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Abstract. This paper presents theoretical proof of the existence of a unique solution to a constrained problem of the
Riemann-Liouville fractional differential equation with time delay functions by utilizing the Schauder fixed point
theorem. Moreover, we analyzed the continuous dependence of the solution on the initial conditions and other
parameters. Further, we investigate the Hyers-Ulam stability of the problem. We introduce some examples and special

cases to illustrate our results.

1. INTRODUCTION

Fractional analysis is an area of calculus that is concerned with non traditional orders. It is
a relatively new field of study that has gained significant attention from researchers because of
its wide-ranging applications in different sectors of science and engineering (see [1,24, 30, 31]).
Fractional calculus applications continue to grow, and it is expected that they will perform an
increasingly essential role in the development of new technologies in the future. This has resulted
in the development of new mathematical tools and techniques that have been used to solve complex
problems in physics, engineering, finance, and other fields.

Studying fractional calculus has yielded the maturation of numerous analytical strategies for
solving fractional models, including Riemann, Caputo, and Grunwald-Letnikov’s approaches
[13,25,26]. Fractional differential and integral equations have attracted a lot of research interest
due to their significance in various domains. Srivastava et al. [29] analyzed a class of nonlin-

ear boundary value problems of an arbitrary fractional-order differential equation with integral
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boundary conditions and infinite-point. Kucche and Sutarin [22] established the existence and sta-
bility results for nonlinear fractional delay differential equations, they also proved the Ulam-Hyers
stability of the problem. In [10], the authors discussed the solvability of an implicit hybrid de-
lay nonlinear functional integral equation, they proved the existence of integrable solutions by
using technique of measure of noncompactnes, moreover, they examined the uniqueness and the
continuous dependence of the solution under suitable assumptions. In [4] El-Sayed et al. stud-
ied a constrained problem of the quadratic functional integro-differential equation of arbitrary
(fractional) orders, the authors proved the existence and the uniquiness of the solution under suit-
able assumptions, they also investigated the stability of the problem due to Hyers-Ulam stability
and the continuous dependence of the unique solution on some parameters. For further studies,
(see [1]- [3], [5]- [9], [11,12,14,16,19,20], [26]- [28], [30,31]).

In this study, we are concerned with the constrained problem of the Riemann-Liouville fractional

differential equation,

kD% (t) = f(t,x(pa(t)), t € (0,1] (1.1)
with each one of the nonlocal and weighted delay integral constraints.
1-1
%% (t)|s=0 = x0 + f g(s,x(ga2(s)))ds, T €0,1]. (1.2)
0
or
1 1-1
7% (1) |i=0 = —— (x0 —|—f 2(s,x(¢2(s)))ds), T €[0,1]. (1.3)
I'(a) 0

where RD? denoted the fractional derivative of Riemann-Liouville of order a € (0,1].

In Section 1, we introduce theoretical introduction about the importance of fractional calculus
models and some related works, we also analyze the transform of (1.1)-(1.2) or (1.1) and (1.3)
into the equivalent integral fractional model (1.4). Moving on to the 2nd section, we establish
the existence and uniqueness of the solution by utilizing the fixed point of Schauder’s theorem
and Kolmogorov’s compactness criterion. Section 3 presents the continuous dependence part of
the study, we prove the continuous dependence of the unique solution on initial conditions and
other parameters. In the 4th section, we study the stability of the problem due to the Ulam-Hyers

stability. In Section 5, we close the manuscript by some examples and special cases.

Now, we have the following lemma.

Lemma 1.1. The solution of the constrained problem (1.1)-(1.2) or (1.1) and (1.3) can be expressed by the

fractional order delay integral equation
t(x—l

1-1
o) = frasbo + [ s(ox(pa(o)ds + 1t (1) 14)

Proof. Let x € L1(I) be a solution of the constrained problem (1.1)-(1.2) or (1.1) and (1.3), then

we have

SIx(t) = flb (1),
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By integration, we get

[=x(t) = T (Dm0 = ft f(s,x(@1(s)))ds,
0
Mx(t) = IMx(t)=o + fo f(s,x(@1(s)))ds

and from (1.2), we get

1-7 t
Pax(t) = x4 fo 95, x(pa(s)))ds + fo £(5, 21 (5)))ds.
Operating by I, then

a 1-7
1) = o+ [ s(orloa))d) + 1 (6)

By differentiation, we get

ta—l

1-7
x(t) = ) (xo0 +f0 8(s,x(p2(s)))ds) + I* f(t,x(p1(t)))-

Conversely, from (1.4), we have

1-1
I x(t) = xo +f0 8(s,x(p2(s)))ds + I f(t,x(p1(t)))

and
1-1
G0 = 5 0o+ [ gox(ea)d) + F 1A 0),
then
D*x(t) = f(t,x(p1(t)))
and

1-1
Fx(B)lmo = % + f <(s, x(p2(s)))ds.
0
Also for the problem (1.1) and (1.3), we have

L%p—a x(t) = f(t,x(gr(1)))

Integrating , we get

1= x(f) - C = fo £(5, x(gr(s)))ds,

I x(t) = C + If(t,x(r(t)))
Operating by I* on both sides, we get

I(t) = frgy + I ().
Differentiate, then
Cr!
K(0) = S + I [t x(on(0)) 19

I'(@)
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1 2(t) = fog + 0 fbxa (),
then c
g x(H)|=0 = m,
Thus '
1 -t C
T+ [ st = .
Substituting in (2.3), we obtain
ta—l 1-1
x(t) = m(xo +f0 8(s,x(pa(s)))ds) + I* f(t, x(g1(t))).-
Conversely, let x € L1 (I) be a solution of (1.4), then we have
1-7
Hox(t) = ﬁ(xo +f0 8(s,x(p2(s)))ds) + £ 1% f(t, x(g1 (1)),
1-1
B 5Bl = g0 + [ sloxpa(9)ds)

and
%Il—a x(t) = f(t,x(@1(1))).

2. EXISTENCE OF SOLUTION

Here we study the existence of at least one (and exactly one) integrable solution of the fractional

integral equation (1.4). under the following assumptions

(i) f,¢I=1[0,1] xR — R are measurableinf €V x € R and continuousinx € RY t € [ and

there exist two integrable functions 111, m; and two constants a, b > 0, such that

=
=
2
IA

m (£) +alx), @1)
my(t) +blx|Vtel x€R,

=
=
NaY
IA

where
1 1

llm1 ]| = f [mq|(¢)dt, and ||my|| = f [my(t)ldt. t € L.
(i) ;I —> L i=12is abosolutely continuous in ¢ % I and there exist constant y > 0 such
that ¢i(t) > .
Now for the existence of at least one integrable solution of the fractional integral equation (1.4),

we have the following theorem

Theorem 2.1. Let the assumptions (i) — (ii) be satisfied. If

a+b
Y

then the fractional integral equation (1.4) has at least one integrable solution x € L1[0,1].

1, (2.2)
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Proof. Define the set B, by

B, ={xely:|lx]|<r} cLj.
and the operator F by

a-1 (t _S)a—l

1-1 £
Fa(t) = oo+ [ slolgao)as) + [T (o)

where

» — ol A limall + limal

Now, let x € B,, then
a-1 1-1 t (1 _ o\a-1
ww|=|ﬁam+£ gwwmm@+ﬁﬁﬁ%<mww@m|

a—1 a—1 1-1 t -3 a-1
ol s [ gt + [ s o)

Then

1
f \Ex(£)ldt
0
1

a—1 a1 1-1 t (t— s)a—l
|| ol fy [ st x(oaois + [ i if(s s o)) s

1 t“_l 1 ta_1 1-7 1 t(t_s)a—l
[ Frgbotter [ g [ st xtoateiasie + [ [ st vl ) s

1 1 ta—l 1-1 1 1 (t_s)a—l
mlon-j; Ta)fo |g(s,x(<p2(s)))|dsdt—1—foIf(s,x((p1(s)))|fS ) dtds

<
1-7 1
< ﬁ'xwm fo (s, x(@2(s)))lds + ﬁ fo (5, x(1(s)))lds
1-7 1-1 1
: F(a1—|—1)|x0|+1"(a1+1) [fo oz <S)|ds+bf0 Ix(2(s))Ids] + r(a1+1)[f0 1 (5)\ds
1
+a [ (pr(o)ias
1 1 1 1
< F(a1+1)|x0|+—r(a1+ ) [j(; [z (S)Ids+§fo x(n)ldn] + ﬁ[l{; lmy (s)lds+§](; [x(6)]d6]
1 1 b a
S Far ot r g el Slkdh) + gy (il + i)
< ol mll + gl + TETE)
then

IFxllp <
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Then F : B, — B,, moreover the operator F is uniformly bounded. Now, let x € B,, then

1
N(Fx) - Fxly = fo (Ex)p (1) — (Fx) (1)t

1 t+h

_ fo : ft (Ex)(s)ds — (Fx) (1)ldt
1 t+h

_ fo % ft 7 (Fx)(s) = () (1)

Now, Fx € L1]0,1] implies
(Fx);, — Fx|l; — 0.

This means that Fx(t), — (Fx) uniformly in L (I). Thus {Fx} is relatively compact [21]. Hence F is
compact operator.

Now, let {x,} C B,, and x,, — x, then
ta—l (t _ S)a—l

1-1 t
Fo) = ot [ sn(eae)is) + [ S fls e e)as

and
a-1 1-1
fm F(f) = Jim st | gl n(pa(o))
‘ t (t_s)a—l
4+  lim ————f(s, xx(@1(s)))ds.

v Jy T T(a)

Applying Lebesgue dominated convergence Theorem [21], then from our assumptions, we get

a-1 1-7
nh_r)r.}oFxn(t) = li(a) (XO+L g(sf,}EEOxn((PZ(S)))dS
t —s a-1
+ \fO‘ %f(slr}i_)r&xn(@l(sn)ds
a—-1 1-7 ; g a1
- ﬁ(xw fo 8(s,x(p2(s)))ds) + fo % f(s,x(1(s))ds = Fx(t).

Then Fx,(t) — Fx(t). Which means that the operator F is continuous.

Since all conditions of Schauder fixed point Theorem [21] are satisfied, then the operator F has at
least one fixed point x € L1]0, 1]. Consequently there exists at least one solution x € L]0, 1] of the
problems (1.1)-(1.2) or (1.1) and (1.3).

2.1. Uniqueness of the solution. Consider the following assumptions.
(i)* f,g:IXR — R are measurable in t € I Yx € R and satisfy the lipschits conditions with
a,b>0,

alx—x|

=
—~
N
=
N~—
I
-
—
N
=
==
IA

lg(t,x) —g(t,x)| < blx—x|, Vtelx eR.
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(ii)"
f(t,0) € L1]0,1] and |lm1]| = supy j(; |f(£,0)|dt,

t
<(t,0) € L1]0,1] and ||my|| = sup; f |g(t,0)|dt.
0

Theorem 2.2. Let the assumption (i)*, (ii)* and (ii) be satisfied. If

(a+0)
Y

then the fractional integral equation (1.4) has a unique solution x € L1[0, 1].

<1,

Proof. Let x1, x» be two solution of fractional integral equation (1.4)

a— 1-1 t _o)a-1
) -n®) = o+ [ stsntonas + [ E=S 6w (5)))ds

o o T
pa-1 1-1 t (t _ S)Dt—l

- ot [ sl - [ s (i)
ta—l

1-1
iy st -ttt

)
[ oo - fenton )l

toc—l -1 t (t —3 a-1

() j(: blxa (@2(s)) — x1(p2(s))lds + [) F(oz) alxa(1(s)) — x1(p1(s))lds,

0

1 ,0-1 7—1 t _\a—-1
< [ [ vl -mtanis+ [T (i) (oo,

1 pa—1 -1 t(t S) -1
< [ [ vntpen -ntgaenis+ [
-

1 ta—l 71
< fo(mdtfo blxz (2(s)) — x1(¢p2(s Ids+ff

T—1
—F(al—i— 1>£ b|x2(§02( )) X1(§02( ))|d$+f mdl)@((pl( )) xl(@l(S))ldS,

alxz(p1(s)) — x1(e1(s))lds)dt,

alxz (p1(s)) — x1(p1(s))ldtds,

IA

1-7
F(al%—l)bf |x2((92(5))—x1(@2(5))|d5+—r( 1 ﬂf lx2(@1(s)) —x1(¢1(s))lds

d d
a+1 f|xz ~s (i + F +1 flxz 1 (0)1d6
1

F(a+1)y

IA

IA

IA

( [lx2 — x1”1+y”x2 x1llh)
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;le XII(é =)
Tt re- vy +y

a+b

IA

[lx2 = x1]l1.

Then
a+b

llxz = x1ll1 (1 = ) £ 0,

llx2 —=x1lh < 0.

Which implies that x; = xp, then the solution of the fractional integral equation (1.4) is unique
integrable solution. Consequently the solution x € L;[0, 1] of the problems (1.1)-(1.2) or (1.1) and
(1.3) is unique.

3. CONTINUOUS DEPENDENCE

Theorem 3.1. Let the assumptions of Theorem 2.2 be satisfied then the unique solution x € L1 (I) depends
continuously on xo, f, g in the sense that ¥ € > 03 6(e) such that

max{lxo — xpl, |f(t,x) = f(t,x), 1g(t, x) — " (£, x)l} <0,
implies
Ix —x'llh <e,

where x* be the solution of

a-1 1-1 t(p_g)a-1
() =ttt [ gGxlpnl+ [ L o))

@ I(a)
Proof.
() (0
a—1 1-7 t —3 a-1
~ I+ [ st + %f(s,x«m(smds
-1 1-7 t(t_s)a—l . .
- Tt [ ger e~ [ s o)
al tal 1-1 .\ §
< fato s+ ey [ 18 xpas)) —g o (pa(s)ls
n f = e xr(6))) = £ (1 ()l
al a—1 1-1
L xal+m fo 195, x((92(5))) + 8(5.2° ((9205))) = 805, (@2(6)))  §°(5,2* (pa(s)) s
n f ) o x(01(6)) + (5, (01(5))) = (5, (91(5))) = F 2 (1 ()l
et i . . I
< T I fo 195, 2((9205))) - g0, 2" (2(9))l + 18 (5,3 (@2(s))) — §° (5, %" (pa(s)))lds
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_|_

a-1
fo(t (S)) [1f (s, x(1(5))) = f(s,x" (@1 () + If (s, %" (@1(5))) = (s, %" (1)) ) ]ds

6ta1 tal

1-1
T(a) + mj(; [blx(p2s) — x"(p2(s))] + 0]ds
t(F—g)e-1
* fo (tr(i) [alx(@1(s)) = x"(p1(s))] + Ollds,

then

f x(¢) (t)|dt
5119 1 pa— 1 1-7 .
< f o T f [blx(as) — x*(a(s))] + ds

[ L (o) - (a1 + ol

0 n 1
I'(a+1) (oc+1

- ff
L1
a+1 I'(a+1

" ff tr(zz) (alx(p1(s)) — x*(p1(s))| + Ol )dtds,

F(a+1 a+1 f'“PZ P2(5)))lds + O]

f Ix(¢1 (s 1(s))lds + o)

IA

1-1
[ bieloas) = (pa(o))l + las

ﬂlx P1(s)) —x*(p1(s))| + 03])dtds,

IA

1-1
) f [blx(25) - x* (2 (s))] + B)ds

IA

a+1

5
)Id
F(a+1 a—{—l f'x n)ldn + 0]

+ a+1 f Ix(6 0)|d6 + 9].

IA

Now

LA )
T(a+1) T(a+1) 'y !

+ ﬁ Clx=xh+0)
1
I'(a+1)

a+b

IA

[lx = x*[l1

IA

b . a .
30 + —llx = x"ll + —llx = x"[l]
Y Y

IA

30 + Ilx — x*|;.
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Thus

4. Hyers-UrLaMm staBILITY [17]

Now, from the equivalence between the problems (1.1)-(1.2) or (1.1) and (1.3) and the integral
equation (1.4) we can study the Hyers-Ulam stability of problem (1.1)-(1.2) or (1.1) and (1.3) as
follows:

Definition 4.1.
Let the solution x € Ly (I) of (1.1)-(1.2) or (1.1) and (1.3) be exist, then constrained problem (1.1)-(1.2) or
(1.1) and (1.3) is Hyers-Ulam stable if ¥ € > 0 3 5(e) such that for any d—approximate solution x satisfies,

a—1 1-1 f e ova—1
ot [ s@ntponio + [ Do ntpono-xwi<e, @D

then ||x — xslli < e.

Theorem 4.1. Let the assumptions of Theorem 2.2 be satisfied, then constrained problem (1.1)-(1.2) or (1.1)
and (1.3) is Hyers-Ulam stable.

Proof. From (4.1), we have

a—1 1-7 t _ a—1
5 <ttt [ st + [ L

IR T S Ox(@ )0 —xt) < 5.

Now

lx(t) — x5(t)]
a-1 1-1

t _pn\a-1
ot [ stoxtgao)a0)+ [ %

a-1 1-1 t(t__Q)a—l
5 [ st [ 2

1 t(t__e)a—l
fo ¢(0, x:(2(0)))d0 — fo el AN

ta—l

@) £(6,x(¢1(6)))d6 ~ x,(1)]

o+

IA

f(6,x(¢1(0)))d0
ta—l
()

o+

—

IA

1-7
fo 18(6,x(2(0))) — (6, x,(2(6))) 16
£ _pn\a-1
; f O 0, x(1(6))) = F(0, %:(01(6)))1d0

t ( -0 a-1

1
L fo b x(2(6)) — x:(pa(0))1dO + fo Ta))alx«ol(e))—xs<<p1<e>>|de,

IA
o7}
+
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thus
f [x(£) — xs(t)|dt
a1
o b 0)) —xs 0))d6
< [0+ g [ orte0) -xipa(@)
t (t_ 6)(1—1
+ [ Ginlor () - xpr o)) do)
o= 1
< fédt+f dtf b lx(2(0)) — xs(92(0))Id6
o [ [ S o o) - o 00
< 5+;f ble(2(0) ~ gl O)0 + [t sale1(0) ~ (g (0) o
- Tla+1)Jy 7 P2 0o Tat+n) ¥ P
1 1-1 1 1
0+ ——=b 0)) —x:(92(0))ld0 + =——— 0)) —xs(p1(0))ldO
< oyt [ a0 ~x(0a(0)0+ fsa [ Ix(pa(0) -5l (0))
1 1-1 1 1
< 5+mbfo |x(<P2(9))—xs(¢2(9))|d9+mﬂfo x(1(0)) — xs(¢2(6))1d0
1 a [t
< n)dn + ———— — _ d
1 1 a
+b
< 6+||x—xs||1(” ).
Thus
< 0 _
lIx —xsllh < 1_M_€'
‘)/
5. ExaMPLEs
Example 1.
Consider the following fractional order differential equation
Rb o €'sint 1 5
D2x(t) = T 10t + 12x(t‘ ), a.e.t€ (0,1] (5.1)
subject to the nonlocal and weighted integral constraints
1 1 T osins 1,
IZX(t)lt:(] = § +‘[0 (7+§X(S ))dS (5.2)
or )
1 11 “osins 1,
x(t)=o = r(%)(9+j(; ( 7 +9x(s ))ds). (5.3)
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This problem can be expressed by the fractional order integral equation

=1 1-7 . —t -
otz 1 sins 1  , 1, e 'sint 1 5
x(t) = r<%)(9+f0 ( 7 +9x(s ))ds) + I2 (1+10t—|—12x(t )).
Set t
_etsint 1 5
then
1 1
< — + —|xl.
o< T35 T oM
Also )
(e x(pa6) = S5+ 5a(2),
then
1 1
< 4=
h(t,x)| < >+ 9|x|,
where

1 L | In(11)
ml(t)_1+10t””d”ml”_f0 TH100%° = 10

1 19 1
my(t) = - and ||my|| = f(; - ds = =

Now,wehavea =1, xo=3%,a=2%,b=1%, v =1, and r = 0.612940693%.

then
a+b

4

= 0.19444444444444 < 1.

(5.4)

Now all the conditions of Theorem 2.1 are satisfied, then the problem (5.1)-(5.2) or (5.1) and (5.3)

has at least one solution x € L0, 1]. Moreover,

F0)-fE0) < k-,

IA

Ih(t,x) = h(t, )|

IA

1
§|x—3?|,Vt€I,x€R.

Then the solution of problem (5.1)-(5.2) or (5.1) and (5.3) is unique.
Example 2.

Consider the following fractional order differential equation

RDix(t) = etsint 1, x(zt)e
4-t 81 +sin*x(1t)

), ae.t€ (0,1]

subject to the nonlocal and weighted integral constraints

sins  1,x%(3s)sin®x(3s)

1-7
I%x(tﬂt:() = 411 +f0 (E+g( 1—|—x2(%s) ))ds

(5.5)

(5.6)

(.7)
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or
5 1 1 1 osins 1 x2(%s)sin®x(3s)
Hx(fli—o = —1(—+f( —(—2 2 (5.8)
I(3) 4 Jo 2-5 6 1+x%(35)
This problem can be expressed by the fractional order integral equation
=3 -t . 2(1c) ain? v(1 b 1122 (3h)
tT 1 sins 1 ,x°(3s)sin”x(3s) 1oetsint 1, x(3t)e 2
x(t) = — (-+f (Z2 g (22 )ds) + I ( ~(—E5—))- 69
r(H4 Jo 2-s 6 1+x2(ls) 4-t 81 +sin”x(5t)
Set
etsint 1, x(3t)e < (31)
t,x t)) = = ,
ftx(a (1)) 4-t 8 1—|—sin2x(%t)
then
[f(tx)] < i §|x|
Also
sint 1 x2(it)sin®x(Lt)
h(t, x(@a(t)) = —(— =),
2-t 6" 1+x2(5t)
then
1 1
h(t,x)| < 7= Tk
where
1 1
my(t) = yyr and ||mq|| = ; 4Tals =In(4) —In(3),
my(t) = Lcmd||m | = 1Lds =In(2)
2 2—t A7)y 2=

Now, we have a = }1, xoz}I, a= %, b= %, y

then

a+b

= 0.588333333333 < 1.

Now all the conditions of Theorem 2.1 are satisfied, then the problem (5.6)-(5.7) or (5.6) and (5.8)

has at least one solution x € L1[0, 1]. Moreover,

|f(t,x) _f(trf” <

I(t,

x)—h(t,x)] <

— | —

6

Ix_fll

Ix—x|, Vtel, xeR.

Then the solution of problem (5.6)-(5.7) or (5.6) and (5.8) is unique.

(5.10)
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6. SPECIAL CASES

Corollary 6.1. Let the assumption of Theorem 2.2 be satisfied. If
(1) T =0, then the problem

KD (t) = f(t,x(p1(1)), t € (0,1]

1
Mo = 30+ [ g x(a(s))s

or

1
A= (Bl = r(la) (xo+ fo 35 x(a(s)))ds)

has a unique solution.
(2) If t =1, then the problem

RD%(t) = f(t,x(p1(t)), t € (0,1]
Il_“x(t)h:o = X0
or
H% () lmo = on

I'(@)

has unique solution.

7. CONCLUSION

Fractional order derivatives, which expand the concept of classical derivatives to non-integer
orders, can pose various theoretical and practical issues. Establishing the existence and uniqueness
of solutions to fractional differential equations includes numerous theoretical frameworks and
approaches. Stability analysis is an extensive and varied field with deep theoretical roots and
numerous applications in engineering, economics, biology, physics, and other disciplines. Hyers-
Ulam stability evaluates the problem’s resilience to interruptions while another concept in stability
theory is Continuous dependency which examines how even minor parameter changes affect the
problem’s unique solution. In this manuscript, we are concerned with the study of the solvability
of a delay differential equation of a fractional integral equation under two constraints. We analyzed
the Hyers-Ulam stability and the continuous dependence of the solution on the initial conditions

and other parameters. Finally, we provided some special cases and examples.

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the

publication of this paper.



Int. J. Anal. Appl. (2025), 23:57 15

REFERENCES

[1] SM. Al-Issa, A M.A. El-Sayed, H.H.G. Hashem, An Outlook on Hybrid Fractional Modeling of a Heat Controller
with Multi-Valued Feedback Control, Fractal Fract. 7 (2023), 759. https://doi.org/10.3390/fractalfract7100759.

[2] D. Baleanu, S. Etemad, Sh. Rezapour, On a Fractional Hybrid Integro-Differential Equation with Mixed Hybrid
Integral Boundary Value Conditions by Using Three Operators, Alexandria Eng. J. 59 (2020), 3019-3027. https:
//doi.org/10.1016/j.aej.2020.04.053.

[3] B. Ahmad, J.J. Nieto, Existence Results for a Coupled System of Nonlinear Fractional Differential Equations with
Three-Point Boundary Conditions, Comput. Math. Appl. 58 (2009), 1838-1843. https://doi.org/10.1016/j.camwa.
2009.07.091.

[4] AM.A. El-Sayed, A.A.A. Alhamali, EM.A. Hamdallah, H.R. Ebead, Qualitative Aspects of a Fractional-Order
Integro-Differential Equation with a Quadratic Functional Integro-Differential Constraint, Fractal Fract. 7 (2023),
835. https://doi.org/10.3390/fractalfract7120835.

[5] A.M.A. El-Sayed, Fractional-Order Diffusion-Wave Equation, Int. J. Theor. Phys. 35 (1996), 311-322. https://doi.org/
10.1007/BF02083817.

[6] AM.A. El-Sayed, E.O. Bin-Taher, Positive Nondecreasing Solutions for a Multi-Term Fractional-Order Functional
Differential Equation with Integral Conditions, Electron. J. Differ. Equ. 2011 (2011), 166.

[7] A.M. A. El-Sayed and E. O. Bin-Taher, a multi-term fractional-order differential equation with nonlocal condition,
Egypt.-Chin. J. Comput. Appl. Math. 1 (2012), 54-60.

[8] AM.A. El-Sayed, M.M.S. Ba-Ali, EEM.A. Hamdallah, An Investigation of a Nonlinear Delay Functional Equa-
tion with a Quadratic Functional Integral Constraint, Mathematics 11 (2023), 4475. https://doi.org/10.3390/
math11214475.

[9] AM.A.El-Sayed, FM. Gaafar, Fractional Calculus and Some Intermediate Physical Processes, Appl. Math. Comput.
144 (2003), 117-126. https://doi.org/10.1016/50096-3003(02)00396-X.

[10] AM.A. El-Sayed, H.H.G. Hashem, S.M. Al-Issa, An Implicit Hybrid Delay Functional Integral Equation: Exis-
tence of Integrable Solutions and Continuous Dependence, Mathematics 9 (2021), 3234. https://doi.org/10.3390/
math9243234.

[11] AM.A. El-Sayed, EM.A. Hamdallah, M.M.S. Ba-Ali, Qualitative Study for a Delay Quadratic Functional
Integro-Differential Equation of Arbitrary (Fractional) Orders, Symmetry 14 (2022), 784. https://doi.org/10.3390/
sym14040784.

[12] AM.A. El-Sayed, S.Z. Rida, A.A.M. Arafa, On the Solutions of the Generalized Reaction-Diffusion Model for
Bacterial Colony, Acta Appl. Math. 110 (2010), 1501-1511. https://doi.org/10.1007/s10440-009-9523-4.

[13] I Podlubny, A.M.A. El-Sayed, On Two Definitions of Fractional Calculus, Slovak Academy of Science, Institute of
Experimental Phys., Bratislava, (1996).

[14] K.M. Furati, N. Tatar, Power-Type Estimates for a Nonlinear Fractional Differential Equation, Nonlinear Anal.:
Theory Methods Appl. 62 (2005), 1025-1036. https://doi.org/10.1016/j.na.2005.04.010.

[15] EM. Gaafar, Continuous and Integrable Solutions of a Nonlinear Cauchy Problem of Fractional Order with Nonlocal
Conditions, J. Egypt. Math. Soc. 22 (2014), 341-347. https://doi.org/10.1016/j.joems.2013.12.008.

[16] G.M. N'Guérékata, A Cauchy Problem for Some Fractional Abstract Differential Equation with Non Local Condi-
tions, Nonlinear Anal.: Theory Methods Appl. 70 (2009), 1873-1876. https://doi.org/10.1016/j.na.2008.02.087.

[17] D.H. Hyers, On the Stability of the Linear Functional Equation, Proc. Natl. Acad. Sci. 27 (1941), 222-224. https:
//doi.org/10.1073/pnas.27.4.222.

[18] Y. Jalilian, M. Ghasemi, On the Solutions of a Nonlinear Fractional Integro-Differential Equation of Pantograph
Type, Mediterranean J. Math. 14 (2017), 194. https://doi.org/10.1007/s00009-017-0993-8.

[19] T. Jankowski, Fractional Equations of Volterra Type Involving a Riemann-Liouville Derivative, Appl. Math. Lett.
26 (2013), 344-350. https://doi.org/10.1016/j.am1.2012.10.002.


https://doi.org/10.3390/fractalfract7100759
https://doi.org/10.1016/j.aej.2020.04.053
https://doi.org/10.1016/j.aej.2020.04.053
https://doi.org/10.1016/j.camwa.2009.07.091
https://doi.org/10.1016/j.camwa.2009.07.091
https://doi.org/10.3390/fractalfract7120835
https://doi.org/10.1007/BF02083817
https://doi.org/10.1007/BF02083817
https://doi.org/10.3390/math11214475
https://doi.org/10.3390/math11214475
https://doi.org/10.1016/S0096-3003(02)00396-X
https://doi.org/10.3390/math9243234
https://doi.org/10.3390/math9243234
https://doi.org/10.3390/sym14040784
https://doi.org/10.3390/sym14040784
https://doi.org/10.1007/s10440-009-9523-4
https://doi.org/10.1016/j.na.2005.04.010
https://doi.org/10.1016/j.joems.2013.12.008
https://doi.org/10.1016/j.na.2008.02.087
https://doi.org/10.1073/pnas.27.4.222
https://doi.org/10.1073/pnas.27.4.222
https://doi.org/10.1007/s00009-017-0993-8
https://doi.org/10.1016/j.aml.2012.10.002

16 Int. J. Anal. Appl. (2025), 23:57

[20] K.M. Furati, N. Tatar, Power-Type Estimates for a Nonlinear Fractional Differential Equation, Nonlinear Anal.:
Theory Methods Appl. 62 (2005), 1025-1036. https://doi.org/10.1016/j.na.2005.04.010.

[21] A.N. Kolmogorov, S.V. Fomin, Itroductory Real Analysis, Dover Publications, 1975.

[22] K.D. Kucche, S.T. Sutar, On Existence and Stability Results for Nonlinear Fractional Delay Differential Equations,
Bol. Soc. Parana. Mat. 36 (2018), 55-75. https://doi.org/10.5269/bspm.v36i4.33603.

[23] F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models,
World Scientific, 2010.

[24] R. Metzler, J. Klafter, The Random Walk’s Guide to Anomalous Diffusion: A Fractional Dynamics Approach, Phys.
Rep. 339 (2000), 1-77. https://doi.org/10.1016/S0370-1573(00)00070-3.

[25] K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley,
New York, 1993.

[26] S. Samko, O.L. Marichev, Fractional Integral and Derivatives, Gordon and Breach Science Publisher, 1993.

[27] T. Sandev, R. Metzler, Z. Tomovski, Fractional Diffusion Equation with a Generalized Riemann-Liouville Time
Fractional Derivative, J. Phys. A: Math. Theor. 44 (2011), 255203. https://doi.org/10.1088/1751-8113/44/25/255203.

[28] A.A. Shaikh, S. Qureshi, Comparative Analysis of Riemann-Liouville, Caputo-Fabrizio, and Atangana-Baleanu
Integrals, J. Appl. Math. Comput. Mech. 21 (2022), 91-101. https://doi.org/10.17512/jamcm.2022.1.08.

[29] HM. Srivastava, A.M.A. El-Sayed, FM. Gaafar, A Class of Nonlinear Boundary Value Problems for an Arbitrary
Fractional-Order Differential Equation with the Riemann-Stieltjes Functional Integral and Infinite-Point Boundary
Conditions, Symmetry 10 (2018), 508. https://doi.org/10.3390/sym10100508.

[30] H. Xu, Analytical Approximations for a Population Growth Model with Fractional Order, Commun. Nonlinear
Sci. Numer. Simul. 14 (2009), 1978-1983. https://doi.org/10.1016/j.cnsns.2008.07.006.

[31] K. Zhao, Stability of a Nonlinear Langevin System of ML-Type Fractional Derivative Affected by Time-Varying
Delays and Differential Feedback Control, Fractal Fract. 6 (2022), 725. https://doi.org/10.3390/fractalfract6120725.


https://doi.org/10.1016/j.na.2005.04.010
https://doi.org/10.5269/bspm.v36i4.33603
https://doi.org/10.1016/S0370-1573(00)00070-3
https://doi.org/10.1088/1751-8113/44/25/255203
https://doi.org/10.17512/jamcm.2022.1.08
https://doi.org/10.3390/sym10100508
https://doi.org/10.1016/j.cnsns.2008.07.006
https://doi.org/10.3390/fractalfract6120725

	1. Introduction
	2. Existence of solution
	2.1. Uniqueness of the solution

	3. Continuous dependence
	4. Hyers-Ulam stability m1
	5. Examples
	6. Special cases
	7. conclusion
	 Conflicts of Interest:

	References

