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Solution of Prey–Predator System by ADM
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Abstract. A prey-predator system with an abundance of nutrients is considered. Utilizing Adomian decomposition

method to numerate and approximate the solution of that governing system. Providing many examples to obtain some

numerical simulation solutions and plot the results for the prey and predator populations versus time.

1. Introduction

The prey-predator system had been studied in many researchers [1-12]. Abundance of nutrients

is assumed, and the prey have been enough nutrition to consume. The prey-predator system is

taken the form:
Ṁ = aM(t) − bM(t)N(t),

Ṅ = cM(t)N(t) − kN(t).
(1.1)

where, M(t) and N(t) are the constraint of the prey and the predator at time t, respectively.

Otherwise, a,b,c and k are constants and dot refer to the derivative with respect to time t. On

this problem, the predator has been discreated and inverse proportional to ekt, in absent of the

prey. Moreover, the prey has been increased and proportional to eat in non-existence of predator.

Otherwise, they are living together when k < c and a < b.

2. Adomian DecompositionMethod

In [13-16] ADM had been addressed and had been employed. The solution of equation (1.1) is

considered to be as infinite series, as usual in ADM:
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M(t) =
∞∑

n=0

Mn(t), N(t) =
∞∑

n=0

Nn(t). (2.1)

Define M0 = M(0), and N0 = N(0), and apply ADM at (1.1), to obtain the following scheme:

Mn+1(t) = a
∫ t

0
Mn(t) dt− b

∫ t

0
Gn(t) dt. (2.2)

Nn+1(t) = c
∫ t

0
Gn(t) dt− k

∫ t

0
Nn(t) dt. (2.3)

where,

Gn(t) =
1
n!

dn

dβn

 ∞∑
n=0

βnMn(t)
∞∑

n=0

βnNn(t)


∣∣∣∣∣∣∣
β=0

. (2.4)

which is called Adomian’s polynomial for all 0 ≤ n and it is the approximation of the nonlinear

term M(t)N(t), it means that

M(t)N(t) =
∞∑

n=0

Gn(M0, M1, . . . , Mn, N0, N1, . . . , Nn). (2.5)

To compute Gn(t), we find that

Gn(t) =
n∑

i=0

Mn−i(t)Ni(t). (2.6)

Utilizing Python programming to obtain recursively the partial sum of the solution as following:

M(t) = lim
p→∞

p∑
n=0

Mn(t). (2.7)

N(t) = lim
p→∞

p∑
n=0

Nn(t). (2.8)

3. Numerical Results

The polynomials of the decomposition series partial sums of fourth degree are derived by ADM

according to the parameter’s values a, b, c, k, M(0) = m0, N(0) = n0. The general approximate
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expressions for M(t) and N(t) are taken the form:

M(t) ≈ m0 + t(am0 − bm0n0)

+ t2
(
a
(

am0

2
−

bm0n0

2

)
− b

(1
2
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1
2

bm0n2
0 +

1
2

cm2
0n0 −

1
2

km0n0

))
+ t3

(
a
(1
6
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1
3
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1
6
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1
6
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1
6

bkm0n0
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(3.1)

N(t) ≈ n0 + t (cm0n0 − kn0)
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Cases 1-3 demonstrate the relation between the concentration of prey and predator population

versus time.

Case 1: The resulting series partial sums of 9th degree equations of prey and predator for the

values: a = 0.4, b = 0.8, c = 0.5, k = 0.2, M(0) = 0.5, N(0) = 0.3 are given by

M(t) ≈ 0.5 + 0.08t + 0.0034t2
− 0.0009t3

− 0.0002t4

− 1.6417× 10−5t5 + 1.0624× 10−6t6

+ 8.1348× 10−7t7 + 2.5879× 10−7t8 + 7.3847× 10−8t9.

N(t) ≈ 0.3 + 0.015t + 0.0063t2 + 0.0004t3 + 4.0003× 10−5t4

− 1.3878× 10−6t5
− 1.3018× 10−6t6

− 4.3329× 10−7t7
− 1.2549× 10−7t8

− 3.6177× 10−8t9. (3.3)

Figure 1. r=9
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Figure 2. r=4

In Figure 1 the prey and predator have no equivalent concentration at any time. However in

Figure 2 the two curves have equivalent concentration at the approximate point t1 = 5.5125, where

N(t1) = M(t1) ≈ 0.6931254.

Case 2: The 9th degree of series partial sums for the two populations at parameter values

a = 0.4, b = 0.8, c = 0.5, k = 0.2, M(0) = 0.3, N(0) = 0.6 are obtained as follow:

M(t) ≈ 0.3− 0.0240t + 0.0046t2
− 8.5600× 10−5t3

+ 9.6620× 10−6t4 + 3.1071× 10−7t5

− 1.6200× 10−6t6 + 1.1238× 10−6t7

− 9.4829× 10−7t8 + 1.0853× 10−6t9.

N(t) ≈ 0.6− 0.0300t− 0.0029t2 + 0.0006t3.

− 4.2564× 10−5t4 + 1.9915× 10−6t5

+ 9.5909× 10−7t6
− 7.8761× 10−7t7

+ 6.4749× 10−7t8
− 7.1902× 10−7t9. (3.4)
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Figure 3. r=9

Figure 4. r=4
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In Figure 3 the prey concentration is parity to the predator concentration at t2 ≈ 3.72596, with

M(t2) = N(t2) ≈ 0.39339. Moreover the two curves intersect at the approximate point t3 = 7.162345

where N(t3) = M(t3) ≈ 0.3560 in Figure 4.

Case 3: We have secured that the 6th degree of series partial sums of M(t) and N(t) for the

parameter of values a = 0.11, b = 0.12, c = 0.15, k = 0.14, M(0) = 0.1, N(0) = 0.2.

M(t) ≈ 0.1 + 8.4× 10−3t + 5.153× 10−4t2

+ 1.6212× 10−5t3 + 4.9414× 10−7t4

+ 1.8518× 10−8t5
− 3.2254× 10−11t6

N(t) ≈ 0.2− 2.5× 10−2t + 1.6885× 10−3t2

− 7.5701× 10−5t3 + 2.5938× 10−6t4

− 8.1450× 10−8t5 + 2.3294× 10−9t6

Figure 5. r=6
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Figure 6. r=4

In Figure 5 the intersection point of the two curves is at t4 ≈ 3.281210, where M(t4) = N(t4) ≈=

0.1337473. Furthermore in Figure 6 an equivalent concentration point of the two populations is at

t5 ≈ 3.282475, where M(t5) = N(t5) ≈ 0.1337556.

Conclusion

The general form of equations (3.1) and (3.2) are represented by the 4th degree polynomial (r = 4)

of time (t) for the two concentrations of prey and predator, respectively. These equations depend on

the zero-time concentration (m0, n0), the consumption coefficients (a, b, c), and the death coefficients

of the predator (k). Cases 1-3 have three pairs of graphs; each pair of graphs is computed for distinct

values of r (which is more accurate for large r) and has the same initial values of the parameters.

The first pair of graphs, the stable-predator extinction at r = 4, will be transformed to the stable-

prey extinction at r = 9. However, in the second pair of graphs, a surviving-prey population is

discovered with differences in lifetime and equivalence concentration points. Eventually, more

biological sense is illustrated in case 3 because the parameter values are so close. An optimized

stable-coexistence is manifested in the third pair of graphs at r = 4 and r = 6 depending on their

mentioned initial values.
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publication of this paper.
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