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Abstract. In this paper a mathematical model of drug consumption dynamics is proposed and analyzed. The model is

based on the principle of the epidemiological model and takes into account the biological and environmental factors

of exposed individuals, treatment and sensitization. The Jacobian determinant method is used to determine the basic

reproduction function R0 of the model. The drug-free equilibrium points and the endemic equilibrium of the model

were then identified, and their stabilities were analyzed based on the value of R0. A sensitivity analysis was performed

to assess which parameters have the greatest influence on the dynamics of drug consumption. The numerical simulation

was carried out using data from the Burkinabe population in 2020, aged between 11 and 65 years. The numerical results

show that sensitization and treatment do not have much effect if the individual evolves in a favorable environment.

1. Introduction

Drugs can be defined as any substance of natural origin or obtained through synthesis that,

when absorbed by a living organism, alters one or more of its functions [1]. Since the dawn of

civilization, humans have used drugs for healing, pain relief, ritual purposes, and to alter their

psyche and behavior [2]. Over the past 20 years, drug use has spread at an unprecedented rate,

affecting all regions of the globe. This scourge has led to a concomitant worsening of health

and social problems [3]. According to the United Nations Office on Drugs and Crime (UNODC),

approximately 284 million people worldwide, aged 15 to 65, the majority of whom are men, are

estimated to have used drugs throughout the year 2020. In Africa, the UNODC estimates that the

number of drug users among young adults ranges from 22 to 72 million, with a prevalence rate of
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approximately 3.8 % to 12.5 % [1]. In Burkina Faso, about 122 tons of drugs were seized in 2021,

compared to 240 tons in 2022 and over 300 tons in 2023. The Burkinabe government has intensified

its efforts to combat drug use through initiatives from the National Committee for the Fight

Against Drugs (CNLD). However, despite these efforts, the trend appears to indicate an increase in

consumption. Most studies on drug use often focus on medical, sociological, and epidemiological

aspects; however, in recent decades, mathematical modeling has increasingly been explored as an

important tool to understand and mitigate issues related to drug consumption in various countries

around the world. In 2007, White and Comiskey established one of the first discrete-event models

of opioid dependence based on the principles of mathematical epidemiology [4]. They studied the

dynamics using a thresholdR0 and demonstrated that prevention is more effective than treatment.

In 2009, the model by White and Comiskey was reconsidered by Mulone and Staughan [5].

They established the stability of the positive equilibrium point of the model using the eigenvalue

equation and Poincaré-Bendixson theory. In 2011, Sánchez E, Villanueva Micó RJ, Santonja FJ,

and Rubio M proposed a mathematical model to predict cocaine consumption in Spain [6]. They

considered cocaine use as a socially transmissible epidemic disease that spreads through peer

pressure or social contacts. In 2017, Isaac Mwangi Wangari and Lewi Stone formulated a heroin

epidemic model with a saturated treatment function [7]. They based their work on the assumption

that heroin use follows a process that can be modeled similarly to infectious diseases. In 2021, M.

Chapwanya, J. M. S. Lubuma, H. Lutermann, A. Matusse, F. Nyabadza, and Y. Terefe proposed a

mathematical model of cannabis epidemic in a South African province with a nonlinear incidence

rate [8]. In June 2023, Moumine, Balatif, and Rachik proposed a SMHTR model that describes

population dynamics and analyzes interactions between different classes of drug users [9]. In

December 2023, Elbaz and El-Awady formulated a model of soft drug epidemics [10].

In the context of Burkina Faso, to our knowledge, there are no mathematical models on the

dynamics of drug consumption. In this work, we present a mathematical model of the dynamics

of drug consumption in Burkina Faso where we consider that drug consumption spreads like

an epidemic disease, socially transmissible and which spreads through peer pressure or social

contacts. We also consider the influence of biological and environmental factors such as births from

drug-using parents or drug-using environments as sources of direct exposure to drug consumption.

Taking these factors into account will thus make it possible to evaluate their real impact on drug

consumption dynamics.

The rest of the work is orginized as follows: Section 2 is devoted to the presentation of the

model. Section 3 is devoted to the mathematical analysis of the model in which the existence,

uniqueness, and overall stability of the model are established. In Section 4, we make a sensitivity

analysis of the model, the numerical simulation on data from the population of Burkina Faso in

2020, aged between 11 and 65 years. We end the work with a conclusion.



Int. J. Anal. Appl. (2025), 23:12 3

2. Model Formulation

In the proposed model, The total population is subdivided into seven different compartments:

S, A, E, Co, Cr, T, and R, whose descriptions are provided in the table 1

Table 1. Table of Model Variable Descriptions

Variable Description

S Represents the number of susceptible individuals in the population at a given time t.

Here, all individuals are aged 11 years and above.

A Represents the number of susceptible individuals who are aware of the harmful effects

of drug consumption at a given time t

E Represents the number of exposed individuals at a given time t ; That is, individuals who are in

contact with occasional or regular users or those undergoing treatment, as well as individuals

born to occasional or regular users or those undergoing treatment; but who do not consume drugs.

Co Represents the number of occasional drug users at a given time t; that is, individuals

who frequently consume drugs but are not yet dependent.

Cr Represents the number of regular drug users at a given time t; that is, individuals

who are dependent on drug consumption.

T Represents the number of drug users undergoing treatment at a given time t

R Represents the number of drug users who have been successfully treated, as well as individuals

who have voluntarily stopped using drugs through ’self-healing’ at a given time t.

N Represents the total population at a given time t. (N = S + E + Co + Cr + T + R).

We consider the following assumptions:

(H 1): The total population is constant within the modeling time period ; therefore, we find:

Λ = µN + δ1Co + δ2Cr + δ3T

(H 2): The population mixes homogeneously; that is, each individual in the population has an

equal chance of encountering any other individual.

(H 3): Occasional and regular users are able to stop using drugs either through self-control or by

undergoing treatment.

(H 4): Individuals who have successfully undergone detoxification, either through self-control or

treatment, become temporarily immune to drug consumption.

(H 5): Individuals undergoing treatment still consume drugs.

(H 6): Occasional, regular, and individuals undergoing treatment can influence others to start

using drugs.

(H 7): Drug users undergoing treatment may relapse into occasional or regular drug users due to

severe withdrawal side effects or the high cost of treatment.

(H 8): Individuals born to occasional, regular, or treatment-receiving drug users are born exposed

to drug consumption.

Under the assumptions below, We establish the following transmission diagram:
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Figure 1. Epidemiological Model Diagram of Drug Consumption Dynamics with

Awareness in Burkina Faso.

The different parameters of the model are described as follows:

Table 2. Table of Parameter Descriptions for the Model

Parameter Description

Λ Population recruitment rate (individuals reaching the age of 11 and above during the modeling period).

λ1 Birth rate of children born to occasional drug users.

λ2 Birth rate of children born to regular drug users.

λ3 Birth rate of children born to drug users undergoing treatment.

µ Natural mortality rate of the general population.

b1 Contact rate between susceptible individuals and occasional drug users.

b2 Contact rate between susceptible individuals and regular drug users.

b3 Contact rate between susceptible individuals and drug users undergoing treatment.

ρ Media campaign rate to increase population awareness.

ξ Awareness failure rate.

α Probability of exposed individuals becoming occasional drug users.

δ1 Mortality rate related to occasional drug consumption.

δ2 Mortality rate related to regular drug consumption.

δ3 Mortality rate related to drug use among individuals undergoing treatment.

ε Probability of drug users who have successfully undergone detoxification becoming susceptible again.

θ1 Probability of occasional drug users becoming regular drug users.

θ2 Probability of occasional drug users who have successfully undergone detoxification through self-control.

k1 Probability of drug users undergoing treatment who relapse into occasional drug users.

k2 Probability of drug users undergoing treatment who relapse into regular drug users.

k3 Probability of drug users undergoing treatment who have successfully undergone detoxification.

γ Progression rate of the compartment Cr to the compartments T and R.

η Rate of regular drug users undergoing treatment.
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• The compartment S: It is generated by a recruitment rate Λ − (λ1Co(t) + λ2Cr(t) + λ3T(t))
and is increased due to individuals who have successfully undergone detoxification and

become susceptible again at a rate εR(t). It is decreased due to contact with occasional, reg-

ular, or treatment drug users at a rate S(t)
(

b1Co(t)+b2Cr(t)+b3T(t)
N

)
, by the success of awareness

campaigns at a rate ρS(t), and by the natural mortality rate µ.

• The compartment A: It is increased by the success of awareness campaigns at a rate ρS(t).

It is decreased by the failure of awareness at a rate A(t)
(
ξ

b1Co(t)+b2Cr(t)+b3T(t)
N

)
and by the

natural mortality rate µ.

• The compartment E: It is increased by the contact of susceptible individuals with occasional,

regular, or treatment-seeking drug users at a rate of S(t) ×
(

b1Co(t)+b2Cr(t)+b3T(t)
N

)
, by the

failure of awareness campaigns at a rate of A(t)
(
ξ

b1Co(t)+b2Cr(t)+b3T(t)
N

)
, and also by vertical

transmission at a rate of (λ1Co(t) + λ2Cr(t) + λ3T(t)). It is decreased when some exposed

individuals begin to consume drugs occasionally at a rate of αE(t) and also by the natural

mortality rate µ.

• The compartment Co: It is increased when some exposed individuals begin to consume

drugs at a rate of αE(t) and also when some individuals fail their treatment at a rate of

k1T(t). It is decreased when some occasional consumers become regular consumers at a

rate of θ1Co(t) or when some occasional consumers decide to stop consuming drugs at a

rate of θ2Co(t). It is also decreased by the natural mortality rate µ and the mortality rate

related to occasional drug consumption δ1.

• The compartment Cr: It is increased by the rate θ1Co(t) of occasional consumers who

become regular consumers and by the rate k2T(t) of consumers in treatment who relapse.

It is decreased when some regular consumers either decide to undergo treatment at a rate

of γηCr(t), or stop consuming drugs through self-control at a rate of γ(1 − η)Cr(t), or due

to the natural mortality rate µ and the mortality rate related to regular consumption δ2.

• The compartment T: It is increased by the rate γηCr(t) of regular consumers who decide to

undergo treatment. It is decreased when individuals in treatment relapse into occasional

consumers at a rate of k1T(t) or into regular consumers at a rate of k2T(t), or succeed in

their detoxification at a rate of k3T(t). It is also decreased by the natural mortality rate µ

and the mortality rate related to drug use among consumers in treatment.

• The compartment R: It is increased either by the rate θ2Co(t) of occasional consumers

who decide to stop using drugs through self-control, or by the rate γ(1− η)Cr(t) of regular

consumers who also decide to stop using drugs through self-control, or by the rate k3T(t)
of drug users who have successfully completed their detoxification. It is decreased when

certain cured individuals become susceptible again at a rate of εR(t) and by the natural

mortality rate µ.
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We obtain the mathematical model of drug consumption with awareness for the population of

Burkina Faso represented by the following system of nonlinear ordinary differential equations:

dS(t)
dt = Λ − (λ1Co(t) + λ2Cr(t) + λ3T(t)) − S(t)

(
b1Co(t)+b2Cr(t)+b3T(t)

N

)
− (µ+ ρ)S(t) + εR(t)

dA(t)
dt = ρS(t) −A(t)

(
ξ

b1Co(t)+b2Cr(t)+b3T(t)
N

)
− µA(t)

dE(t)
dt =

(
b1Co(t)+b2Cr(t)+b3T(t)

N

)
(S(t) + A(t)ξ) + (λ1Co(t) + λ2Cr(t) + λ3T(t)) − (α+ µ)E(t)

dCo(t)
dt = αE(t) + k1T(t) − (µ+ δ1 + θ1 + θ2)Co(t)

dCr(t)
dt = θ1Co(t) + k2T(t) − (γ+ µ+ δ2)Cr(t)

dT(t)
dt = γηCr(t) − (k1 + k2 + k3 + µ+ δ3)T(t)

dR(t)
dt = θ2Co(t) + γ(1− η)Cr(t) + k3T(t) − (ε+ µ)R(t)

(2.1)

With the initial conditions S(0), A(0), E(0), Co(0), Cr(0), T(0), and R(0) all being positive, and

N = S + A + E + Co + Cr + T + R representing the total population.

To study the model, we begin by rewriting it in terms of proportions for simplicity. Thus, we

perform the following variable changes as in [12]:

s =
S
N

; a =
A
N

; e =
E
N

; co =
Co

N
; cr =

Cr

N
; tr =

T
N

; r =
R
N

with

0 ≤ s ≤ 1; 0 ≤ a ≤ 1; 0 ≤ e ≤ 1; 0 ≤ co ≤ 1; 0 ≤ cr ≤ 1; 0 ≤ tr ≤ 1; 0 ≤ r ≤ 1.

For

Λ = λN

We obtain the normalized system below:

ds(t)
dt = λ− (λ1co(t) + λ2cr(t) + λ3tr(t)) − s(t)(b1co(t) + b2cr(t) + b3tr(t)) − (µ+ ρ)s(t) + εr(t)

da(t)
dt = ρs(t) − ξa(t) (b1co(t) + b2cr(t) + b3tr(t)) − µa(t)

de(t)
dt = (b1co(t) + b2cr(t) + b3tr(t)) (s(t) + ξa(t)) + (λ1co(t) + λ2cr(t) + λ3tr(t)) − (α+ µ)e(t)

dco(t)
dt = αe(t) + k1tr(t) − (µ+ δ1 + θ1 + θ2)co(t)

dcr(t)
dt = θ1co(t) + k2tr(t) − (γ+ µ+ δ2)cr(t)

dtr(t)
dt = γηcr(t) − (k1 + k2 + k3 + µ+ δ3)tr(t)

dr(t)
dt = θ2co(t) + γ(1− η)cr(t) + k3tr(t) − (ε+ µ)r(t)

(2.2)

3. Mathematical Analysis

3.1. Positivity, Boundedness, Existence, and Uniqueness of the Solution of the Model.

Theorem 3.1. If the initial value (s(0), a(0), e(0), co(0), cr(0), tr(0), r(0)) ∈ R7
+ then there exists a unique,

nonnegative solution to (2.2) for all t ≥ 0.
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Proof. The system (2.2) is described by a system of nonlinear autonomous first-order differential

equations. It can be rewritten in the following matrix form:

X′(t) = F (X(t))

Where

X(t) =
(
s(t) a(t) e(t) co(t) cr(t) tr(t) r(t)

)t

And F is a function of class C∞ on R7 with values in R7 defined by:

F (X(t)) =



λ− (λ1co(t) + λ2cr(t) + λ3tr(t)) − s(t)(b1co(t) + b2cr(t) + b3tr(t)) − (µ+ ρ)s(t) + εr(t)
ρs(t) − ξa(t) (b1co(t) + b2cr(t) + b3tr(t)) − µa(t)

(b1co(t) + b2cr(t) + b3tr(t)) (s(t) + ξa(t)) + (λ1co(t) + λ2cr(t) + λ3tr(t)) − (α+ µ)e(t)
αe(t) + k1tr(t) − (µ+ δ1 + θ1 + θ2)co(t)
θ1co(t) + k2tr(t) − (γ+ µ+ δ2)cr(t)
γηcr(t) − (k1 + k2 + k3 + µ+ δ3)tr(t)

θ2co(t) + γ(1− η)cr(t) + k3tr(t) − (ε+ µ)r(t)


Since F is of class C1, it is therefore locally Lipschitz continuous on R7. This leads to the existence

and uniqueness of the maximal solution to the Cauchy problem associated with the differential

equation of the system (2.2) relative to the condition (t0; X(0)) ∈ R+ ×R7.

Furthermore, since F is of class C∞, we conclude that this solution is also of class C∞.

Now, from the first equation of the system (2.2), It follows that [9]:

ds(t)
dt

= λ− (λ1co(t) + λ2cr(t) + λ3tr(t)) − s(t)(b1co(t) + b2cr(t) + b3tr(t)) − (µ+ ρ)s(t) + εr(t)

≥ −s(t)(b1co(t) + b2cr(t) + b3tr(t)) − (µ+ ρ)s(t)

Then
ds(t)

dt
+ f (t)s(t) ≥ 0 (3.1)

Where

f (t) = µ+ ρ+ b1co(t) + b2cr(t) + b3tr(t)

By multiplying both sides of the inequality (3.1) by exp
(∫ t

0 f (a) da
)
, we obtain:

exp
(∫ t

0
f (a) da

)
ds(t)

dt
+ f (t) exp

(∫ t

0
f (a) da

)
s(t) ≥ 0 (3.2)

then

d
dt

(
exp

(∫ t

0
f (a) da

)
s(t)

)
≥ 0 (3.3)

By integrating the inequality (3.3) from 0 to t, we obtain:

s(t) ≥ s(0) exp
(
−

∫ t

0
f (a) da

)
So, the solution s(t) is positive.
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To demonstrate the positivity of a(t), e(t), co(t), cr(t), tr(t) and r(t) we will proceed by contra-

diction as in [9]:

Suppose that at least one of the variables a(t), e(t), co(t), cr(t), tr(t) and r(t) is not positive. Then

we are in one of the six (6) following cases:

1. There exists a first time t1 such that a(t1) = 0; da(t1)
dt < 0; e(t) > 0; co(t) > 0; cr(t) > 0; tr(t) >

0; r(t) > 0 for all t ∈ [0, t1].

2. There exists a first time t2 such that e(t2) = 0; de(t2)
dt < 0; a(t) > 0; co(t) > 0; cr(t) > 0; tr(t) >

0; r(t) > 0 for all t ∈ [0, t2]

3. There exists a first time t3 such that co(t3) = 0; dco(t3)
dt < 0; a(t) > 0; e(t) > 0; cr(t) > 0; tr(t) >

0; r(t) > 0 for all t ∈ [0, t3]

4. There exists a first time t4 such that cr(t4) = 0; dcr(t4)
dt < 0; a(t) > 0; e(t) > 0; co(t) > 0; tr(t) >

0; r(t) > 0 for all t ∈ [0, t4]

5. There exists a first time t5 such that tr(t5) = 0; dtr(t5)
dt < 0; a(t) > 0; e(t) > 0; co(t) > 0; cr(t) >

0; r(t) > 0 for all t ∈ [0, t5]

6. There exists a first time t6 such that r(t6) = 0; dr(t6)
dt < 0; a(t) > 0; e(t) > 0; co(t) > 0; cr(t) >

0; tr(t) > 0 for all t ∈ [0, t6]

In the first case, We have:
da(t1)

dt
= ρs(t1) > 0

which is absurd

In the second case, We have:

de(t1)

dt
= (b1co(t2) + b2cr(t2) + b3tr(t2)) (s(t2) + ξa(t2)) + (λ1co(t2) + λ2cr(t2) + λ3tr(t2)) > 0

which is absurd

In the third case, We have:
dco(t3)

dt
= αe(t3) + k1tr(t3) > 0

which is absurd

In the fourth case, We have:
dcr(t4)

dt
= θ1co(t4) + k2tr(t4) > 0

which is absurd

In the fifth case, We have:
dtr(t5)

dt
= γηcr(t5) > 0

which is absurd

In the sixth case, We have:

dr(t6)

dt
= θ2co(t6) + γ(1− η)cr(t6) + k3tr(t6) > 0

which is absurd

Thus a(t) > 0 ; e(t) > 0 ; co(t) > 0 ; cr(t) > 0 ; tr(t) > 0 and r(t) > 0 for all t > 0.
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Hence, the solutions s(t) ; a(t) ; e(t) ; co(t) ; cr(t) ; tr(t) and r(t) of the system (2.2) are all positive

for all t > 0 �

Theorem 3.2. All feasible solutions of the system (2.2) are bounded and lie within the following region:

Ω = {(s(t), a(t), e(t), co(t), cr(t), tr(t), r(t)) ∈ R7
+ | 0 ≤ s + a + e + co + cr + tr + r ≤ 1}

Proof. Suppose that the initial value (s(0), a(0), e(0), co(0), cr(0), tr(0), r(0)) ∈ R7
+. Let the function

φ be defined as in [12] as:

φ(t) = s(t) + a(t) + e(t) + co(t) + cr(t) + tr(t) + r(t)

. By summing the seven equations of the system (2.2), we obtain:
dφ(t)

dt = λ− µφ(t) − (δ1co + δ2cr + δ3tr)

φ(0) = s(0) + a(0) + e(0) + co(0) + cr(0) + tr(0) + r(0) = 1
(3.4)

Integrating equation (3.4) over (0, t) for all 0 < t < T, one can get the following

φ(t) exp (µt) − 1 =
λ− (δ1co(t) + δ2cr(t) + δ3tr(t))

µ
(exp (µt) − 1)

Which implies that

φ(t) = exp (−µt) +
λ− (δ1co(t) + δ2cr(t) + δ3tr(t))

µ
(1− exp (−µt))

Therefore

φ(t) =
(
1−

λ− (δ1co(t) + δ2cr(t) + δ3tr(t))
µ

)
exp (−µt) +

λ− (δ1co(t) + δ2cr(t) + δ3tr(t))
µ

When t→∞ and λ = µ+ δ1co(t) + δ2cr(t) + δ3tr(t) we have: 0 ≤ n(t) ≤ 1. Thus, all possible solu-

tions of the system (2.2) are within the region Ω. This implies that Ω is a positively invariant region

of the system (2.2). Therefore, within the region Ω, we say that the system (2.2) is mathematically

and epidemiologically well-posed. �

3.2. Equilibrium without drugs and the basic reproduction number.

3.2.1. Drug-free equilibrium.

Proposition 3.1. The system (2.2) has a unique drug-free equilibrium point:

X0 = (
λ

µ+ ρ
;

ρλ

µ(µ+ ρ)
; 0; 0; 0; 0; 0)

Proof. At the drug-free equilibrium point, we have:

ds
dt

=
da
dt

=
de
dt

=
dco

dt
=

dcr

dt
=

dtr
dt

=
dr
dt

= 0 et e = co = cr = tr = 0
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Then, the system (2.2) becomes: 
λ− (µ+ ρ)s0 + εr0 = 0

ρs0 − µa0 = 0

−(ε+ µ)r0 = 0

So, 
s0 = λ

µ+ρ

a0 =
ρλ

µ(µ+ρ)

r0 = 0

�

3.2.2. The basic reproduction number. In our epidemiological model of drug consumption, R0 is

the average number of total individuals that each occasional or regular drug user, or individual

undergoing treatment, will lead to consume drugs. In other words, R0 is the average number of

new drug users resulting from the involvement of an occasional or regular user, or individual in

treatment, among susceptible individuals.

To obtain the basic reproduction number for the system (2.2), we will use the Jacobian determinant

method as described by B. Seidu and al. [13] described in the following aLgorithm [14]:

Algorithm 3.1.
Step 1: Identify the infected compartments of the model.
Step 2: Find the Jacobian J of the infected subsystem of the model.
Step 3: Evaluate the Jacobian of the infected subsystem at the disease-free equilibrium, ε0 (i.e.J(ε0))

Step 4: Find the determinant,|J(ε0)

Step 5: Express the determinant as |J(ε0)| = ξ( B
D − 1), ξ ∈ R

Step 6: Find R0 using R0 = B
D

where B is the part that contains the transmission factors such as probability of infection, contact

rate or infectivity/susceptibility factors, and D is the part containing only transmission and other

non-transmission terms.

The infected compartments are e; co; cr and tr ; thus, the infected subsystem is given by:

de
dt = (b1co + b2cr + b3tr) (s + aξ) + (λ1co + λ2cr + λ3tr) − (α+ µ)e
dco
dt = αe + k1tr− (µ+ δ1 + θ1 + θ2)co

dcr
dt = θ1co + k2tr− (γ+ µ+ δ2)cr

dtr
dt = γηcr − (k1 + k2 + k3 + µ+ δ3)tr

(3.5)

The Jacobian of the right-hand side of the infected subsystem (3.5) evaluated at the drug-free

equilibrium is given by:
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J(X0) =


−(α+ µ)

µ+ρξ
µ+ρ b1 + λ1

µ+ρξ
µ+ρ b2 + λ2

µ+ρξ
µ+ρ b3 + λ3

α −(µ+ δ1 + θ1 + θ2) 0 k1

0 θ1 −(γ+ µ+ δ2) k2

0 0 γη −(k1 + k2 + k3 + µ+ δ3)


By setting q33 = α+ µ, q44 = µ+ δ1 + θ1 + θ2, q55 = γ+ µ+ δ2, q66 = k1 + k2 + k3 + µ+ δ3,

β = µ+ ρξ and π = µ+ ρ the matrix J becomes:

J(X0) =


−q33

β
πb1 + λ1

β
πb2 + λ2

β
πb3 + λ3

α −q44 0 k1

0 θ1 −q55 k2

0 0 γη −q66


The determinant of the matrix J evaluated at X0 gives:

|J(X0)| =
1
π
(q33q44q55q66π− q33q44πγηk2 − q33πγηk1θ1 − αq44q66βb1 − αq55q66πλ1

−αq55βb2θ1 − αq66πλ2θ1 + αβγηb1k2 − αβγηb3θ1 + απγηk2λ1 − απγηλ3θ1)

This can be written as follows:

|J(X0)| = − (q33q44q55q66 − q33q44γηk2 − q33γηk1θ1)

×

(
α (q55q66(βb1 + πλ1) + q66θ1(βb2 + πλ2) − γηk2(βb1 + πλ1) + γηθ1(βb3 + πλ3))

q33π (q44q55q66 − q44γηk2 − γηk1θ1)
− 1

)
Here we have

ε = − (q33q44q55q66 − q33q44γηk2 − q33γηk1θ1)

and the basic reproduction number R0 is obtained as follows:

R0 =
α (q55q66(βb1 + πλ1) + q66θ1(βb2 + πλ2) − γηk2(βb1 + πλ1) + γηθ1(βb3 + πλ3))

q33π (q44q55q66 − q44γηk2 − γηk1θ1)

3.3. Endemic equilibrium. Considering that q33 = α+µ ; q44 = µ+ δ1 +θ1 +θ2 ; q55 = γ+µ+ δ2;

q66 = k1 + k2 + k3 +µ+ δ3 ; and letting q77 = ε+µ the system (2.2) at endemic equilibrium becomes:

λ− (λ1c∗o + λ2c∗r + λ3tr∗) − s∗(b1c∗o + b2c∗r + b3tr∗) − (µ+ ρ)s∗ + εr∗ = 0

ρs∗ − ξa∗ (b1c∗o + b2c∗r + b3tr∗) − µa∗ = 0

(b1c∗o + b2c∗r + b3tr∗) (s∗ + ξa∗) + (λ1c∗o + λ2c∗r + λ3tr∗) − q33e∗ = 0

αe∗ + k1tr∗ − q44c∗o = 0

θ1c∗o + k2tr∗ − q55c∗r = 0

γηc∗r − q66tr∗ = 0

θ2c∗o + γ(1− η)c∗r + k3tr∗ − q77r∗ = 0

(3.6)



12 Int. J. Anal. Appl. (2025), 23:12

Where s∗ ; a∗ ; e∗ ; c∗o ; c∗r ; tr∗ ; r∗ represents the points of endemic equilibrium. By solving the system

(3.6), we obtain:

tr∗ =
γη

q66
c∗r;

c∗0 =
q55q66 − k2γη

q66θ1
c∗r;

r∗ =
q55q66θ2 − k2θ2γη+ q66θ1γ(1− η) + k3γηθ1

q66q77θ1
c∗r;

e∗ =
q44q55q66 − q44k2γη− k1θ1γη

q66θ1α
c∗r;

a∗ =
ρθ1q66 [αβu1 + πu3q33(1−R0)]

απu1(ξu1c∗r + µθ1q66 + ξθ1ρq66)
;

s∗ =
[αβu1 + πu3q33(1−R0)] (ξu1c∗r + µθ1q66)

απu1(ξu1c∗r + µθ1q66 + ξθ1ρq66)
.

with c∗r being the positive solution of the equation −A(c∗r)2 + Bcr + C = 0 ; where

u1 =b1(q55q66 − k2γη) + b2θ1q66 + b3γηθ1

u2 =λ1(q55q66 − k2γη) + λ2θ1q66 + λ3γηθ1

u3 =q44q55q66 − q44k2γη− k1θ1γη

u4 =q55q66θ2 − k2θ2γη+ q66θ1γ(1− η) + k3γηθ1

A =απξu2
1u2q77 + αβξu3

1q77 + πξu2
1u3q33q77(1−R0)

B =λαπξθ1u2
1q66q77 − µαπθ1u1u2q66q77 − απξθ1ρu1u2q66 − µαβθ1u2

1q66q77

− µπθ1u1u3q33q66q77(1−R0) − αβξ(µ+ ρ)θ1u2
1q66q77 −πξ(µ+ ρ)θ1u1u3q33q66q77(1−R0)

+ απξ2u2
1u4

C =λαπθ2
1u1q2

66q77(µ+ ξρ) − µαβ(µ+ ρ)θ2
1u1q2

66q77 − µπ(µ+ ρ)θ2
1u3q33q2

66q77(1−R0)

+ µαπξθ1u1u4q66 + απξ2θ1ρu1u4q66.

Thus, for R0 > 1, there exists a unique endemic equilibrium X1 = (s∗; a∗; e∗; c∗o; c∗r; tr∗; r∗).

3.4. Stability of Equilibria.

3.4.1. Local and global stability of the drug-free equilibrium.

Theorem 3.3. The drug-free equilibrium point X0 of the system (2.2) is locally asymptotically stable if
R0 < 1 and the following conditions are satisfied:

σ1σ2 > σ3

(σ1σ2 − σ3) σ3 > (σ1σ4 − σ5) σ1

[(σ1σ2 − σ3) σ3 − (σ1σ4 − σ5) σ1] (σ1σ4 − σ5) > [(σ1σ2 − σ3) σ5 − (σ1σ6 − σ7) σ1] (σ1σ2 − σ3) (3.7)
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a1 [(σ1σ2 − σ3) σ5 − (σ1σ6 − σ7) σ1] > a2 [(σ1σ2 − σ3) σ3 − (σ1σ4 − σ5) σ1]

a3a2 > q2
1 (σ1σ2 − σ3) σ7

Where:

a1 = [(σ1σ2 − σ3) σ3 − (σ1σ4 − σ5) σ1] (σ1σ4 − σ5) − [(σ1σ2 − σ3) σ5 − (σ1σ6 − σ7) σ1] (σ1σ2 − σ3)

a2 = [(σ1σ2 − σ3) σ3 − (σ1σ4 − σ5) σ1] (σ1σ6 − σ7) − (σ1σ2 − σ3)
2 σ7

a3 = a1 [(σ1σ2 − σ3) σ5 − (σ1σ6 − σ7) σ1] − a2 [(σ1σ2 − σ3) σ3 − (σ1σ4 − σ5) σ1]

And σ1, σ2, σ3, σ4, σ5, σ6 and σ7 are defined in 3.9 and 3.10.

Proof. Considering that q33 = α + µ ; q44 = µ + δ1 + θ1 + θ2 ; q55 = γ + µ + δ2 ; q66 = k1 +

k2 + k3 + µ + δ3 ; q75 = γ(1 − η) ; q77 = ε + µ and letting q14 = λ1 +
b1λ
µ+ρ ; q15 = λ2 +

b2λ
µ+ρ ;

q16 = λ3 +
b3λ
µ+ρ ; q24 =

b1ξρλ
µ+ρ ; q25 =

b2ξρλ
µ+ρ ; q26 =

b3ξρλ
µ+ρ ; q34 =

b1λ(µ+ξρ)
µ(µ+ρ) + λ1 ; q35 =

b2λ(µ+ξρ)
µ(µ+ρ) + λ2

and q36 =
b3λ(µ+ξρ)
µ(µ+ρ) + λ3 then the Jacobian matrix of the right-hand side of the system (2.2)

evaluated at the drug-free equilibrium point X0 gives:

J(X0) =



−q11 0 0 −q14 −q15 −q16 ε

ρ −µ 0 −q24 −q25 −q26 0

0 0 −q33 q34 q35 q36 0

0 0 α −q44 0 k1 0

0 0 0 θ1 −q55 k2 0

0 0 0 0 γη −q66 0

0 0 0 θ2 q75 k3 −q77


The eigenvalues of the characteristic equation of J(X0) are the solutions of the equation 3.8

χ7 + σ1χ
6 + σ2χ

5 + σ3χ
4 + σ4χ

3 + σ5χ
2 + σ6χ+ σ7 (3.8)

Where:

σ1 =q77 + q66 + q55 + q44 + q33 + µ+ q11;

σ2 = − ηγk2 − αq34 + µq11 + µq33 + µq44 + µq55 + µq66 + µq77 + q11q33 + q11q44 + q11q55 + q11q66 + q11q77 + q33q44

+ q33q55 + q33q66 + q33q77 + q44q55 + q44q66 + q44q77 + q55q66 + q55q77 + q66q77

σ3 = − ηγµk2 − ηγk1θ1 − ηγk2q11 − ηγk2q33 − ηγk2q44 − ηγk2q77 − αµq34 − αq11q34 − αq34q55 − αq34q66 − αq34q77

− αq35θ1 + µq11q33 + µq11q44 + µq11q55 + µq11q66 + µq11q77 + µq33q44 + µq33q55 + µq33q66 + µq33q77 + µq44q55

+ µq44q66 + µq44q77 + µq55q66 + µq55q77 + µq66q77 + q11q33q44 + q11q33q55 + q11q33q66 + q11q33q77 + q11q44q55

+ q11q44q66 + q11q44q77 + q11q55q66 + q11q55q77 + q11q66q77 + q33q44q55 + q33q44q66 + q33q44q77 + q33q55q66

+ q33q55q77 + q33q66q77 + q44q55q66 + q44q55q77 + q44q66q77 + q55q66q77

σ4 =αηγk2q34 − αηγq36θ1 − ηγµk1θ1 − ηγµk2q11 − ηγµk2q33 − ηγµk2q44 − ηγµk2q77 − ηγk1q11θ1 − ηγk1q33θ1 (3.9)

− ηγk1q77θ1 − ηγk2q11q33 − ηγk2q11q44 − ηγk2q11q77 − ηγk2q33q44 − ηγk2q33q77 − ηγk2q44q77 − αµq11q34

− αµq34q55 − αµq34q66 − αµq34q77 − αµq35θ1 − αq11q34q55 − αq11q34q66 − αq11q34q77 − αq11q35θ1 − αq34q55q66

− αq34q55q77 − αq34q66q77 − αq35q66θ1 − αq35q77θ1 + µq11q33q44 + µq11q33q55 + µq11q33q66 + µq11q33q77
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+ µq11q44q55 + µq11q44q66 + µq11q44q77 + µq11q55q66 + µq11q55q77 + µq11q66q77 + µq33q44q55 + µq33q44q66

+ µq33q44q77 + µq33q55q66 + µq33q55q77 + µq33q66q77 + µq44q55q66 + µq44q55q77 + µq44q66q77 + µq55q66q77

+ q11q33q44q55 + q11q33q44q66 + q11q33q44q77 + q11q33q55q66 + q11q33q55q77 + q11q33q66q77 + q11q44q55q66

+ q11q44q55q77 + q11q44q66q77 + q11q55q66q77 + q33q44q55q66 + q33q44q55q77 + q33q44q66q77

+ q33q55q66q77

σ5 =αηγµk2q34 − αηγµq36θ1 + αηγk2q11q34 + αηγk2q34q77 − αηγq11q36θ1 − αηγq36q77θ1 − ηγµk1q11θ1 − ηγµk1q33θ1

− ηγµk1q77θ1 − ηγµk2q11q33 − ηγµk2q11q44 − ηγµk2q11q77 − ηγµk2q33q44 − ηγµk2q33q77 − ηγµk2q44q77

− ηγk1q11q33θ1 − ηγk1q11q77θ1 − ηγk1q33q77θ1 − ηγk2q11q33q44 − ηγk2q11q33q77 − ηγk2q11q44q77 − ηγk2q33q44q77

− αµq11q34q55 − αµq11q34q66 − αµq11q34q77 − αµq11q35θ1 − αµq34q55q66 − αµq34q55q77 − αµq34q66q77

− αµq35q66θ1 − αµq35q77θ1 − αq11q34q55q66 − αq11q34q55q77 − αq11q34q66q77 − αq11q35q66θ1 − αq11q35q77θ1

− αq34q55q66q77 − αq35q66q77θ1 + µq11q33q44q55 + µq11q33q44q66 + µq11q33q44q77 + µq11q33q55q66 + µq11q33q55q77

+ µq11q33q66q77 + µq11q44q55q66 + µq11q44q55q77 + µq11q44q66q77 + µq11q55q66q77 + µq33q44q55q66 + µq33q44q55q77

+ µq33q44q66q77 + µq33q55q66q77 + µq44q55q66q77 + q11q33q44q55q66 + q11q33q44q55q77 + q11q33q44q66q77

+ q11q33q55q66q77 + q11q44q55q66q77 + q33q44q55q66q77

σ6 =αηγµk2q11q34 + αηγµk2q34q77 − αηγµq11q36θ1 − αηγµq36q77θ1 + αηγk2q11q34q77 − αηγq11q36q77θ1 − ηγµk1q11q33θ1

(3.10)

− ηγµk1q11q77θ1 − ηγµk1q33q77θ1 − ηγµk2q11q33q44 − ηγµk2q11q33q77 − ηγµk2q11q44q77 − ηγµk2q33q44q77

− ηγk1q11q33q77θ1 − ηγk2q11q33q44q77 − αµq11q34q55q66 − αµq11q34q55q77 − αµq11q34q66q77 − αµq11q35q66θ1

− αµq11q35q77θ1 − αµq34q55q66q77 − αµq35q66q77θ1 − αq11q34q55q66q77 − αq11q35q66q77θ1 + µq11q33q44q55q66

+ µq11q33q44q55q77 + µq11q33q44q66q77 + µq11q33q55q66q77 + µq11q44q55q66q77 + µq33q44q55q66q77 + q11q33q44q55q66q77

σ7 =q77µq11 (αηγk2q34 − αηγq36θ1 − ηγk1q33θ1 − ηγk2q33q44 − αq34q55q66 − αq35q66θ1 + q33q44q55q66)

we have σ1 > 0 ; Thus, the equilibrium point without drugs of the system (2.2) is locally asymp-

totically stable if and only if the Routh-Hurwitz criterion is satisfied, that is, the conditions 3.7 are

satisfied [15]. �

Theorem 3.4. Drug-free equilibrium X0 of the system (2.2) is globally asymptotically stable if R0 ≤ 1.

Proof. As in [10], we introduce the following Lyapunov function:

V = s− s0 − s0 ln(
s
s0
) + a− a0 − a0 ln(

a
a0
) + e + co + cr + tr + r

Then the derivative ofV gives:

V̇ = ṡ + ȧ + ė + ċo + ċr + ṫr + ṙ−
s0

s
ṡ−

a0

a
ȧ

= λ− µ(s + a + e + co + cr + tr + r) − (δ1co + δ2cr + δ3tr) −
s0

s
[λ− (λ1co + λ2cr + λ3tr)

−s (b1co + b2cr + b3tr) − (µ+ ρ)s + εr] −
a0

a
[ρs− ξa (b1co + b2cr + b3tr) − µa]
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For R0 ≤ 1, and λ = (µ+ ρ)s0, we have:

V̇ =µs0(2−
s
s0
−

s0

s
) + ρs0(2−

s0

s
−

a0s
as0

) + µa0(1−
a
a0
) − µe− µr− εr

s0

s
+ co(s0 + ξa0)

(
b1 −

µ

s0 + ξa0

)
+ cr(s0 + ξa0)

(
b2 −

µ

s0 + ξa0

)
+ tr(s0 + ξa0)

(
b3 −

µ

s0 + ξa0

)
+

cos0

s

(
λ1 −

δ1s
s0

)
+

crs0

s

(
λ2 −

δ2s
s0

)
+

trs0

s

(
λ3 −

δ3s
s0

)
Since the arithmetic mean is greater than or equal to the geometric mean, then V̇ < 0 and V̇ = 0

only if s = s0 ; a = a0 ; e = e0 ; co = c0
o ; cr = c0

r ; tr = tr0 and r = r0.

Hence drug-free equilibrium X0 is globally asymptotically stable according to LaSalle’s invari-

ance principle [15]. �

3.4.2. Global stability of endemic equilibrium.

Theorem 3.5. IfR0 > 1, then the endemic equilibrium point X1 of the system (2.2) is globally asymptotically
stable.

Proof. Regarding the global stability of X1, let us consider the following Lyapunov function:

V = s− s∗ − s∗ ln
s
s∗
+ a− a∗ − a∗ ln

a
a∗

+ e− e∗ − e∗ ln
e
e∗
+ co − c∗o − c∗o ln

co

c∗o
+ cr − c∗r − c∗r ln

cr

c∗r

+ tr− tr∗ − tr∗ ln
tr
tr∗

+ r− r∗ − r∗ ln
r
r∗

Then the derivative ofV gives:

V̇ = ṡ + ȧ + ė + ċo + ċr + ṫr + ṙ−
s∗

s
ṡ−

a∗

a
ȧ−

e∗

e
ė−

c∗o
co

ċo −
c∗r
cr

ċr −
tr∗

tr
ṫr−

r∗

r
ṙ

For R0 > 1, and λ = µ(s∗ + a∗ + e∗ + c∗o + c∗r + tr∗ + r∗) + δc∗o + δ2c∗r + δ3tr∗, we have:

V̇ =µs∗
(
2−

s
s∗
−

s∗

s

)
+ ρs∗

(
1−

a∗s
as∗

)
+ µa∗

(
2−

a
a∗
−

s∗

s

)
+ µe∗

(
2−

e
e∗
−

s∗

s

)
+ µc∗o

(
2−

co

c∗o
−

s∗

s

)
+ µc∗r

(
2−

cr

c∗r
−

s∗

s

)
+ µtr∗

(
2−

tr
tr∗
−

s∗

s

)
+ µr∗

(
2−

r
r∗
−

s∗

s

)
+ δ1c∗o

(
2−

co

c∗o
−

s∗

s

)
+ δ2c∗r

(
2−

cr

c∗r
−

s∗

s

)
+ δ3tr∗

(
2−

tr
tr∗
−

s∗

s

)
+ s∗

(
b1co + b2cr + b3tr

N

) (
1−

e∗s
es∗

)
+ ξa∗

(
b1co + b2cr + b3tr

N

) (
1−

e∗a
ea∗

)
+

s∗

s
(λ1co + λ2cr + λ3tr)

(
1−

e∗s
es∗

)
+ αe∗

(
1−

c∗oe
coe∗

)
+ θ1c∗o

(
1−

c∗rco

crc∗o

)
+ θ2c∗o

(
1−

r∗co

rc∗o

)
+ γηc∗r

(
1−

tr∗cr

trc∗r

)
+ γ(1− η)c∗r

(
1−

r∗cr

rc∗r

)
+ k1tr∗

(
1−

c∗otr
cotr∗

)
+ k2tr∗

(
1−

c∗rtr
crtr∗

)
+ k3tr∗

(
1−

r∗tr
rtr∗

)
+ εr∗

(
1−

s∗r
sr∗

)
.

Since the arithmetic mean is greater than or equal to the geometric mean, then V̇ < 0 and V̇ = 0

only if s = s∗ ; a = a∗ ; e = e∗; co = c∗o ; cr = c∗r ; tr = tr∗ ; r = r∗.
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Hence endemic equilibrium X1 is globally asymptotically stable according to LaSalle’s invariance

principle ( [16], [17]). �

4. Sensitivity Analysis and Numerical Simulation

A sensitivity analysis of the model (2.2) is conducted to determine the relative importance of the

model parameters on the propagation of drug consumption. This analysis is crucial for identifying

parameters that have a significant impact on R0 and should be targeted by intervention strategies.

The parameter with a higher sensitivity index is more influential than one with a lower sensitivity

index. The sign of the sensitivity indices of R0 concerning the parameters indicates the positive or

negative impact of these parameters. Here, we calculate the sensitivity index for each parameter

included in the expression of R0 except for the parameters µ, δ1, δ2, δ3 which cannot be targeted in

intervention strategies. The standard equation for the sensitivity index of a parameter Φ of R0 is

given by as in ( [16], [18], [19]):

χR0
Φ =

Φ
R0
×
∂R0

∂Φ
Given the complexity of the expression for R0, we utilized numerical differentiation. Thus, the

numerical values of the sensitivity indices are provided in the table 4.

The values of the parameters are given in the table below 3.

Parameter Value Reference

λ1 0.03 Assumed

λ2 0.08 Assumed

λ3 0.002 Assumed

µ 0.009 [11]

b1 0.03 [11]

b2 0.02 [11]

b3 0.001 [11]

ρ 0.03 Assumed

ξ 0.05 Assumed

α 0.07 Assumed

δ1 0.01636 [6]

δ2 0.059 [11]

δ3 0.01636 [6]

ε 0.008 [11]

θ1 0.05 Assumed

θ2 0.02 [11]

k1 0.2 [7]

k2 0.15 [7]

k3 0.1 [7]

γ 0.008 Assumed

η 0.9999 Assumed

Table 3. Table of values of the model parameters
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Sensitivity Index Value

χR0
λ1

0.317222

χR0
λ2

0.559462

χR0
λ3

0.000224

χR0
b1

0.085406

χR0
b2

0.037656

χR0
b3

0.000030

χR0
α 0.113924

χR0
θ1

0.089412

χR0
θ2

-0.216949

χR0
k1

0.008167

χR0
k2

0.006920

χR0
k3

-0.013123

χR0
γ -0.028859

χR0
η 0.054709

χR0
ρ -0.077102

χR0
ξ

0.017585

Table 4. Sensitivity Indices of the Parameters of the Second Model

Figure 2 shows the graphical representation of the sensitivity indices.

Figure 2. Sensitivity analysis of the model parameters
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Figure 2 clearly illustrates the impact of each parameter on R0. We observe that R0 is most

positively sensitive to changes in the parameters λ1, λ2 and α. An increase in the value of any

of these parameters will result in a proportional increase in R0 (similarly, a decrease in the value

of any of these parameters will lead to an equivalent decrease in R0). The parameter θ2 has an

inversely proportional relationship with R0. An increase in the value of θ2 will result in a decrease

in R0 and while a decrease in the value of θ2 will lead to an increase in R0. However, reducing the

rate of exposed individuals becoming occasional consumers α does not contribute positively. It is

therefore preferable to focus efforts on reducing the birth rate of individuals born to occasional or

regular consumer parents (λ1 and λ2) and on increasing the success rate of detoxification through

self-control for occasional consumers θ2. Since R0 is more sensitive to variations in λ1 and λ2 than

to θ2, it is wise to concentrate on λ1 and λ2, the birth rates from consumer parents, to control drug

abuse within the population.

4.1. Numerical Simulation. In this section, we perform some numerical simulations to illustrate

the theoretical results obtained in the previous sections. To do this, we used MATLAB software

with the fourth-order Runge-Kutta method. We present the impact of awareness based on the birth

rates from drug-using parents on the total population aged 11 to 65 years in Burkina Faso in 2020,

which was estimated to be N = 13407908 inhabitants (INSD2023). We assume the following initial

conditions: S = 10458168; A = 938554; E = 1340791; Co = 429053; Cr = 134079; T = 93855; R =

13408.

(a) Evolution of Occasional Drug Users (b) Evolution of Regular Drug Users

Figure 3. Temporal Evolution of Consumers forλ1 = 0.03,λ2 = 0.08 andλ3 = 0.002

Figure 3 above presents the temporal evolution of occasional consumers 3a and regular con-

sumers 3b. Here, we have varied the success and failure rates of the awareness campaign. We

observe a decrease in consumption when the success rate is high and the failure rate is low, as also

indicated by the values of R0: for ρ = 0.5, ξ = 0.6, R0 = 1.0494 ; for ρ = 0.7, ξ = 0.2, R0 = 0.8844

and for ρ = 0.8, ξ = 0.1, R0 = 0.8428
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(a) Evolution of Occasional Drug Users (b) Evolution of Regular Drug Users

Figure 4. Temporal Evolution of Consumers for λ1 = 0.01, λ2 = 0.03 et λ3 = 0.001

Figure 4 above presents the temporal evolution of occasional consumers 4a and regular con-

sumers 4b. Here, we have reduced the birth rates of individuals from drug-consuming parents

and varied the success and failure rates of the awareness campaign. We observe a significant

decrease in consumption, as also indicated by the values of R0: for ρ = 0.5, ξ = 0.6, R0 = 0.5392 ;

for ρ = 0.7, ξ = 0.2, R0 = 0.3743 and for ρ = 0.8, ξ = 0.1, R0 = 0.3326

(a) Evolution of Occasional Drug Users (b) Evolution of Regular Drug Users

Figure 5. Temporal Evolution of Consumers for λ1 = 0.001, λ2 = 0.002 et λ3 =

0.0008

Figure 5 above presents the temporal evolution of occasional consumers 5a and regular con-

sumers 5b. Here, we have further reduced the birth rates of individuals from drug-consuming

parents and varied the success and failure rates of the awareness campaign. We observe a very
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significant decrease in consumption, as also indicated by the values of R0: for ρ = 0.5, ξ = 0.6,

R0 = 0.2747 ; for ρ = 0.7, ξ = 0.2, R0 = 0.1097 and for ρ = 0.8, ξ = 0.1, R0 = 0.0681.

Thus, these numerical simulations demonstrate that awareness has no significant effect on drug

dynamics if the children are in a favorable environment.

5. Conclusion

In this article, we proposed a deterministic model of drug consumption dynamics with aware-

ness. This allowed us to understand the dynamics of consumption and evaluate the impacts of

awareness campaigns on the population. The analytical results show that the model is mathemat-

ically significant and defined within the positive region Ω. We established the conditions for the

existence of equilibrium states of the model and found that at the drug-free equilibrium point,

the model is stable if R0 ≤ 1 and at the endemic equilibrium point, the model is stable if R0 > 1.

The sensitivity analysis and numerical simulation have allowed us to understand that the most

influential parameters are those related to biological and genetic dispositions. This indicates that

the environment in which an individual evolves plays a crucial role in the propagation of drug use.

Awareness efforts have minimal impact on drug dynamics if an individual evolves in a favorable

environment. Hence, there is a pressing need to educate parents about the harmful effects of their

consumption on their children.

In the future, we plan to use a stochastic model of drug consumption dynamics in Burkina Faso

for a better understanding of the epidemic.

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the

publication of this paper.
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