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Abstract. Our goal is to construct an approximation of the unknown function f by Sobolev’s method, we construct
an approximation form of unknown function by interpolation splines minimizing the semi norm in K (P3) Hilbert
space. Explicit formulas for coefficients of the interpolation splines are obtained. The resulting interpolation spline
is exact for the hyperbolic functions and constant. In the last section, we obtain several absolute errors graph in
interpolating functions with the sixth order algebraic-hyperbolic spline, and we compare absolute errors of cubic
spline and algebraic-hyperbolic in interpolating several functions. Numerical results show that the sixth-order spline

interpolates the functions with higher accuracy than the cubic spline.

1. INTRODUCTION

Nowadays, interpolation plays a crucial role in various fields including mathematics, engineer-
ing, computer science, statistics, and more. It involves approximate functions, fill in missing data,
smooth noisy data, and create continuous representations from discrete data. There are several
types of interpolation methods, each with its own characteristics and suitability for different types
of data and applications. Here are some common types: linear Interpolation, polynomial interpo-
lation, Spline Interpolation, Piecewise Interpolation, Inverse Distance Weighting (IDW), Kriging.
These are some of the main types of interpolation methods commonly used in various fields.
Among of them, splines provide a significant tool for the design of computationally economical

curves and surfaces for the construction of various objects like automobiles, ship hulls, airplane
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fuselages and wings, propeller blades, shoe insoles, bottles, etc. It also contributes in the descrip-
tion of geological, physical statistical, and even medical phenomena. Spline methods have proven
to be indispensable in a variety of modern industries, including computer vision, robotics, signal
and image processing, visualization, textile, graphic design, and even media., Among the methods
for constructing splines the approach [1] is known, in which the spline is found as a solution to
a boundary value problem for a differential equation with internal boundary conditions at the
interpolation nodes. Typically, a finite-difference approach is used to solve such problems, so the
method can be called the difference method for constructing splines. For tension splines, a corre-
sponding second-order approximation method was proposed and studied in [2]. According to this
method, the conditions for smooth conjugation of the first and second derivatives at interpolation
nodes are approximated by three symmetrically located nodes using fixed nodes to the left and
right of a given node, the solution values in which require exclusion during the calculation process.
In [3], a modification of the method [2] of the same order of approximation was proposed, which
differs from the latter by setting internal boundary conditions based on one-sided three-point
approximations of derivatives, which does not require the introduction of the fixed nodes.

Moreover, in [4] a medical application based on biomarkers is presented; longitudinal and
survival fitting model based on cubic polynomial B-splines sets is presented for modeling the lon-
gitudinal markers. The usage of quadratic splines [5], [6], cubic splines [7], piecewise polynomial
functions of various degrees [8], rational splines [9], a class of polynomial spline curve with free
parameters is established in [10], construction of exponential splines, fourth and m order algebraic
trigonometric , is showed in [11], [12], [13] respectively and additional approaches are developed
in [14], [15], [16], [17], [18], [26], [27].

Our work is also devoted to the construction of optimal algebraic hyperbolic splines. In the
space Ky (P3). This work consists of 5 sections. In next section, we give a defination of sinxth order
algebraic-hyperbolic natural interpolation spline, then take a equations system to construct this

spline.

2. STATEMENT OF THE PROBLEM

We consider the problem of recovering an approximation of a function given values in following

space:

Ky(P3):={f: [0,1] — R| f"" is absolutely continuous and f""" € L,(0,1)} (2.1)
equipped with the following semi norm:
1 1
111l := {fo (f" (x) = f'(x))%dx}2, (2.2)

Equality 2.2 gives the semi-norm and || f || = 0if and only if f(x) = die* + dre™ + d3 and we can
rewrite f(x) as f(x) = dj sinh(x) 4 dp cosh(x) + d3. In this space the inner product is defined as
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following:

1
(f.8):= fo (f7(x) = f(x)) (8" (x) = &' (x) )dx

K>(P3) is the factorized Hilbert space if we identify functions that differ by a solution of f”’(x) —
f’(x) = 0. We solve the following interpolation problem:

Problem 1 Find the function S(x) in Ky(P3) which gives minimum to the semi-norm 2.2 and
satisfies the interpolation condition

S(Xﬁ) = f(X5), Xg S [O, 1], ﬁ =0,1,..., N, (2.3)

for any f € K»(P3).
This problem is solved in K»(P;) space [19].
We give a definition of the interpolation spline function in the space K, (P3) following [20] .
Definition 2.1 Let A : 0 = xp < x1 < --- < xy = 1 be a mesh on the interval [0,1], then the
interpolation spline function with respect to A is a function S(x) € K»(P3) and satisfies the following
conditions:

(1) S(x)isa linear combination of functions sinh x, cosh(x), 1, xsinh(x), xcosh(x), x on each

open mesh interval (xg, x341),  =0,1,..,N-1;
(2) S(x)isalinear combination of functions sinh x, cosh(x), 1onintervals (—oco, 0) and (1, o);

(3) S(x) satisfies the following continuity and natural spline conditions :

§%(x3) = Sa(x;), «=0,1,234, =12,.,N-1,
§”'(0)-5'(0) =5""(1)-5'(1) =0,
S®(0)-5"(0) = s®(0)-5"(0) = 0.

(4) S(x) satisfies the interpolation conditions.

We get the following theorem based on definition 2.1

Theorem 2.1. The solution of the problem 1 is a algebraic-hyperbolic spline and it has the following form:

N
S(x) = Y CyG(x - x,) + dy sinh(x) + dy cosh(x) + d, (2.4)
y=0
where G(x) is the solution of G (x) —2G®) (x) + G®(x) = 6(x) (5(x) is Dirac’s delta function)
differential equation, and has the following form:
_ sign(x)
G(x) - 4
and the coefficients C,, y = 0,1,2,...,,N, dy,d>, d3 of the spline (2.4) are obtained from the following system

of N+4 linear equations,

(x cosh(x) — 3 sinh(x) + 2x) (2.5)

N
CyG(Xﬁ - Xy) +dq sinhxﬁ ~+ d, cosh xg + ds = f(Xﬁ), ﬁ =0,1,..N, (2.6)
y=0
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N
Y Cysinh(x,) =0, 2.7)
y=0
N
Z C, cosh(x,) =0, (2.8)
y=0
N
Y ¢ =0 (2.9)
y=0
where f € Ky(P3).
Proof: It is clear that the fifth derivative of the function G(x-x,) = w ((x=xy) cosh(x —

xy) —3sinh(x —x,) 4+ 2(x —x,) ) has a discontinuity equal to 1 at the points x,, y = 1,2,..., N -1, and
from first order to the fourth order derivatives of G(x —x, ) are continuous. Suppose a functionp, (x)
coincides with the spline S(x) on the interval (x,,x,,1) , i.e., py(x) := p,—1(x) + C,G(x —x)), x €
(xy,Xy+1), where C, is the jump of the function S®)(x) at x,:

¢y = %) -9 (x;)

Then the spline S(x) can be written in the following form

N
S(x) = Z C,G(x—xy) +p-1(x), (2.10)
y=0
where
p-1(x) = dq sinh(x) + da cosh(x) +d3 (2.11)

and dq, dp, ds are real numbers.
We obtain (2.6) equation from the (2.10), (2.11) and the condition (iv). Furthermore, the function
S(x) satisfies the condition (ii) and therefore the function

&

1 C,((x—xy) cosh(x —x,) —3sinh(x —x,) +2(x —x,))

y=0

is a linear combination of the functions sinh(x), cosh(x), 1. It leads to the following conditions
for Gy,

N N N
Z C, sinh(x,) =0, Z C, cosh(x,) =0, Z C, =0.
y=0 y=0 y=0

in the end , we obtain (2.6)-(2.9) equations system. After all, we have proved theorem 2.1
The rest of the paper is organized as follows. In Sect.3 we give an algorithm for solving the
system of equations (2.6)-(2.9) for equally spaced nodes xz. Using this algorithm the coefficients

of the interpolation spline S(x)are computed in Sect. 4.
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3. AN ALGORITHM FOR COMPUTING THE COEFFICIENTS OF INTERPOLATION SPLINES

Here we use a similar method proposed by S.L.Sobolev [21], [22]for finding the coefficients of

optimal quadrature formulas in the space Lgm)

. We use mainly the concept of discrete argument
functions and operations on them. The theory of discrete argument functions is given in [22] , [23].
Assume that the nodes x4 are equally spaced, ie., x3 = hf, h = 1/N, N =1,2,..and Cg = 0

when < 0 and > N. Using convolution, we rewrite equalities (2.6)-(2.9) as follows:

G(hB) + Cg +dy sinhxg +da coshxg +d3 = f(xg), p=0,1,..N (3.1)
Z C, sinh(x,) = 0 (3.2)
Z C, cosh(x,) =0, (3.3)
Z C, =0, (34)
y=0

where G(hp) is a function of discrete argument corresponding to the function G is given in (2.5) .
Thus, we have the following problem.

Problem 2 Find the coefficients Cg, = 0,1, ...,N and the constants dy,d>, d3 which satisfy the
system (3.1)-(3.4).

Further we investigate Problem 2 which is equivalent to Problem 1. We introduce the following

functions to solve Problem 2

v(hB) = G(hB) % Cg, (3.5)

u(hp) = v(hp) + dq sinh(hp) + da cosh(hp) + ds. (3.6)
In such a statement it is necessary to express the coefficients Cy by the function u(hf). For this we

have to construct such an operator D(hf) which satisfies the equality

D(hB) = G(hB) = &(hp,

where 0(hg) = { (1)' ii%

analogue D(hp) of the differential operator <= d -245 a” =+ d = is given in [24] .

is the discrete delta-function. The construction of the discrete

Following [24] we have:

Theorem 3.1. The discrete analogue of the differential opemtor = 2% + d—2 has the form

Z Ak/\klﬁ|_1, |ﬁ| >0
k=1

2
Ds(hg) =2 1+ 3 4y, |g| =1 37)
p k=1
=0

2
C+ Y 4,
k=1
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p = hcosh h—3sinh h+2h, C = —(2+ 4cosh h) — 3sinh iﬁ;gﬁ Zf;isri‘fl‘hhﬁ%};f“h Ly
Ay =

(1=A%)2(A2+1-2 cosh )2 (h cosh h—3sinh i+2h)? (3.8)
Ak Py’ (A)

A1, Ap are |Ax| < 1 zero of the polynomial

P4(A) = (1= Ak)?[(hcosh h —3sinh)A % + [3sinh 2k — 2h]A + (hcosh h — 3 sinh h])
+2h(A% = 2A  cosh h + 1)?

We use some property of the discrete analogue D(h). They are shown in the following theorem.

Theorem 3.2. Discrete analogue D(hB) of the differential opemtor d -275 d! =T d £ satzsﬁes the following
equalities:
1)D(hB) = sinh(hB) =0
2)D(hB) * cosh(hB) = 0
3)D(hB) * (hB)sinh(hB) = 0
4)D(hpB) * (hB)cosh(hp) = 0
5)D(hB) + G(hp) = 6(hp)
6)D(hB) « (hp) =0

)D(hp)

7)D(hB)*1 = 0.

This properties was proved in [25]. Then, taking into account (3.6) and Theorem 3.2 for optimal
coefficients we have
Cp = D(hp) * u(hp). (3.9)
Thus, if we find the function u(hf) then the coefficients Cg can be obtained from equality (3.9).
In order to calculate the convolution 3.9 we need a representation of the function u(hg) for all
integer values of B. From equality 3.1 we get that u(hB) = @(hp) when g € [0,1]. Now we need
to find a representation of the function u(hf) when g < 0and g > N.
Since Cg = 0 when 1 ¢ [0,1] then Cg = Dy, (hf) +u(hp) = 0, hp ¢ [0,1]. We calculate now the
convolution v(hf) = G(hp) * Cg when <0 and > N.
Supposmg p <0and takmg into account equalities (2.5), (3.2), (3.3), (3.4), we have
o(if) = L CyGUE-hy) = % CH U (g~ ) cosh(g ~hy) -
y==00 y=
~3sinh(h—hy) + 201 —y)) = =3 T C,{(hp~hy)[cosh(p) cosh(ry)-
y:—oo
—sinh(hg) sinh(hy)] — 3[sinh(hp) cosh(hy) — cosh(hp) sinh(hy)] + 2(hB — hy)}
=-1 yiw C,{(hB) cosh(hp) cosh(hy) — (hB) sinh(hp) sinh(hy) — (hy) cosh(hp) cosh(hy)
+(hy) sinh(hB) sinh(hy) — 3 sinh(hp) cosh(hy) + 3 cosh(hp) sinh(hy) 4+ 2(hB) —2(hy)}
=-1 yim Cy{(hB) cosh(hp) cosh(hy) — (hp) sinh(hp) sinh(hy) — (hy) cosh(hp) cosh(hy)+
+(hy) sinh(hB) sinh(hy)] — 3 sinh(hB) cosh(hy) + 3 cosh(hp) sinh(hy )+
2(hB) ~2(y)) = cosh(h)} T Cy(hy) cosh(hy) —sinh(hg)t T C,(hy)sinh(iy) +1 T C,(hy).
y=—c0 y=— y==00
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Denoting:

[ee] [ee]

1 1
=1 y;oo C, (hy) sinh(hy), y_z_:ooc (hy) cosh(hy), =3 V;OO C,(hy)

we get for § <0
v(hB) = —by sinh(hB) + by cosh(hB) + b3
And for g > N
v(hB) = by sinh(hp) — by cosh(hp) —

Now, setting

di =dy—by, dy =dy+by, dy =d3+bs,

d+ di+by, dy =dy—by, df =d3—b3
We formulate the following problem:

Problem 3 Find the solution of the equation
In the form:
d; sinh(hp) +d; cosh(hp) +d;, B <0,
u(hp) = f(hp), 0<B<N, (3.11)
d| sinh(h) +d; cosh(hB) +dJ, p=N,
where dy, d;, d;, df, dy, dj are unknowns.

It is clear that
1 . L 1. 1, - 1,
d; = §<di -l-dl), i=12,3, b = E(dl —dl), b, = E(d2 —d2 ), bz = E(d?’ —d3 ). (3.12)

These unknowns d;, ds, d; , d1+, d; , d3+ can be found from equation (3.10), using the function
D(hB). Then the explicit from of the function u(hf) and coefficients Cg, d1, d2, d3 can be found.
Thus, Problem 3 and respectively Problems 2 and 1 can be solved.

In the next section we realize this algorithm for computing the coefficients Cg, = 0,1, .., N, d1, d2, d3
of the interpolation spline (2.4) forany N = 1,2...

4. COMPUTING THE COEFFICIENTS OF THE INTERPOLATION SPLINE

In this section using the algorithm from the previous section we obtain explicit formulae for

coefficients of interpolation 2.4 which is the solution of Problem 1.

Theorem 4.1. Coefficients of interpolation spline 2.4 which minimizes the semi norm 2.2 with equally
spaced nodes in the space K, (P3) have the following form:

2
Co { —dj sinhh + d;, coshh +d5 + Cf( Mp+ Y AV f(hy) + ANNG]),
=3 £(0) ; Z VF(hy) + AN

2 N
Cp = %{f(h(ﬁ—l))+cf(hﬁ)+f (B+1)) Z)\_k ,\ﬁMkJFZALﬁ—yIf(hV)+A£v—ﬁNk]},ﬁ 12 N-1
k=1

y=0
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2 N
2 A -V
CN:EMTQMﬂh+U+d;ammh+m+d;+fu—m+%jﬂ)+2:xﬂ@%@+Z Af}ﬂmq+NUL
k=1 "k y=0
di= Y 4a), i=
1—5( i + i)’ 1—1,2,3

where

_ Arsinhh _ Ax(coshh—Ay) A
My = —d e ——— 4.1
k 11—%)\;(2—2/\kcoshhjL 21+ A2 —2Acoshh 31— Ak (1)
Ae(sinh(h +1) — A sinh 1 A h(h+1)-A h1
14 A2 =2A,coshh 14+ A2 —2A;coshh 1- A

and p, Ay, C, Agare given in 3.7 and d;, d;, d3, d", d;, d are defined by 4.3, 4.8.

Proof. First we find the expression for d; and d; . When g = 0 and g = N, from 3.11 we get

f(1) —d; sinh(1) —dJ

dy = f(0) ~d;, df = cosh(1)

(4.3)

Now we find other four unknowns d, d, d;r , d;r which can be found from ((3.10)) when g =

-1, =2, N+ 1, N + 2. Taking into account (3.11) and from (3.10) we have:

-1 N

Y. D(hp—hy)(d] sinh(hy) +d; cosh(hy) +d3) + Zo D(hB —hy)f(hy)
)/:

y==—00
+ f D(hp —hy)(d sinh(hy) +dJ cosh(hy) +d) =0,
y=N+1

io"l D(hp + hy)(=d sinh(hy) + d; cosh(hy) +d3) + IZ\]’,O D(hB—hy)f(hy)
y= y=

+ ¥ D(h(N +y —p))(d] sinh(hy + 1) +d; cosh(hy +1) +dJ) = 0.
r=1

Now, we use (4.3) and for f = -1, =2, N+ 1, N 42 we get the following system of linear equations
ford, d3, d;r, d;r.

—d; Of,l Ds3(hy + hp) sinh(hy) +d3 Oil Ds(hy + hB)(1 — cosh(hy))
y= y=

+af gsirs X Da((y+ N =) sinh(hy) +df T Ds(h(y +N=p))(1 = “ggz)
y: )/:

[

=- %O Ds(hB—hy) f(hy) - £(0) El D3 (hB + hy) cosh(hy) — 20 ¥, Da(h(y +N =) cosh(hy +1)
y= y= r=

andforp = -1, -2, N+ 1, N + 2 we get the following system of linear equations for d;, d;, d;’, d;’

—d- fl Ds(ly — ) sinh(y) + d; El Ds(hy —1)(1 = cosh(hy))
y= y=
+df 1 T Da(h(y+N+1))sinh(hy) +di ¥, Ds(h(y + N +1))(1 - <Shbril)y
v =1 (4.4)
=— ZO Ds(hy +h)f(hy) - f(0) Zl Ds(hy —h) cosh(hy)
y= y=

Ly Dy (h(y + N+ 1)) cosh(hy +1)
y=1

C
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—d; f D3 (hy — 2h) sinh(hy) +d; f Ds(hy —2h)(1 — cosh(hy))
y=1
a1 z Ds(h (y + N +2)) sinh(hy) + df leg(h (y + N +2))(1 - hlrD)
=
o (4.5)
=- Z Ds(hy +2h) f(hy) - f(0) L Ds(lhy —2h) cosh(hy)
V= V=
& §1D3<h<y+N+z>>cosh<hy+1>
=
—d- §1D3(h (y+ N +1))sinh(y) +d5 fl Ds(h(y + N +1))(1 = cosh(hy))
V= V=
+df b T Da(h(y—1))sinh(hy) +d; ¥, Da( (y —1))(1 - el
v R (4.6)
=— Y. Ds(h(N+1-7y))f(hy) - £(0) 21D3(h (y + N +1)) cosh(hy)
y=0 r=
[ f Ds(h(y — 1)) cosh(hy +1)
—d- El Da(k (y + N +2)) sinh(hy) + d; f Ds(h(y + N +2))(1 = cosh(hy))
=
+df b T Da(h (y - z>>smh<hy>+d+ X Ds(h (y —2))(1 - bl
v < (4.7)
=~ T Dy (N+2-9) () = £0) £ Dalhly +N +2)cosh(y)
—Cﬁgﬂ 0Zolng,(h(y—Z))cosh(h)/—i—1)
=

Since |A¢| <1, k = 1.2, the series in the previous system of equations are convergent.

Using (4.3) and taking into account 3.7, after some calculations, from (4.4)-(4.7) we obtain the

following equations system:

Bi1 Biz Biz Bu dy T,
Bxi B Bys Bu o dy | _ T2
Bs1 B3z Bas Bas df T3
By By Baz Bas df Ty
where
2 S A
B11 = —=[Csinh (h) + sinh (2h) + Z _];Ll]/
p pus L
» 2 24 2 A
By = =[(1+ ZAk— Z —;{) sinh(h) + Csinh (2h) + sinh (3h) + Z —§L1]
P R 1
2 2 A 2 A
By = =[C(1 = cosh (h)) + 1 — cosh(2h) +Z—]2( —Z —;(Lz)],
p pa i =1

(4.8)
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2
By = %[(1 + ZAk— Z ﬂ)(l —cosh(h)) + C(1 - cosh(2h)) + 1 — cosh(3h)

2
k=1 = M
2, A 2 A
k k
+ Lyl ) Bl
=1 "k = "k
5 2
A N+i 1L Ji= 1,2
B~ pcoshl ; g v
2 1
By = = A/\N—H_lL A N+i 1L —-1.2
i [; KAk 5~ oah1 ; KAk o, i=1,

2
2 N+i-1 1 N+i-1 _
B(1+2)2 = —[; Ak/\k L5 oshi Z{AkAk Lz],, 1= 1,2
2 2 A
B3 = h inh (2 r
P Tp Coshl[CSln (1) + sinh (2h) ; A2 il

D>

2
k
By = » coshl Z Z PE ) sinh(h)+C sinh (2h) + sinh (3h) + kZ i 1,

»

2 Ay 1
B = Z[C+1 +Z L5 - —7((Ceosh(h 1)+

A
+cosh(2h+1) + Z A—§L4}]
k=1 "k

2 2 2
. 2 Ak Ak 1 Ak
B44—p[(1+ZAk ZA )+C+1+Z/\iL5 coshl{(1+kZAAk kZA ) cosh(h+1)

2
A

+ Ccosh(2h 4 1) 4 cosh(3h + 1) + Z A_§L4}]
k=1 "%

2
Ty = —[f(0) - (Ccosh(h) + cosh(2h) + Z %Lz) + (f(0) + ZAkZ ALf(hy))+
k=1

k k=1 y=0

0y ,
* cosh(1) ';AkAkNL‘l]'

k=1 ""k
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2 2 N
0) Y AL+ Y A Y AT f(hy) + F(1)+
k=1 k=1 y=0

n f(1) (Ccosh(h + 1) + cosh(2h + 1) +iﬂL );
cosh(1) L2 4);
2 2 N
0) 3, Ak 1o+ B A AT
p s
Ay 2 A
k
Cosh HZA’”Z—% cosh(l1 +1) 4+ Ccosh(2h + 1) + cosh(3h + 1) + ;A_im]'

Where Ll,i = ﬁ are given follow:

Aesinhh
1)Ly Z A sinh(hy) = THA2—2A; cosh i/
Ax(coshh—Ay) |

) Z A COSh(h)/) 14+Ax2—2A cosh h”

y=1
b . Ag(sinh(h+1)—Ay sinh 1
3) Zl Ay sinh(hy +1) = k(s1+/\i2—2ikc;sshh );
7/:
S Ag(cosh(h+1)=Ax cosh 1
4) T A cosh(ly + 1) = MR AR
V:
y A .
°) V§1 M= 1_];\"’

Combaining (4.8) and (4.3) we obtain dl', ds, d;, d1+, d;, d;. Then we obtain d;, d», d3 which are
given in the statement of theorem 4.1.

Now, We calculate the coefficients Cg, § = 0,1,2..., N. Taking into account (2.11) from (2.9) for
Cp we get

(o8]

Cp = D3(hp) »u(hp) = VOZ; D(hB —hy)u(hy) = ygl D(hB + hy) (—d; sinh(hy) + d cosh(hy) + d;)

N )
+ Y. D(hB—hy)f(hy)+ ¥ D(h(N+y —,B))(cl;r sinh(hy +1) + dz+ cosh(hy +1) + d;)
)/:O 7/:1
From which, using (3.7) and taking into account notations (4.1), (4.2) , when g = 0,1, ...,N, for C
we obtain the expression given in (4.1).

5. NUMERICAL RESULTS

In this section, using (4.1), we obtain several absolute errors graph in interpolating functions
with the sixth order algebraic-hyperbolic spline, and we compare absolute errors of cubic spline
and algebraic-hyperbolic in interpolating several functions. We denote the sixth order algebraic-
hyperbolic natural spline as S¢(x) and the cubic spline as Sz(x).

2

Applying Se(x) with N=5,10, using (4.1) for the functions x*, cos(2x), e 4+ x we obtain abso-

lute errors. The graphs of the corresponding absolute values of errors are presented in Figure 1
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and Figure 2.
a) b) c)
0.0004 0.0020 0.00020
0.0002 0.0010 0.00010
0 0 0
0.2 0.81 0.2 0.81 02 0281
X X X

Ficure 1. Graphs show absolute errors when sixth order algebraic-hyperbolic

spline approximate x> , cos(2x), e* + x functions at N=5: a) |x2—56(x)|

b)|cos(2x —Se(x | ’e +x — Se(x )|
0. 00005
0.00020 0.000020
0.00002 0.00010 0.000010
0 206 1
% X X

Ficure 2. Graphs show absolute errors when sixth order algebraic-hyperbolic
spline approximate x> , cos(2x), €* + x functions at N=10: a) |x2—56(x)|
b)|cos(2x — Se(x | ’e + x = Sg(x)|.
Now, we compare the graphs of the absolute errors of interpolating the functions

sin(x), 5= 2 ~, €* with sixth order algebraic-hyperbolic natural spline and cubic spline,

where we get N=10.

©)
-86
0. 00005 0.0004 7 %10
0.00002 0.0002 .
1. x 10
0.20.6 1
X X X

Ficure 3. Graphs show absolute errors when sixth order algebraic—hyperbolic

—Se(x )‘

spline approximate sin(x), 2" e* functionsatN=10a) Ism

C) |ex - 56(x)|.
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a) b) ©)
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Ficure 4. This Graphs show absolute errors when cubic spline approximate sin(x),
£ ¢* functions at N=10 a) |sin(x) - Sg(x)| b) % -5 (x)| C) |ex - 53(x)|

2—x’

Figure 1,2 and 3 show that it is possible to interpolate functions belonging tovarious

classes with high accuracy using an algebraic hyperbolic spline. Figure 3 and Figure
4 show that the sixth order algebraic-hyperbolic spline gives several times better

results than the cubic spline in interpolating functions.

6. CoNCLUSION

In this work, we constructed an sixth order algebraic-hyperbolic interpolation, natural spline . To
solve this problem, we used the Sobolev method and obtain a spline function for the approximate
calculation of the unknown function. We first presented the interpolation spline function under
which conditions gives a minimum to the norm in a certain Hilbert space. To find the coefficients of
this spline, we created a system of equations based on certain conditions. We used Sobolev method
and gave the algorithem to solve equations system. When we found the coefficients of the sixth
order algebraic-hyperbolic interpolation natural siline, we obtain the exact expression of this spline.
The absolute error in approximating functions with the sixth orderalgebraic-hyperbolic natural
spline has been seen in the example of several functions and the absolute errors in approximating
fununctions with the kubic spline and the spline we built are compared. The results show that,
the spline we built approximates functions better than the cubic spline. We know, in many areas
the kubic spline is widely used, This means that, we can take better results through the spline we
have built.
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REFERENCES

[1] Y.S. Zavyalov, B.I. Kvasov, V.L. Miroshnichenko, Methods of Spline Functions, Nauka, (1980).

[2] B.I. Kvasov, Difference Methods for Constructing Isogeometric Splines, Publishing House of NSU, (2004).

[3] V.I. Paasonen, Parallel Algorithm for Construction of Hyperbolic Splines, Comput. Technol. 11 (2006), 88-97.
https://www.researchgate.net/publication/266942570.

[4] E.R. Brown, J.G. Ibrahim, V. DeGruttola, A Flexible B-Spline Model for Multiple Longitudinal Biomarkers and
Survival, Biometrics 61 (2005), 64-73. https://doi.org/10.1111/j.0006-341X.2005.030929.x.


https://www.researchgate.net/publication/266942570
https://doi.org/10.1111/j.0006-341X.2005.030929.x

14 Int. J. Anal. Appl. (2025), 23:7

[5] D.E. McAllister, J.A. Roulier, Interpolation by Convex Quadratic Splines, Math. Comput. 32 (1978), 1154-1162.
https://doi.org/10.1090/S0025-5718-1978-0481734-6.
[6] LI Schumaker, On Shape Preserving Quadratic Spline Interpolation, SIAM J. Numer. Anal. 20 (1983), 854-864.
https://doi.org/10.1137/0720057.
[7] EN. Fritsch, R.E. Carlson, Monotone Piecewise Cubic Interpolation, SIAM ]. Numer. Anal. 17 (1980), 238-246.
https://doi.org/10.1137/0717021.
[8] P. Costantini, On Monotone and Convex Spline Interpolation, Math. Comput. 46 (1986), 203-214. https://doi.org/
10.1090/S0025-5718-1986-0815841-7.
[9] R. Delbourgo, J.A. Gregory, Rational Quadratic Spline Interpolation to Monotonic Data, IMA J. Numer. Anal. 2
(1982), 1-18. http://bura.brunel.ac.uk/handle/2438/2285.
[10] J. Li, C.Liu. A Class of Polynomial Spline Curve with Free Parameters that Naturally Interpolates the Data Points,
IAENG Int. J. Appl. Math. 50 (2020), 1-5.
[11] K.M. Shadimetov, A.R. Hayotov, Construction of Interpolation Splines Minimizing Semi-Norm in ng,m—l) (0,1)
Space, BIT Numer. Math. 53 (2013), 545-563. https://doi.org/10.1007/s10543-012-0407-z.
[12] A.R. Hayotov, G.V. Milovanovié¢, K.M. Shadimetov, Interpolation Splines Minimizing a Semi-Norm, Calcolo 51
(2014), 245-260. https://doi.org/10.1007/s10092-013-0080-x.
[13] A.R. Hayotov, Construction of Interpolation Splines Minimizing the Semi-Norm in the Space K, (Py,), J. Sib. Fed.
Univ. Math. Phys. 11 (2018), 383-396. https://doi.org/10.17516/1997-1397-2018-11-3-383-396.
[14] R. Campagna, S. De Marchi, E. Perracchione, G. Santin, Greedy Algorithms for Learning via Exponential-
Polynomial Splines, arXiv:2109.14299 [math.NA] (2021). https://doi.org/10.48550/ARXIV.2109.14299.
[15] R. Campagna, C. Conti, Reproduction Capabilities of Penalized Hyperbolic-Polynomial Splines, Appl. Math. Lett.
132 (2022), 108133. https://doi.org/10.1016/j.am1.2022.108133.
[16] S. Eddargani, M. Oraiche, A. Lamnii, M. Louzar, C> Cubic Algebraic Hyperbolic Spline Interpolating Scheme by
Means of Integral Values, Mathematics 10 (2022), 1490. https://doi.org/10.3390/math10091490.
[17] S. Cuomo, C. Conti, R. Campagna, Smoothing Exponential-Polynomial Splines for Multiexponential Decay Data,
Dolomites Res. Notes Approx. 12 (2019), 86-100. https://doi.org/10.14658/pupj-drna-2019-1-9.
[18] K. Shadimetov, F. Nuraliev, S. Kuziev, Coefficients and Errors of the Optimal Quadrature Formula of the Hermite
Type, AIP Conf. Proc. 3147 (2024), 030030. https://doi.org/10.1063/5.0210357.
[19] G.N. Akhmadaliyev, Constructing a Hyperbolic Spline, Bull. Inst. Math. 4 (2021), 25-36.
[20] J.H. Ahlberg, E.N. Nilson, J.L. Walsh, The Theory of Splines and Their Applications, Academic Press, 1967.
[21] S.L.Sobolev, The Coefficients of Optimal Quadrature Formulas, in: G.V. Demidenko, V.L. Vaskevich (Eds.), Selected
Works of S.L. Sobolev, Springer, Boston, MA, 2006: pp. 561-565. https://doi.org/10.1007/978-0-387-34149-1_35.
[22] S.L. Sobolev, V.L. Vaskevich, The Theory of Cubature Formulas, Springer, Dordrecht, 1997. https://doi.org/10.1007/
978-94-015-8913-0.
[23] S.L. Sobolev, Theory of Cubature Formulas, in: G.V. Demidenko, V.L. Vaskevich (Eds.), Selected Works of S.L.
Sobolev, Springer, Boston, MA, 2006: pp. 491-511. https://doi.org/10.1007/978-0-387-34149-1_26.
[24] G.N. Ahmadaliyev, A.R. Hayotov, A Discrete Analogue of the Differential Operator ;lx% - 26‘)2% + w4%,
Uzbek Math. J. 2017 (2017), 10-22.
[25] Kh.M. Shadimetov, A.R. Hayotov, Properties of Discrete Analogue of the Differential Operator % - %,
arXiv:0810.5423 [math.NA] (2008). https://doi.org/10.48550/ARXIV.0810.5423.
[26] K.Shadimetov, F. Nuraliev, S. Kuziev, Optimal Quadrature Formula of Hermite Type in the Space of Differentiable
Functions, Int. J. Anal. Appl. 22 (2024), 25. https://doi.org/10.28924/2291-8639-22-2024-25.
[27] EA. Nuraliev, Sh.S. Kuziev, The Coefficients of an Optimal Quadrature Formula in the Space of Differentiable
Functions, Uzbek Math. J. 67 (2023), 124-134.


https://doi.org/10.1090/S0025-5718-1978-0481734-6
https://doi.org/10.1137/0720057
https://doi.org/10.1137/0717021
https://doi.org/10.1090/S0025-5718-1986-0815841-7
https://doi.org/10.1090/S0025-5718-1986-0815841-7
http://bura.brunel.ac.uk/handle/2438/2285
https://doi.org/10.1007/s10543-012-0407-z
https://doi.org/10.1007/s10092-013-0080-x
https://doi.org/10.17516/1997-1397-2018-11-3-383-396
https://doi.org/10.48550/ARXIV.2109.14299
https://doi.org/10.1016/j.aml.2022.108133
https://doi.org/10.3390/math10091490
https://doi.org/10.14658/pupj-drna-2019-1-9
https://doi.org/10.1063/5.0210357
https://doi.org/10.1007/978-0-387-34149-1_35
https://doi.org/10.1007/978-94-015-8913-0
https://doi.org/10.1007/978-94-015-8913-0
https://doi.org/10.1007/978-0-387-34149-1_26
https://doi.org/10.48550/ARXIV.0810.5423
https://doi.org/10.28924/2291-8639-22-2024-25

	1. Introduction
	2. Statement of the problem
	3.  An algorithm for computing the coefficients of interpolation splines
	4. Computing the coefficients of the interpolation spline
	5. Numerical results
	6. Conclusion
	 Conflicts of Interest:

	References

