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ABSTRACT. Nonlinear partial differential equations, such as the Korteweg-de Vries-Burgers equation (KDVB), receive 

extensive study in a multitude of fields of engineering and physics. This study presents the Variational Homotopy 

Perturbation Method (VHPM) as a robust numerical technique for approximating solutions to the KDVB equation. The 

technique integrates the Variational Iteration Method (VIM) with the Homotopy Perturbation Method (HPM), 

providing an efficient solution without requiring the discretization or linearization of the equation. The efficacy of the 

proposed scheme is demonstrated through various problems, with the accuracy of the method being assessed using 

absolute errors in the L2 and L∞error norms. The results indicate that the proposed method is straightforward to 

implement and provides superior outcomes compared to the existing schemes documented in the literature. This study 

offers a substantial contribution to the advancement of numerical techniques for solving nonlinear partial differential 

equations, providing beneficial applications across diverse scientific and engineering fields. 

 

1. Introduction 

In many fields, such as physics, engineering, biology, and chemistry, numerous 

phenomena are modeled by complex equations known as nonlinear partial differential equations. 

One example of such an equation is known as the Korteweg-de Vries Burgers equation (KDVB) 

[1], which takes the form: 

𝑤𝑡 + 𝛼𝑤𝑤𝑥 − 𝛽𝑤𝑥𝑥 + 𝛾𝑤𝑥𝑥𝑥 = 0,                                                                           (1.1) 

https://doi.org/10.28924/2291-8639-23-2025-22


2 Int. J. Anal. Appl. (2025), 23:22 

 

where 𝛼, 𝛽, and 𝛾 are real constants. Equation 1.1 explains the behavior of specific types of 

nonlinear waves. It merges the Korteweg-de Vries (KDV) equation, which explains the 

propagation of long waves in geophysical systems such as dense oceans, plasma, shallow water, 

and crystal lattice [2, 3], with the Burgers equation, which describes the behavior of gas-fluid 

dynamics, heat conduction, traffic flow, and turbulence [4-12]. The parameters 𝛽 and 𝛾 in 

Equation 1.1 correspond to the damping and dispersion parameters, respectively. 

If the parameter 𝛽 equals zero, then Equation 1.1 becomes: 

𝑤𝑡 + 𝛼𝑤𝑤𝑥 + 𝛾𝑤𝑥𝑥𝑥 = 0,                                                                                         (1.2) 

which is known as the Kortweg and De-Vries developed (KDV) equations and KDV equations in 

1895, illustrating their crucial role in solitons like waves with slight and limited amplitudes in 

shallow water. 

If the parameter 𝛾 equals zero, then Equation 1.1 becomes: 

𝑤𝑡 + 𝛼𝑤𝑤𝑥 − 𝛽𝑤𝑥𝑥 = 0,                                                                                         (1.3) 

which is known as the Burger equation. The Burgers model of free turbulence is a highly 

influential fluid dynamics model. 

The KDVB equation can serve as a nonlinear wave model in a range of applications, 

including fluid dynamics within an elastic tube [13], the behavior of liquids with small bubbles 

[14], and the study of turbulence [15, 16]. The investigation of the traveling wave solution for the 

KDVB equation has been extensive. Researchers such as Johnson [17], Demiray [18], Antar and 

Demiray [19] formulated the KDVB equation as the governing evolution equation for viscoelastic 

tubes or waves propagating in fluid-filled elastic. Their work accounts for the effects of 

dispersion, dissipation, and nonlinearity. 

Numerous investigations in the literature, employing a variety of approaches, have 

explored deriving solutions for the KDVB Equation 1.1. Over the years, the KDVB equation has 

been studied numerically by many researchers, including Ali et al. [20], who developed a B-spline 

finite element scheme for the numerical solution of the KDVB equation. Canosa and Gazdag [21] 

studied the time evolution and stability of shock solutions of the KDVB equation using numerical 

methods, employing a scheme named accurate space derivative. They furthermore determined 

how non-analytic initial data changes into monotonic shocks. Kudryashov [22] analyzed solitary 

wave solutions of the KDV and KDVB equations, showing that these solutions can be simplified 

into known forms. Wazzan [23] developed multiple traveling wave solutions for the KDV and 

KDVB equations using a modified tanh–coth method. Shi et al. [24] proposed a hybrid scheme to 
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solve the KDVB equation, combining the classical constrained interpolation profile (CIP) method 

and compact methods with third-order Runge-Kutta time discretization, demonstrating its high 

resolution with a test case. Aydin [25] introduced a novel splitting technique for the approximate 

solution of the KDVB equation. Kashchenko [26] studied the local dynamics of the KDVB 

equation with periodic boundary conditions and derived a special nonlinear partial differential 

equation that serves as a normal form, governing the behavior of solutions in a small 

neighborhood of equilibrium. Recently, Koroglu [27] proposed new nonstandard finite difference 

schemes for solving the KDVB equation, providing accurate and efficient numerical simulations 

compared to standard finite difference schemes. Ahmad et al. [28] presented an improved version 

of the variational iteration algorithm-II for solving the KDVB equation. Aliyi and Muleta [29] 

presented a sixth-order compact finite difference method for solving the one-dimensional KDVB 

equation. Parumasur et al. [30] used the orthogonal collocation on finite elements (OCFE) method 

with quadratic and cubic B-splines at Gaussian points to solve Burgers', modified Burgers’ and 

KdV–Burgers' equations. 

In this paper, the KDV-Burgers equation is solved using the Variational Homotopy 

Perturbation Method (VHPM). The paper is organized as follows: Section 2 provides an analysis 

of the VHPM. In Section 3, several problems are conducted to assess the accuracy and efficiency 

of the VHP method, which are then compared with exact solutions and results from other studies 

in the literature. Section 4 presents our conclusion. 

 

2. Analysis of the method 

To illustrate the fundamental concept of the VHPM, we start by considering the following 

general differential equation:  

𝐿𝑤 + 𝑁𝑤 = 𝑓(𝑥),                                                                                           (2.1) 

where 𝐿 is a linear operator, 𝑁 is a nonlinear operator, and 𝑓(𝑥) represents the forcing term. 

Moreover, according to the Variational Iteration Method (VIM), a correct function can be 

formulated as follows:  

𝑤𝑛+1(𝑥) = 𝑤𝑛(𝑥) + ∫  
𝑥

0

𝜆(𝜏)(𝐿𝑤𝑛(𝜏) + 𝑁�̃�𝑛(𝜏) − 𝑓(𝜏))𝑑𝜏,                             (2.2) 

where 𝜆 denotes a Lagrange multiplier [31, 32, 33], which is optimally determined using the 

Variational Iteration Method (VIM). The subscripts 𝑛 represent the 𝑛th approximation, while �̃�𝑛 
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is observed as a restricted variation. That is, 𝛿�̃�𝑛 = 0; Equation 2.2 is called a correct function. 

Subsequently, we proceed to apply the Homotopy Perturbation Method (HPM) [34]. 

 ∑  

∞

𝑛=0

 𝜌(𝑛)𝑤𝑛 = 𝑤0(𝑥) + 𝜌 ∫  
𝑥

0

 𝜆(𝜏) (∑  

∞

𝑛=0

 𝜌(𝑛)𝐿(𝑤𝑛(𝑡)) + 𝑁 (∑  

∞

𝑛=0

 𝜌(𝑛)�̃�𝑛(𝜏))) 𝑑𝜏

 − ∫  
𝑥

0

 𝜆(𝜏)𝑓(𝜏)𝑑𝜏.

         (2.3) 

Equation 2.3 defines the VHPM, which is formulated by coupling the variational iteration 

method (VIM) with the homotopy perturbation method (HPM). Solutions of different orders can 

be obtained by comparing similar powers of 𝜌. 

 

3. Numerical experiments and discussion 

In this section, we demonstrate the effectiveness of the proposed method by presenting 

experimental results. We compare the numerical outcomes with existing results from the 

literature across various parameters and solution domains. The performance of the proposed 

method is assessed through the computation of error norms 𝐿∞, 𝐿2, and absolute error using the 

following formulas: 

𝐿2 = √ℎ ∑|𝑤𝑗 − 𝑊𝑗|
2

𝑁

𝑗=1

   , 𝐿∞ = max
1≤𝑗≤𝑁

|𝑤𝑗 − 𝑊𝑗| , absolute error = |𝑤𝑗 − 𝑊𝑗|, 

where 𝑤𝑗 are the exact solutions and 𝑊𝑗 are the approximate solutions at the 𝑗-th spatial knot. 

Problem 1. Consider the following KDVB equation:  

𝑤𝑡 + 𝛼𝑤𝑤𝑥 − 𝛽𝑤𝑥𝑥 + 𝛾𝑤𝑥𝑥𝑥 = 0. 

The exact solution is given by:  

 𝑤(𝑎, 𝑡) = 𝐴
𝛽2

𝛾
 (1 + 𝑡𝑎𝑛ℎ(𝜃) +

1

2
𝑠𝑒𝑐ℎ2 (𝜃)), 

where 𝜃 = (
𝛽

10𝛾
) (𝑥 − 𝐴

𝛽2

𝛾
𝑡) , 𝐴 = −

6

25
. 

This problem is solved using the VHPM with 𝑛 = 4, 𝛼 = 1, and different values of β and γ. The 

results are presented in Table 1 and are compared with the findings reported in [35, 36] in terms 

of absolute error, which are observed to be superior. Figures 1 and 2 illustrate the mesh between 

the numerical and exact solutions for 𝛽 = 𝛾 = 0.1, while Figures 3 and 4 illustrate the behavior 
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solution of the KDVB equation at time (𝑡 = 10) with different values of 𝛽 and 𝛾, demonstrating 

an excellent agreement with the exact solution. 

Table 1: Absolute errors of problem 1 with different values of 𝑥, 𝑡, 𝛽, and 𝛾. 

𝒕 𝜷 𝜸 𝒙 VHPM MVIA-II [35] VIM [36] 

100 0.001 0.001 0 5.7712e-07 9.426e-08 9.426-08 

   25 2.0295e-10 2.656e-10 2.659e-10 

   50 9.3905e-15 1.262e-14 3.000e-13 

   75 4.3368e-19 6.505e-19 0.000 

   100 5.4210e-20 1.084e-19 2.000e-13 

800 0.001 0.001 0 4.6675e-06 6.599e-07 6.603e-07 

   25 4.6675e-06 2.071e-09 2.071e-09 

   50 6.9294e-14 9.876e-14 2.000e-13 

   75 3.0900e-18 4.554e-18 1.000e-13 

   100 5.4210e-20 1.084e-19 0.000 

100 0.01 0.01 0 5.8473e-05 7.925e-06 7.936e-06 

   25 1.8436e-08 2.570e-08 2.570e-08 

   50 8.4579e-13 1.227e-12 1.000e-12 

   75 3.9031e-17 5.725e-17 1.000e-12 

   100 0.000 8.675e-19 2.000e-12 

100 0.1 0.1 0 3.3432e-03 3.388e-05 1.268e-03 

   25 9.1325e-08 1.854e-06 1.812e-06 

   50 1.0225e-11 9.821e-11 8.000e-11 

   75 4.7184e-16 4.476e-15 0.000 

   100 6.9389e-18 6.939e-15 4.000e-11 
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Figure 1: Surface plot of the exact solution to 

problem 1. 

Figure 2: Surface plot of the VHPM solution 

to problem 1.  

 

  

Figure 3: The behavior of numerical and 

exact solutions of the KDVB equation for 

problem 1 with 𝛽 = 𝛾 = 0.01 and 𝑡 = 10. 

Figure 4: The behavior of numerical and 

exact solutions of the KDVB equation for 

problem 1 with 𝛽 = 𝛾 = 0.1 and 𝑡 = 10. 

 

Problem 2. Consider the following modified KDVB equation: 

𝑤𝑡 + 2(𝑤3)𝑥 + 𝛽𝑤𝑥𝑥 − 𝛾𝑤𝑥𝑥𝑥 = 0. 

The exact solution is given by: 

𝑤(𝑥, 𝑡) = 𝐴 [1 + 𝑡𝑎𝑛ℎ(𝐴 (𝑥 − 𝐵𝑡))], 

where 𝐴 =
1

6
 and 𝐵 =

2

9
. 

In the domain [-10,10], the solutions to problem 2 are obtained using the VHPM with 𝑛 = 5 and 

𝛽 = 𝛾 = 1. Table 2 presents the absolute errors at different levels of time 𝑡, in comparison with 
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the findings reported in [37]. Our results show a good agreement in terms of absolute errors with 

the findings reported in [37]. Moreover, Table 3 presents the absolute errors at various values of 

𝑡 and 𝑥, demonstrating a good agreement with the exact solution. Figures 5 and 6 illustrate the 

mesh between the exact and numerical solutions, while Figures 7 and 8 illustrate the behavior of 

the solution of the KDVB equation at 𝑡 = 1 and 𝑡 = 2, respectively, showing an excellent 

agreement with the exact solution. 

Table 2: Absolute errors of problem 2 with different values of 𝑥 and 𝑡. 

𝒕 
VHPM [37] VHPM [37] VHPM [37] 

𝒙 = 𝟏. 𝟎𝟒𝟓𝟐𝟗 𝒙 = 𝟑. 𝟎𝟗𝟎𝟏𝟕 𝒙 = 𝟓. 𝟎𝟎𝟎𝟎𝟎 

0.001 1.1478e-10 3.58e-07 2.5203e-10 3.58e-07 2.5012e-10 3.58e-07 

0.002 4.5916e-10 9.98e-07 1.0081e-09 1.01e-06 1.0005e-09 1.07e-06 

0.006 4.1335e-10 2.76e-06 9.0734e-09 2.83e-06 9.0041e-09 2.80e-06 

0.02 4.5970e-08 1.97e-06 1.0083e-07 1.73e-06 1.0004e-07 2.89e-06 

0.03 1.0350e-07 1.65e-06 2.2688e-07 4.19e-06 2.2506e-07 1.94e-05 

0.04 1.8412e-07 5.16e-06 4.0338e-07 1.37e-05 4.0008e-07 4.97e-05 

0.05 2.8787e-07 7.05e-06 6.3033e-07 2.74e-05 6.2509e-07 9.97e-05 

 

Table 3: Absolute errors of problem 2 at −10 ≤ 𝑥 ≤ 10 and 𝑡 = 0.5, 1, 1.5, and 2. 

𝒙 
𝒕 

0.5 1 1.5 2 

-10 2.1467e-05 8.6793e-05 1.9740e-05 3.5476e-05 

-6 5.5171e-05 2.2197e-04 5.0230e-04 8.9800e-04 

-2 4.8763e-05 1.9228e-04 4.2616e-04 7.4573e-04 

0 1.0584e-06 8.4675e-06 2.8578e-05 6.7740e-05 

2 5.0072e-05 2.0276e-04 4.6152e-04 8.2953e-04 

6 5.4513e-05 2.1671e-04 4.8454e-04 8.5589e-04 

10 2.1016e-05 8.3187e-05 1.8523e-04 3.2591e-04 
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Figure 5: Surface plot of the exact solution to 

problem 2. 

Figure 6: Surface plot of the VHPM solution 

to problem 2.  

 

 
 

Figure 7: The behavior of numerical and 

exact solutions of the KDVB equation for 

problem 2 at 𝑡 = 1. 

Figure 8: The behavior of numerical and 

exact solutions of the KDVB equation for 

problem 2 at 𝑡 = 2. 

 

 

Problem 3. Consider the following KDVB equation:  

𝑤𝑡 + (𝑤2)𝑥 + (𝑤2)𝑥𝑥 − 𝛾𝑤𝑥𝑥𝑥 = 0. 

The exact solution is given by:  

𝑤(𝑥, 𝑡) = −
1

20
[1 + 𝑡𝑎𝑛ℎ (

𝑡

20
+

𝑥

2
)]. 
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By applying the proposed method with 𝑛 = 3 in the computational domain [-25,25] and setting 

𝛾 = 0.1, the problem was successfully solved. Table 4 presents the 𝐿∞ and 𝐿2 norms, indicating 

results that are superior when compared to those reported in [27]. In Table 5, absolute errors are 

presented at various values of 𝑥 and 𝑡, illustrating a good match with the exact solution. 

Moreover, Figures 9 and 10 illustrate the mesh between the exact and numerical solutions. 

Simultaneously, Figures 11 and 12 illustrate the behavior of the solution for the KDVB equation 

at 𝑡 = 1 and 𝑡 = 10, respectively, demonstrating an excellent agreement with the exact solution. 

Table 4: Error norms of problem 3. 

𝒕 
VHPM [27] 

𝑳𝟐 𝑳∞ 𝑳𝟐 𝑳∞ 

1 2.9344e-04 6.5616e-05 1.0111e-03 7.0857e-04 

10 3.0483e-03 6.8610-04 1.0674e-02 7.4435e-03 

25 2.3343e-02 5.6420e-03 2.3922e-02 1.6321e-02 

 

Table 5: Absolute errors of problem 3 at −25 ≤ 𝑥 ≤ 25 and 𝑡 = 0.5, 1, 1.5, and 2. 

𝒙 
𝒕 

0.5 1 1.5 2 

-25 3.4625e-14 1.4592e-13 2.2444e-13 3.0694e-13 

-15 1.5676e-09 3.2142e-09 4.9437e-09 6.7606e-09 

-5 3.3993e-05 6.9550e-05 1.0677e-04 1.4573e-04 

5 3.2292e-05 6.2765e-05 9.1535e-05 1.1871e-04 

15 1.4927e-09 2.9141e-09 4.2679e-09 5.5574e-09 

25 6.7807e-14 1.3230e-13 1.9376e-13 2.5228e-13 
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Figure 9: Surface plot of the exact solution to 

problem 3. 

Figure 10: Surface plot of the VHPM solution 

to problem 3. 

 

  

Figure 11: The behavior of numerical and 

exact solutions of the KDVB equation for 

problem 3 at 𝑡 = 1. 

Figure 12: The behavior of numerical and 

exact solutions of the KDVB equation for 

problem 3 at 𝑡 = 10. 

 

 

4. Conclusion  

This paper presented a numerical scheme for solving the Korteweg-de Vries-Burgers 

(KDVB) equation by combining the Variational Iteration Method (VIM) with the Homotopy 

Perturbation Method (HPM). Through rigorous testing, we have demonstrated the method’s 

accuracy and effectiveness in approximating solutions without the need of discretization or 

linearization of the equation. The obtained results not only demonstrate excellent agreement with 
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the exact solutions but also outperform existing approaches in the literature, thereby validating 

their reliability. Our approach offers significant opportunities for solving a broad spectrum of 

linear and nonlinear time-dependent partial differential equations, thereby rendering this 

method a valuable tool for researchers in various fields. 
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