√
3
√

1433 + 1201 735
80 621 568

) 2
3

−
7
24

3
√

173
746 496

√
3
√

1433 + 1201 735
80 621 568 −

3839
20 736

−
1

6 6
√

173
746 496

√
3
√

1433 + 1201 735
80 621 568

4

√√√√√
9
(

173
746 496

√
3
√

1433 + 1201 735
80 621 568

) 2
3

−
7
24

3
√

173
746 496

√
3
√

1433 + 1201 735
80 621 568 −

3839
20 736
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√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√

3839
20 736

√√√√√
9
(

173
746 496

√
3
√

1433 + 1201 735
80 621 568

) 2
3

−
7

24
3
√

173
746 496

√
3
√

1433 + 1201 735
80 621 568 −

3839
20 736

−
1
2

√
6
√

173
13 824

√
3
√

1433 + 1201 735
1492 992

−
7

12
3
√

173
746 496

√
3
√

1433 + 1201 735
80 621 568

√√√√√
9
(

173
746 496

√
3
√

1433 + 1201 735
80 621 568

) 2
3

−
7
24

3
√

173
746 496

√
3
√

1433 + 1201 735
80 621 568 −

3839
20 736

−9
(

173
746 496

√
3
√

1433 + 1201 735
80 621 568

) 2
3

√√√√√
9
(

173
746 496

√
3
√

1433 + 1201 735
80 621 568

) 2
3

−
7

24
3
√

173
746 496

√
3
√

1433 + 1201 735
80 621 568 −

3839
20 736

,

1

6 6
√

173
746 496

√
3
√

1433 + 1201 735
80 621 568

4

√√√√√
9
(

173
746 496

√
3
√

1433 + 1201 735
80 621 568

) 2
3

−
7

24
3
√

173
746 496

√
3
√

1433 + 1201 735
80 621 568 −

3839
20 736√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√

3839
20 736

√√√√√
9
(

173
746 496

√
3
√

1433 + 1201 735
80 621 568

) 2
3

−
7
24

3
√

173
746 496

√
3
√

1433 + 1201 735
80 621 568 −

3839
20 736

+

1
2

√
6
√

173
13 824

√
3
√

1433 + 1201 735
1492 992 −

7
12

3
√

173
746 496

√
3
√

1433 + 1201 735
80 621 568√√√√√

9
(

173
746 496

√
3
√

1433 + 1201 735
80 621 568

) 2
3

−
7

24
3
√

173
746 496

√
3
√

1433 + 1201 735
80 621 568 −

3839
20 736

−9
(

173
746 496

√
3
√

1433 + 1201 735
80 621 568

) 2
3

√√√√√
9
(

173
746 496

√
3
√

1433 + 1201 735
80 621 568

) 2
3

−
7

24
3
√

173
746 496

√
3
√

1433 + 1201 735
80 621 568 −

3839
20 736

−

1

6 6
√

173
746 496

√
3
√

1433 + 1201 735
80 621 568

√√√√√√ 9
(

173
746 496

√
3
√

1433 + 1201 735
80 621 568

) 2
3

−
7

24
3
√

173
746 496

√
3
√

1433 + 1201 735
80 621 568 −

3839
20 736

,−

1

6 6
√

173
746 496

√
3
√

1433 + 1201 735
80 621 568

√√√√√√ 9
(

173
746 496

√
3
√

1433 + 1201 735
80 621 568

) 2
3

−
7

24
3
√

173
746 496

√
3
√

1433 + 1201 735
80 621 568 −

3839
20 736

−

1

6 6
√

173
746 496

√
3
√

1433 + 1201 735
80 621 568

4

√√√√√
9
(

173
746 496

√
3
√

1433 + 1201 735
80 621 568

) 2
3

−
7

24
3
√

173
746 496

√
3
√

1433 + 1201 735
80 621 568 −

3839
20 736
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√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√

3839
20 736

√√√√√
9
(

173
746 496

√
3
√

1433 + 1201 735
80 621 568

) 2
3

−
7
24

3
√

173
746 496

√
3
√

1433 + 1201 735
80 621 568 −

3839
20 736

+ 1
2

√
6
√

173
13 824

√
3
√

1433 + 1201 735
1492 992

−
7

12
3
√

173
746 496

√
3
√

1433 + 1201 735
80 621 568

√√√√√
9
(

173
746 496

√
3
√

1433 + 1201 735
80 621 568

) 2
3

−
7

24
3
√

173
746 496

√
3
√

1433 + 1201 735
80 621 568 −

3839
20 736

−9

 173
746 496

√
3
√

1433

+ 1201 735
80 621 568


2
3

√√√√√
9
(

173
746 496

√
3
√

1433 + 1201 735
80 621 568

) 2
3

−
7

24
3
√

173
746 496

√
3
√

1433 + 1201 735
80 621 568 −

3839
20 736

This example has its own importance while we are dealing real life phenomenon. It is sometimes

quite difficult to apply the energy of the adjacency matrix. Thus it is worth mentioning here that

some times the energy of the adjacency matrix of a complex fuzzy graph is so complicated and is

quite hard to use it for applications in other branches of science, especially in signals. Therefore

we need to find the complex Laplacian energy, especially for applications point of view if we are

dealing with models carrying two dimensional ill-defined dynamic phenomenon.

In order to find the complex fuzzy Laplacian energy, first we need to find the complex fuzzy

diagonal matrix.

Example 2.3. The complex fuzzy degree matrix of the above complex fuzzy graph is

DCFDM =


0.5 + 0.5i 0 0 0

0 0.833i 0 0

0 0 1.16i 0

0 0 0 0.25


Now the complex fuzzy Laplacian matrix is

LCFLM =


0.5 + 0.5i 0 0 0

0 0.833i 0 0

0 0 1.16i 0

0 0 0 0.25

−


0 1
2 i 1

2 0
1
2 i 0 1

3 i 0
1
2

1
3 i 0 1

4

0 0 1
4 0


=


0.5 + 0.5i −

1
2 i −

1
2 0

−
1
2 i 0.833i −

1
3 i 0

−
1
2 −

1
3 i 1.16i −

1
4

0 0 −
1
4 0.25


The eigenvalues of complex fuzzy Laplacian matrix are

0.692 26 + 0.73777i, 0.270 77 + 1.891 5× 10−2i,−3.316 3× 10−2 + 0.316 73i,−0.179 87 + 1.4196i

The absolute average eigenvalue of the complex fuzzy Laplacian energy is give as:
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|λ|AAEV = |0.692 26 + 0.73777i + 0.270 77 + 189.15i− 331.63 + 0.316 73i

+ − 0.179 87 + 1.4196i| ÷ 4

=
| − 330.84684 + 191.6241i|

4
=

382.334184
4

= 95.583546

The average eigenvalue of the complex fuzzy Laplacian matrix is directly related to the connec-

tivity of graphs. A high average eigenvalue shows that the graph is well-connected with vertices

are strongly interrelated which indicates strongly two dimensional relations. In the context of a

complex fuzzy graph, this suggests strong and complex relationships between individuals (ver-

tices). A large average eigenvalue in signals that signals can efficiently circulate across the vertices

(nodes), allowing for efficient processing and extraction of meaningful information from the com-

plex signals represented by the complex fuzzy graphs.

Practical Example of Complex Fuzzy Dynamic Graphs.

Example 2.4. Consider the following three friends a, b and c are connected through social network and the
edges shows the strength and emotions of their friendship, then the complex fuzzy graph is given as under

A new person (vertex) say d joining the network and add the person (vertex) a, then

Example 2.5. Consider the simple example of three signals received on mobile.

Then appearance of the Wi-Fi signals on mobile, Wi-Fi is the addition of a new vertex and edge between
mobile and Wi-Fi is the addition of a new edge.
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A mobile (a digital receiver) received three signals of sim 1, sim 2 and Wi-Fi. Once can easily observe
that at different times and different places the mobile will show some times full signals, half and some times
less than half signals for each signals. Thus there is uncertainties of received signals. In order to represent
his situation we draw the following graph

Now the degree of the vertices will be in fractions. Thus we get the following degree matrix.

DCFDM =


1
2 + i 0 0 0

0 1
2 0 0

0 0 1
3 + 0.2i 0

0 0 0 4
3 + 0.3i


Where µSi(t) for 1 ≤ i ≤ 3, represents the complex fuzzy uncertainties of all three signals.

Now the complex adjacency matrix of above simple graph is considered as

ACFAM = ACFAM(G) =


0 0.5 + 0.1i 0.6 + 0.7i 0.4 + 0.2i

0.5 + 0.1i 0 0 0

0.6 + 0.7i 0 0 0

0.4 + 0.2i 0 0 0


The the Laplacian matrix is

LCFLM = DCFDM −ACFAM =


1
2 + i 0 0 0

0 1
2 0 0

0 0 1
3 + 0.2i 0

0 0 0 4
3 + 0.3i


−


0 0.5 + 0.1i 0.6 + 0.7i 0.4 + 0.2i

0.5 + 0.1i 0 0 0

0.6 + 0.7i 0 0 0

0.4 + 0.2i 0 0 0


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=


1
2 + i −0.5− 0.1i −0.6− 0.7i −0.4− 0.2i

−0.5− 0.1i 1
2 0 0

−0.6− 0.7i 0 1
3 + 0.2i 0

−0.4− 0.2i 0 0 4
3 + 0.3i


Universal complex adjacency matrix. The complement of a complex adjacency matrix A =

[µS(t)]n×n is defined as an n× n matrix whose all entries are 1 + 1i.

Example 2.6.

[µS(t)]
UCAM
m×n =


1 + 1i 1 + 1i 1 + 1i 1 + 1i
1 + 1i 1 + 1i 1 + 1i 1 + 1i
1 + 1i 1 + 1i 1 + 1i 1 + 1i
1 + 1i 1 + 1i 1 + 1i 1 + 1i

 .

Zero complex adjacency matrix. A complex adjacency matrix A = [µS(t)] n is called zero matrix

if each entry of the matrix is 0, and is denoted by [0]ZCAM.

Example 2.7.

[0]ZCFAM =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 .

Complement of complex adjacency matrix. If A(G) = [µS(t)]n×n is a complex adjacency matrix,

then complement of A(G) is Ac(G) = [µS(t)]
c
n×n and defined as:

[µS(t)]c = [µS(t)]
UCAM
m×n − [µS(t)].

Example 2.8. Consider ACFAM(G) be a complex adjacency matrix such that

ACFAM = A(G) =

 0.2 + 0.3i 0.3 + 0.2i
0.1 + i 0.9


2×2

Then complement of this matrix is given as:

AC
CFAM(G) =

 0.8 + 0.7i 0.7 + 0.8i
0.9 0.1 + i


2×2

.

Union of complex adjacency Matrices. Let A(G) = [µS(t)] and B(G) = [χS(t)] be complex

fuzzy adjacency matrices. Then Union of A(G) and B(G) denoted by A(G)∪ B(G) and defined as

C(G) = [max{Re{µS(t),χS(t)}}+ max{imaginary
{
µS(t),χS(t)

}
}], for all t.

Intersection of complex adjacency Matrices. Let A(G) = [µS(t)] and B(G) = [|χS(t)|] be

complex adjacency matrices. Then intersection of A(G) and B(G) denoted by A(G) ∩ B(G) and

defined as

C(G) = [min
{
real(µS(t)), (χS(t))

}
+ min{imaginary(µS(t)), (χS(t))], for all t.
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We introduce the following results with rather simple proofs.

Lemma 2.2. Let [µS(t)] be a n× n complex adjacency matrix then
(i) ([µS(t)]c)c = [µS(t)]
(ii) [0]cZCFAM = [µS(t)]

UCAM
m×n and

(
[µS(t)]

UCAM
m×n

)c
= [0]ZCFAM

Lemma 2.3. If [µS(t)], [χS(t)] and [γS(t)] are n× n complex adjacency matrices then
(i) [µS(t)]∪ [χS(t)] = [χS(t)]∪ [µS(t)]
(ii) [µS(t)] ∩ [χS(t)] = [χS(t)] ∩ [µS(t)]
(iii) ([µS(t)]∪ [χS(t)]) ∪ [γS(t)] = [µS(t)]∪ ([χS(t)] ∪ [γS(t)])
(iv) ([µS(t)]∩ [χS(t)]) ∩ [γS(t)] = [µS(t)]∩ ([χS(t)] ∩ [γS(t)])
(v) [µS(t)] ∪ ([χS(t)] ∩ [γS(t)]) = ([µS(t)]∪ [χS(t)]) ∩ ([µS(t)]∪ [γS(t)])
(vi) [µS(t)] ∩ ([χS(t)] ∪ [γS(t)]) = ([µS(t)]∩ [χS(t)]) ∪ ([µS(t)]∩ [γS(t)]) .

Proposition 2.1. Let [|µS(t)|] be n× n complex adjacency matrices. Then
(i) [µS(t)]∪ [µS(t)] = [µS(t)]
(ii) [µS(t)]∩ [µS(t)] = [µS(t)].

Proposition 2.2. Let [µS(t)] and [χS(t)] be n × n complex adjacency matrices. Then De Morgan’s laws
hold for these matrices

(1) ([µS(t)]∪ [χS(t)])
c = [µS(t)]c ∩ [χS(t)]

c

(2) ([µS(t)]∩ [χS(t)])
c = [µS(t)]c ∪ [χS(t)]

c

Proof. (i)

([µS(t)]∪ [χS(t)])
c = [max Re{µS(t),χS(t)}}+ max{imaginary

{
µS(t),χS(t)

}
}]c

= [µS(t)]
UCAM
m×n −

 max Re{µS(t),χS(t)}}
+max{imaginary

{
µS(t),χS(t)

}
}


= min{[µS(t)]

UCAM
m×n −

 max Re{µS(t),χS(t)}}
+max{imaginary

{
µS(t),χS(t)

}
}

}
= [|µS(t)|]c ∩ [|χS(t)|]

c

�

(ii) It can be proved similarly.

Theorem 2.1. If x and y are any tow vertices of a graph G(V, E) such that | N(x) ∩N(y) |=| µS(ţ) | and
d(v) = r for each v of G, and G has smallest cycle of length five, where µS(ţ) is a complex fuzzy set. Find
order and size the graph G.

Proof. Let us draw the general complex fuzzy graph as �
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The total number of vertices in above graph is obviously

= 1 + r + r(r− 1) = 1 + r + r2
− r = r2 + 1

Let there exists a graph G which satisfies the given conditions. Let A be a matrix for G.

Let ai j =| µS(ţ) | if i ∼ j. aii = 0 if i / i that is i = i. A is n × n matrix and is symmetric that is

AT = A. Sum of the ith row
n∑

j=1

ai j = ai1 + ai2 + ... + ain

This show the degree of vertex i in G. Let

P = A2 = A×A, where pi j =
n∑

k=1

aikakj

Thus

aik.akj =| µS(ţ) |2 ⇐⇒ aik =| µS(ţ) | and akj =| µS(ţ) |

pi j =
n∑

k=1

aikakj =| N(i)∩N( j) |

Now if ai j = 0, then pi j = 1, for i j < E. Moreover if ai j = 1 then pi j = 0, for i j ∈ E. Thus

ai j = 0, Pi j =| N(x)∩N(y) |=| N(i) |= r and Pir = r

Now as A is symmetric so

aik = aikpii =
n∑

k=1

aik.aki =
n∑

k=1

aikaik =
n∑

k=1

a2
ik =

n∑
k=1

aik

Since pii = d(i), aii = 0 and pii = r. Thus

A + A2 = J + (r− 1)I

If A is symmetric then all its eigenvalues of A are real. Note that A is called eigenvalue of A if

Av = λv, as A = AT. Thus ATv = λv =⇒ Av =
−

Ā = λv

A
⇀
v = A

⇀
v

Let
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⇀
d =



1

1

1

.

.

.

1


n

; di = 1 for all i

A
⇀
d =

n∑
j=1

ai jd j = r
⇀
d , as

n∑
j=1

ai j = r

where r is the eigenvalue and
⇀
d is the eigenvector.

Now

A + A2 = J + (r− 1)I

A
⇀
d + A2

⇀
d = J

⇀
d + (r− 1)I

⇀
d

r
⇀
d + r2

⇀
d = n

⇀
d + (r− 1)

⇀
d

(r + r2)
⇀
d = n

⇀
d + r

⇀
d −

⇀
d

r + r2 = n + r− 1

n = r2 + 1

Let λ be an arbitrary any other eigenvalue and v be the eigenvector A
⇀
v = λ

⇀
v , A2⇀v = λ

⇀
v

λ
⇀
v + λ2⇀v = J

⇀
v + (r− 1)

⇀
v

(λ+ λ2)
⇀
v = 0 + (r− 1)

⇀
v

(λ+ λ2) = r− 1

λ+ λ2 + 1− r = 0

λ =
−1

−

+
√

4r− 3
2

λ1 =
−1 +

√
4r− 3

2
,λ2 =

−1−
√

4r− 3
2

let S =
√

4r− 3

λ1 =
−1 + S

2
,λ2 =

−1− S
2

(a). The eigenvalues λ1,λ2, r
(b). Let m1 is the multiple of λ1 and m2 is the multiple o f λ2. Number of vectors= m1 +m2 + 1 =

n = r2 + 1
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(c). Sum of eigenvalues is the traces of matrices and trace of (A) = 0 + ... + 0 = 0. Thus

λ1m1 + λ2m2 + r = 0

m1 + m2 − r2 = 0

λ1m1 + λ2m2 + r = m1 + m2 − r2

m1(λ1 − 1) + m2(λ2 − 1) + r2 + r = 0

m1(S− 3) + m2(−S− 3) + 2r2 + 2r = 0

S(m1 −m2) − 3(m1 + m2) + 2r2 + 2r = 0

S(m1 −m2) − 3r2 + 2r2 + 2r = 0

S(m1 −m2) − r2 + 2r = 0

r2
− 2r− S(m1 −m2) = 0

We know that r is an integer (degree) and S =
√

4r− 3, 4r − 3 is also an integer hence S is the

square root of an integer and for square root of an integer there are two cases.

(i). Either an integer.

(ii). Irrational.

If S is irrational, then r2
− 2r− S(m1 −m2) = 0 which is a contradiction.

So if S is rational then m1 −m2 = 0 =⇒ m1 = m2 ∴ r2
− 2r = 0 =⇒ r = 0, r = 2

(ii). If S is an integer then r = S2+3
4 put in r2

− 2r− S(m1 −m2) = 0,

S2 + 9 + 6S2

4
−

2S2
− 6

4
− S(m1 −m2) = 0

S4 + 6S2 + 9− 8S2
− 6.4− 16S(m1 −m2) = 0

S4
− 2S2

− S(16m1 − 16m2) − 15 = 0

S4
− 2S2

− 16S(m1 −m2) = 15

This equation can be solved if S is divided 15 so possible values of S are S = 1, 3, 5, 15

S = 1 =⇒ r = 1

S = 3 =⇒ r = 3

S = 5 =⇒ r = 7

S = 15 =⇒ r = 57 and so on

3. Applications of Complex Fuzzy Dynamic Graphs in Signals

Here in this section we are going to discuss a real life application of newly defined complex

fuzzy dynamic graphs using the concepts of complex fuzzy sets by introducing an algorithm.

This will show that how our these graphs and the eigenvalues of their complex fuzzy dynamic

graphs offer real life applications. Specifically the average absolute eigenvalues explain how to
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distinguish a reference clean signal mixed up with noise. A radar (Radio Detection and Ranging)

is an device which can detect surrounding objects using radio waves.

The average eigenvalue of a complex fuzzy Laplacian matrix is the extension of the fuzzy Lapla-

cian matrix of a graph to incorporate fuzzy information by introducing the concepts of amplitude

and phase terms. In this matrix, each entry shows the strength of the complex fuzzy relationship

between vertices in the complex fuzzy graph. The average eigenvalues have large number of

application in various fields in social/biological networks data clustering, traffic flow, Bioinfor-

matics, Sociology, Anthropology, wireless sensor networks, quantum information theory, image

processing, social sciences, and computer science, network stability and signals and systems. If

vertices in social/biological networks have complex fuzzy memberships to different communities,

the average absolute eigenvalue can capture the strength of these memberships and help identify

communities in a more nuanced way. The absolute average eigenvalue of the complex fuzzy

Laplacian matrix can be applied to assess the stability of complex fuzzy networks. Certain range

of absolute eigenvalues are needed for stability in network and deviations from such values may

show high instability in the network. Absolute eigenvalues play vital role in community detec-

tion algorithms. Mostly communities are associated with certain eigenvalues and their absolute

average eigenvalue could help in identifying the overall community structure. Complex fuzzy

graphs represent signals flow in communication systems and the eigen values of their Laplacian

matrices are used for detection of errors while the average absolute eigenvalues are used for ef-

ficiently design of error detections. Complex fuzzy graphs are useful for modeling the relations

between different parts of images and the eigenvalues of their Laplacian matrices can aid in image

segmentation while the absolute average eigenvalues give information about the homogeneity

of image regions. Eigenvalues are widely used in clustering algorithms. Complex fuzzy graphs

can represent relationships in multidimensional data. Analyzing the eigenvalues, particularly the

absolute average eigenvalue, can assist in determining the optimal number of clusters and the

quality of the clustering in complex fuzzy data sets. The absolute average eigenvalues are used

in studying some specific type of quantum systems. The applications mentioned above elaborate

the diversified usefulness of the absolute average eigenvalues of the complex fuzzy Laplacian

matrices in several branches of sciences, making these concepts as useful tools to analyze systems

representing by the complex fuzzy graphs. In robotics and sensor networks, spectral methods are

used for localization and mapping. Eigenvalues of the Laplacian matrix, including the average

eigenvalue, help in determining the relative positions of robots or sensors in an environment.
The fuzzy absolute average eigenvalues of the Laplacian matrix within [0, 1], specify different

informations for the fuzzy relationships between clean and noisy signals in any network. If

the fuzzy absolute average eigenvalue of the Laplacian matrix of the complex fuzzy graph lie

with in the range [0.6,1], then this will generally indicates the moderate to strong complex fuzzy

relations between vertices in the complex fuzzy graphs that is the connections between vertices

are strong or can be considered similar to their vertices are neighborhood vertices. As far as the
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applications are concerning in signals, the absolute average eigenvalue approaching to 1 provide

the indications of strong relation between clean and noisy signals and this situation has the

potential to separate clean signals from noisy signals and could be identify as reliable reference

signals. This eigenvalue analysis is useful to reveal dominant patterns and structures in the graph,

which are helping for identification of vertices (signals) which are relatively stable and can be

identifies as references signals in the presence of noise in the environment. Graphs of signals with

such complex fuzzy relationships are strength full in noisy environments. The strong connections

between vertices make the graph more resilient to noise, allowing for the identification of reliable

reference signals even when the signals are corrupted to some extent. More applications of

the absolute average eigenvalues could be find in telecommunications, image processing, sensor

networks, and bioinformatics, where identifying stable references in the presence of uncertainties

is crucial. While a fuzzy absolute average eigenvalue near to 0 guarantee the existence of very

weak relation between clean and distort signals in the specific network of consideration. The very

low value eigenvalue indicates that the fuzzy relation between clean and noisy signals are almost

negligible that is the connection between clean signals and noisy signals is nearly zero in the

network and with such undernourished fuzzy relation it is quite difficult to separate clean signals

from distort signals. Thus for the identification of clean signals we need advanced methods and

procedures of signals processing and such techniques include advanced statistical algorithms or

machine learning algorithms for extracting reasonable and reliable information from the provided

data and to identify reliable reference signals. The fuzzy absolute average eigen value near to 0.5

provide sensible and midst ambiguous relationships between clean and noisy signals. The middle

value suggests that there exist moderate fuzzy relationships between clean and noisy signals.

While not exceptionally strong, these relationships have more potential for identifying patterns

and connections compared to the case with a value of near to 0. In this case there is way to separate

clean signals from noisy ones. Thus there are certain signals making then reliable to consider as

reference signals. This situation has the potential to analyze and reveal some dominant patterns

or structures in the network. While the relationships are moderate, specific signals might stand

out as relatively reliable amidst the noise. Further analysis and signal processing techniques can

enhance the identification of these signals. Usually signals in audio and image processing are

interfered by noise. The eigenvalue analysis is an easy and reliable approach to identify reference

signals amidst the noise.

Algorithm 1
Step 1.
If a receiver gets some signals S1(t), S2(t), S3(t), ..., Sm(t) from any source. Each signal is sampled

N times by the receiver. Then Si(t) (i varies from 1 to m) signals can be recognized with respect to

R, where R is a reference signal. Assume that both Si(t) and R are considered as n times.

Assume that S j(t) is i-th signal, where 1 ≤ t ≤ m. Since all the signals cannot be received exactly

on digital receiver so let |µS j(t)| be representing their receiving approximations on the receiver.
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Then each S j(t) in terms of discrete complex Fourier transform as given as follows:

S j(t) =
1
n

n∑
s=1

g j,s · e
2πi(s−1)(t−1)

n ,

where g j,n is the complex Fourier coefficients of signals S j, and S j(t) varies from 1 to m.

Now draw the graphs by taking all combinations of signals considering one signal as missing

signal in each combination, without lost of generality, let the ignoring signal be S j(t).

G(S j(t))

The complex adjacency matrices for graphs G(S j(t)) are given below

Ai[G(S j(t))] =


0 µS1(t) ... µSm(t)

µS1(t) 0 ... 0

. . 0 .

µSm(t) 0 ... 0

 , for 1 ≤ i ≤ m

Step 2. Take intersection of complex adjacency matrices to get

A[G(S j(t))] = A1[G(S j(t))∩A2[G(S j(t))∩ ...∩Am[G(S j(t))

Step 3. Find the complex fuzzy diagonal matrix D

D =


µS1(1) 0 ... 0

0 µS2(2) ... |0

. . . .

0 0 ... µSm(m)


Step 4. Find complex fuzzy Laplacian matrix using the know criteria for Laplacian.

Step 5. Find eigenvalues of complex fuzzy Laplacian matrix.

Step 6. Find absolute average eigenvalue. The fuzzy absolute average eigenvalue of the Lapla-

cian matrix is used to identify average strength between distort and clean signals. The obtained

eigenvalue is inversely proportional to the said strength which means that higher the strength

between clean and noisy signals less the eigenvalue.

Assessment: Identifications of Reference Signals within the Less Noisy Environments

To analyzed the algorithm and its effectiveness of reliability, we are considering a case study of

signals in noisy environments.
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Step 1. The complex adjacency matrices for signals two and three received by the digital receiver

A1 =


0 0.2 + i 0.3 + 0.1i

0.2 + i 0 0

0.3 + 0.1i 0 0


The complex fuzzy graph for signals S1(t) and S3(t) is given as

The adjacency matrix for signals two and three received by the receiver
0 0.3 + i 0.4 + i

0.3 + i 0 0

0.4 + i 0 0


The complex fuzzy graph for signals S2(t) and S3(t) is given as

The adjacency matrix for signals two and three received by the receiver


0 0.4 + 0.2i 0.5 + 0.3i

0.4 + 0.2i 0 0

0.5 + 0.3i 0 0


Step 2. Find the minimum complex fuzzy adjacency matrix

A = A1 ∩A2 ∩A3 =


0 0.2 + 0.2i 0.3 + 0.1i

0.2 + 0.2i 0 0

0.3 + 0.1i 0 0


Step 3. The the complex fuzzy diagonal for the signals S1(t), S2(t), S3(t)
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
1 + i 0 0

0 0.2 + 0.3i 0

0 0 0.4 + 0.2i


Step 4. The Complex fuzzy Laplacian matrix

LCFLM = DCFDM −ACFAM =


1 + i −0.2− 0.2i −0.3− 0.1i

−0.2− 0.2i 0.2 + 0.3i 0

−0.3− 0.1i 0 0.4 + 0.2i


Step 5. The eigenvalues of the Laplacian matrix are: 1.130 1+ 1.034 3i, 0.337 17+ 0.241 24i, 0.132 75+

0.224 44i. Then the average eigenvalue is given as

(1.130 1 + 1.034 3i) + (0.337 17 + 0.241 24i) + (0.132 75 + 0.224 44i)
3

=
1.60002 + 1.49998i

3
= 0.53334 + 0.499993i

Then the absolute eigenvalue

|λ|CFLEV = |0.53334 + 0.499993i| =
√

.28445 + 0.249993 = 0.7311

Step 6. In the context of fuzzy Laplacian matrices and eigenvalue analysis, a fuzzy absolute

average eigenvalue of 0.7311 indicates the average strength of the fuzzy relationships in the

network. An average absolute eigenvalue of the complex fuzzy graph with value 0.7311 provide a

strong comlpex fuzzy relationships between clean and noisy signals. This strength indicates that

it is easy to completely separate clean signals from noisy ones.

Assessment: Identifications of Reference Signals within the Larger Noisy Environments

Step 1. The complex adjacency matrix for signals two and three received by the digital receiver.

The complex fuzzy graph for signals S1(t) and S2(t) is given as:
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A1 =


0 0.01 + i 0.04 + 0.5i

0.01 + i 0 0

0.04 + 0.5i 0 0


The complex fuzzy adjacency for signals S1(t) and S3(t) is given as


0 0.9 + 0.02i 0.5 + 0.03i

0.9 + 0.02i 0 0

0.5 + 0.03i 0 0


The complex fuzzy adjacency matrix for signals S2(t) and S3(t) is given as


0 0.6 + 0.3i 0.8 + 0.9i

0.6 + 0.3i 0 0

0.8 + 0.9i 0 0


Step 2. The complex fuzzy intersection of the adjacency matrices

A = A1 ∩A2 ∩A3 =


0 0.01 + 0.02i 0.04 + 0.03i

0.01 + 0.02i 0 0

0.04 + 0.03i 0 0


Step 3. The complex fuzzy diagonal matrix for graph is given as
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DCFDM =


0.002 + 0.001i 0 0

0 0.03 + 0.005i 0

0 0 0.001 + 0.006i


Step 4. The complex fuzzy Laplacian matrix for graph is given as

LCFLM = DCFDM −ACFAM =


0.002 + 0.001i −0.01− 0.02i −0.04− 0.03i
−0.01− 0.02i 0.03 + 0.005i 0

−0.04− 0.03i 0 0.001 + 0.006i


Step 5. Eigenvalues of the Laplacian matrix are:

4.497 0× 10−2 + 3.946 0× 10−2i, 2.565 4× 10−2 + 2.376 3× 10−3i,−3.762 4× 10−2
− 2. 983 6× 10−2i

The average eigenvalue is:

0.04497 + .03946 0i + (0.02565 4 + 0.002376 3i) + (−0.03762 4− 0.029836i)
3

= 0.03 + 0.012i

Thus the absolute average eigenvalue is given as:

|λ|CFAEV =
√

0.0009 + 0.000144 =
√

0.001044 = 0.03

Step 6. In the context of fuzzy Laplacian matrices and eigenvalue analysis, a fuzzy absolute

average eigenvalue of 0.03 indicates the average strength of the fuzzy relationships in the network.

The average eigenvalue 0.03 provide the indications of weak relation between clear and nosy

signals which yields that it is quite difficult to separate clean signals from noise ones.

In this case we need some advanced techniques for identification of reference signals. And one

of the techniques is Signal-to-Noise Ratio (SNR). This a ratio formula showing strength of a signal

within the noisy environments. This formula is used to find the ratio of strength of any electronic

signal or any other signal and strength of noise in the environment which effect the signal. This

formula provides the comparison of the desired signal to the level of background noise showing

that how much the signal is clear in the presence of noise.

SNR is typically expressed in decibels (dB) and can be calculated using the following formula

(from Wikipedia):

SNRdB = 10× log10

(
PSignal

PNoise

)
= 10 log10 PSignal − 10 log10 Pnoise

where PSignal the power of signal while Pnoise is the noise in the background. In this formula, P

is measurable in units of power, like watts (W) or milliwatts (mW), and the signal-to-noise ratio is

a simply a number.
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The high value of this ratio indicates that signal is stronger as compare to existing noise in the

environment while lower value shows the weak comparison to the noise, in this case it is difficult

to detect the signal precisely and accurately which provide information about existence of error

in the transmission of data and indicates the bad performance of the system. Different values

of this ratio shows diversified indications in the systems, for instance in telecommunications, a

particular SNR is needed for ensuring the clear voice communications and a specific value of SNR

is required for the accuracy of decoding transmitted information. A high value of SNR is necessary

for radar and medical imaging where weak signals need to be detected against a noisy background.

This guaranteed signals of carrying vital information (such as a tumor in a medical image or an

incoming aircraft in radar) cannot be lost in noisy background which is important for well decision

making. For improvements in SNR various techniques are used as filtering, modulation schemes,

and error-correcting codes to improve SNR. The purpose of such methods are, to improve the

strength of the signal in presence of disturbance such as noise in the environment for the good

quality of signals. In short Signal-to-Noise Ratio (SNR) is a dynamic formula that can be used

to measure the quality of a signal by comparing its strength to the noise in the environment. A

higher value of SNR indicates a cleaner and more reliable signal, while a small value of SNR gives

a weaker signal which will be challenging to detect and interpret the signal accurately.

4. Comparison Analysis

Complex fuzzy dynamic graphs, and their associated Laplacian matrices’ absolute eigenvalues,

provide useful and powerful tools for modeling complex systems involving two dimensional data

while fuzzy graph models provide a foundation for understanding relationships, but their one

dimensional limitation reduces their capacity to represent uncertainties with two dimensional am-

biguities. Fuzzy graph approaches are enhancements of traditional graphs but still they possesses

flaws for accommodating all kinds of imprecise relationships, especially the data with dynamic

nature. In contrast, complex fuzzy dynamic graphs possesses the capability for handling data

with two dimensional ambiguities with dynamic phenomenon. The absolute average eigenvalues

analysis of complex fuzzy Laplacian matrices not only reveals the underlying graph structures but

also provides unique spectral understandings which play a crucial role in signals processing. As

compare to the existing spectral methods and machine learning techniques, this approach provide

a superior role, particularly in scenarios where signals are effected by intricate, non-linear, and two

dimensional uncertain relationships within dynamic systems. This framework not only enriches

theoretical foundations but also significantly enhances the accuracy and interpretability of signals

processing tasks.

5. Conclusion

Dynamic natured real life phenomenon along with involvements of two dimensional data is the

crucial part of study and the complex fuzzy dynamic graphs, their the exploration of their Laplacian

matrices’ absolute eigenvalues provide well instructed path towards deeper comprehension and
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more refined analysis. We explored the properties of complex graphs, their corresponding complex

fuzzy Laplacian matrices with their absolute average eigenvalues. We gave several normal example

and example from daily life revealing the nature and importance of the complex fuzzy dynamic

graphs. By interpreting the spectral complexities encoded in the Laplacian matrices, we have

gained unprecedented insights into the underlying structures of complex phenomena, allowing for

more accurate and nuanced signal processing methodologies. We designed an algorithm using the

properties of average eigenvalues of the Laplacain complex fuzzy dynamic graphs and discussed

its applications in signals processing. This study through the intersection of complex fuzzy

dynamic graphs and real-world applications has not only broadened our limits in understanding

complex systems but also opened new ways to novel solutions in diverse fields, especially in signal

processing.
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