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Abstract. This paper is aimed to prove common equilibrium marketing fixed-point theorem for two and three mappings

in Banach space by the use of measure of non-compactness on Meir Keeler condensing supply operators. We attempt to

show the existence of common equilibrium marketing fixed-point theorem for two and three commuting supply maps

in this paper.

1. Introduction and preliminaries

There is a wide range use of Compactness in fixed point theory, many authors like G. Darbo in

1955 (see [14]) studied fixed point theory by using non compactness and non compact operators

,Schauder used compactness in fixed point theory. The non compact operators are studied mainly

to develop a new class of operators which converts the boundedness to compactness in sets via

Meir Keeler condensing operators.

Received: Mar. 19, 2025.

2020 Mathematics Subject Classification. 47H08, 37C25, 54H25, 55M20, 58C30.
Key words and phrases. Schaurder fixed point theorem; Darbo’s fixed point theorem; common equilibrium marketing;

Banach space; Meir Keeler condensing supply operators; measure of non-compactness.

https://doi.org/10.28924/2291-8639-23-2025-120
ISSN: 2291-8639

© 2025 the author(s).

https://doi.org/10.28924/2291-8639-23-2025-120


2 Int. J. Anal. Appl. (2025), 23:120

Definition 1.1: Let M be the subset of metric space N and then Kuratowski’s measure of

non compactness is defined as

θ(M) = inf
{
γ > 0 : M = ∪n

j=1V j for some V j with diam(V j) ≤ γ, 1 ≤ j ≤ n < ∞
}
.

Here diam (V j) = sup{d(a, b) : a, b ∈ V j} (see [15]).

Definition 1.2: Let M be a non-void bounded subset of MB,where MB denotes the non-void class

of subsets of Banach space B , then the map α : MB → [0,∞) is said to be Hausdorff measure of

non compactness of M ⊆MB such that

α(M) = inf
{
δ > 0 : M has a finite δ− net in B

}
(see [11]).

Definition 1.3: Let M be a non-void bounded subset of MN, where MN denotes the class of

non-void subsets of complete metric space N then the function α : MN → [o,∞) is a Hausdorff

measure of non compactness of M ⊆MN such that

α(M) = inf
{
δ > 0 : M ⊆ ∪n

i=1B′(ai, bi), ai ∈ N, bi < δ i = 1, 2, 3, ...., n
}

(see [11]).

Theorem 1.4: Schauder’s fixed point theorem: Let Θ be a non-empty bounded subsets of Banach

space B then for every continuous function A : Θ → Θ has atleast one fixed point (see [11]). We

abbreviate Schauder’s fixed point theorem as S. f. t throughout this paper.

Definition 1.5: Let νB is the class of all non void bounded subsets of Banach space B then the

function m∗ : νB −→ R+ is the measure of non compactness in the Banach space B if following

axioms holds

1. The class Ker m∗ = {F ∈ νB : m∗(F) = 0} is non void and Ker m∗ ⊆ νB, where νB is the class of

non void relatively compact subsets of B.

2. F1 ⊆ F2 ⇒ m∗(F1) ≤ m∗(F2)

3. m∗(F) = m∗(F)
4. m∗(F) = m∗(conv(F))
5. m∗{λF1 + (1− λ)(F2)} ≤ λm∗(F1) + (1− λ)m∗(F2),∀λ ∈ [0, 1]

6. If {Fn} is the sequence of closed sets from νB s.t Fn+1 ⊆ Fn for n = 1, 2, 3, .... and lim
n→∞

m∗(Fn) = 0,

then the intersection F∞ = ∩∞i=1Fn is non void (see [11]).

Definition 1.6: Let Θ be a non void closed,bounded and convex subset of Banach space B. A map

P : Θ → Θ is called a m∗ contractive map if for some constant k ∈ (0, 1) s.t m∗(P(F)) ≤ km∗(F), for

non void subset F of Θ.

Theorem 1.7: Darbo’s fixed point theorem: Let Θ be a non-void,closed and bounded subsets of

Banach space B, let T : Θ → Θ be a continuous map and if T is m∗ contraction then T has atleast

one fixed point (see [4]).

Definition 1.8: Meir Keeler Contraction: A self map T from metric space N into N is a Meir Keeler

contraction if for given ρ > 0, there exists σ > 0 such that

ρ ≤ d(a, b) < ρ+ σ⇒ d(Ta, Tb) < ρ, for all a, b ∈M.
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Definition 1.9:Meir Keeler Condensing Operator: Let Θ be a non-empty subset of Banach space

B. Then the operator T : Θ→ Θ is said to be a Meir Keeler condensing operator if for given ρ > 0,

there exists σ > 0 s.t

ρ ≤ m∗(F) < ρ+ σ⇒ m∗(T(F)) < ρ

where m∗ is arbitrary measure of non compactness on F and F is the bounded subset of Θ. For

more details about Meier Keeler condensing operator and measure of non compactness we may

refer to ( [1–3, 5, 6, 8–10, 13, 16]) and references therein.

The primary goal of this manuscript is to show the existence of equilibrium marketing

fixed-point theorem by using measure of non compactness for two and three commuting Meir

Keeler condensing operators in Banach space.

2. Common fixed point theorem via two continuous linear operators on Banach Space B

Theorem 2.1 : Let B be the Banach space and Θ be a non void closed,bounded and convex subset of the
Banach space B.Let J and K be two self operators on Θ are continuous and K is Meir Keeler condensing
operator such that K(J(F)) ⊆ J(F), F ⊆ Θ.We have m∗(J(F)) ≤ ξ{max{m∗(F), m∗(K(F)}}, where m∗ defined
on νB is a measure of non compactness and ξ from R+ to R+ is a increasing function, such that ξ(x) < x,

for x ≥ 0,

lim
n→∞

ξn(x) = 0,

then J and K have a common equilibrium marketing fixed-point.

Proof. Let F be a non void subset of Θ and m∗ the measure of non compactness defined on νB.

Now we consider a sequence of subsets {Θn} of B as Θ = Θ0, Θn = convJ(Θn−1), n ≥ 1.

Then K(Θn) ⊂ Θn and Θn ⊆ Θn−1 (2.1)

Clearly K(Θ1) ⊆ Conv(KJ(Θ0)) ⊆ Conv(J(Θ0)) = Θ1 and Θ1 ⊂ Θ0. Therefore K(Θ1) ⊆ Θ1 and so

equation (2.1) is true for n=1. Let it be true for n ≥ 1 then Θn+1 = Conv(J(Θn)) ⊆ Conv(J(Θn−1)) =

Θn, as Θn ⊆ Θn−1, thus Θn+1 ⊆ Θn and

K(Θn+1) = K(Conv(J(Θn))) ⊆ Conv(KJ(Θn)) ⊆ ConvJ(Θn) = Θn+1,

hence K(Θn+1) ⊆ Θn+1 and this implies that Θ0 ⊃ Θ1 ⊃ Θ2...

If m∗(Θn) = 0 for some n ≥ 0 then Θn is relatively compact and since J(Θn) ⊆ ConvJ(Θn) = Θn+1 ⊆

Θn, thus by S. f. t J has fixed point.

Now, suppose m∗(Θn) , 0, n ≥ 0. Define ρn = m∗(Θn) and σn = σ(ρn) > 0.
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Now by definition of Θn and ρn < ρn + σn,

ρn+1 = m∗(Θn+1)

= m∗(convJ(Θn))

= m∗(J(Θn))

≤ ξ{max{m∗(Θn), m∗(K(Θn)}}

≤ ξ(m∗(J(Θn)))

≤ (m∗(J(Θn))

≤ (m∗(Θn)) = ρn.

Therefore, ρn+1 ≤ ρn implies that {ρn} is the non-increasing sequence of positive real numbers

and for some r ≥ 0 such that ρn → r as n → ∞. We will show the case for r = 0, let us assume

that r , 0 then for some n0 such that n > n0 implies r ≤ ρn < r + σ(r). Hence by definition of

Meir Keeler condensing operator we have ρn+1 < r, which is not true, so r = 0. Hence, we have

lim
n→∞

m∗(Θn)→ 0.

Therefore, Θn+1 ⊆ Θn and condition 6 of measure of non compactness implies that Θ∞ = ∪∞n=1Θn

is non void closed and convex set with Θ∞ ⊂ Θ. Also the operator J keeps Θ∞ invariant and lies

in Kerm∗, thus J has a fixed point in Θ by S.f.t .

Now, Consider GJ = {t ∈ Θ : J(t) = t}.
Then by continuity of J, clearly GJ is closed and given K is Meir Keeler operator , we have

K(GJ) ⊆ GJ. So K(t) is the fixed point of J for any t ∈ GJ and

m∗(GJ) = m∗(J(GJ))

≤ ξ(max{m∗(GJ), m∗(Q(GJ))})

= ξ(m∗(GJ))

≤ m∗(GJ).

Therefore, GJ is compact and as m∗(GJ) = 0 then K has fixed point by S.f.t and by continuity of K,

the set GK = {t ∈ Θ : K(t) = t} is closed . Also by S. f. t, J(t) is the fixed point of K as K(GJ) ⊆ GJ,

for all t ∈ GK. Since J, K : GJ ∩GK → GJ ∩GK are continuous self maps and GJ ∩GK ⊆ GJ ⊆ Θ is

compact subset so , J & K have a common equilibrium marketing fixed-point in Θ by S. f. t . �

Corrolary 2.2 : Let Θ be a non empty closed,bounded and convex subset of the Banach space B. Suppose
J and K be commutative continuous self operators on Θ and K is Meir Keller condensing operator such that
K(J(F)) ⊆ J(F), F ⊆ Θ. We have

m∗(J(F)) ≤ ξ(max{m∗(F), m∗(K(F))}),
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where m∗ is any measure of non compactness defined on νB, ξ is increasing functions from R+ to R+ such
that ξ(x) < x, for x ≥ 0 and F is non empty subset of Θ,

lim
n→∞

ξn(x) = 0,

then maps J and K have a common equilibrium marketing fixed-point fixed point.

Proof. We omit the details as the proof is straightforward. �

Remark: In next theorem we use three continuous Commuting Meir Keeler operators on Banach space
and prove common equilibrium marketing fixed-point theorem for them.

Theorem 2.3: Let B be a Banach space and Θ be a non void bounded, closed and convex subset of B .
Suppose J, K & L be three continuous linear operators from Θ into Θ and K, L are Meir Keeler condensing
operator such that
1. J, K & L are mutually commutative
2. K & L are Meir Keeler condensing operators and K(J(F)) ⊆ J(F), L(J(F)) ⊆ J(F)
3. For any subset F ⊆ Θ, We have

m∗(L(F)) ≤ ξ({m∗K(F) − ξ(m∗(K(convJ(F))))}),

where m∗ is arbitrary measure of non compactness defined on νB and ξ is a increasing functions from R+ to
R+ such that ξ(x) < x, for x ≥ 0,

lim
n→∞

ξn(x) = 0,

then there exists a common equilibrium marketing fixed-point of J, K and L .

Proof. Let m∗ is a measure of non compactness defined on νB and F be a non empty subset of B.

Now we consider a sequence of subsets {Θn} of B as Θ = Θ0, Θn = convJΘn−1, n ≥ 1. such that

Θn ⊆ Θn−1 and K(Θn) ⊂ Θn (2.2)

Clearly Θ1 ⊂ Θ0 and K(Θ1) ⊆ Conv(KJ(Θ0)) ⊆ Conv(J(Θ0)) = Θ1. Therefore K(Θ1) ⊆ Θ1 and

thus equation (2.2) is true for n = 1. Let it be true for n ≥ 1 then (Θn+1) = Conv(J(Θn)) ⊆

Conv(J(Θn−1)) = Θn, as Θn ⊆ Θn−1, thus Θn+1 ⊆ Θn and

K(Θn+1) = K(Conv(J(Θn))) ⊆ Conv(KJ(Θn)) ⊆ ConvJ(Θn) = Θn+1,

hence K(Θn+1) ⊆ Θn+1 and this implies that Θ0 ⊃ Θ1 ⊃ Θ2...

If m∗(Θn) = 0 for some n ≥ 0 then Θn is relatively compact and thus by S. f. t J has fixed point as

J(Θn) ⊆ ConvJ(Θn) = Θn+1 ⊆ Θn .

Now, we assume that m∗(Θn) , 0, n ≥ 0. Define ρn = ξ(m∗K(Θn)) and σn = σ(ρn) > 0.

Now by definition of Θn and ρn < ρn + σn, then given inequality implies ξ(m∗K(Θn)) −
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ξ(m∗(K(convJ(Θn)))) ≥ 0, for all n ≥ 0. Thus, we have

ρn+1 = ξ(m∗K(Θn))

= ξ(m∗(K(convJ(Θn))))

≤ ξ(m∗(K(Θn)))

= ρn,

for all n ≥ 0. Therefore, ρn+1 ≤ ρn implies that {ρn} is the non increasing sequence of positive

real numbers and for some r ≥ 0 such that ρn → r as n → ∞. We will show the case for r = 0,

let us assume that r , 0 then for some n0, n > n0 implies r ≤ ρn < r + σ(r). Thus by Meir Keeler

condensing operator definition we get ρn+1 < r, which is not true as per our supposition , so

r = 0. Hence, we have lim
n→∞

ξ{ m∗K(Θn)} → 0⇒ lim
n→∞

m∗K(Θn)→ 0. Also m∗L(Θn) ≤ ξ(m∗K(Θn)) −

ξ(m∗K(convJΘn)) = ρn − ρn+1. So, lim
n→∞

m∗L(Θn) = 0.

Now if we fix Θ′n = m∗(L(Θn)) then by definition of measure of non compactness, m∗(Θ′n) =

m∗(L(Θn)) = m∗(L(Θn)). Hence, lim
n→∞

m∗(Θ′n) = lim
n→∞

m∗L(Θn) → 0. Since {Θn} is a nested

sequence ,so Θ′n+1 ⊆ Θ′n,∀n ∈ N. Thus m∗(Θ′∞) ≤ m∗(Θ′n),∀n ∈ N and Θ′∞ = ∩∞i=1Θ′n is non empty.

Therefore, m∗(Θ′∞) = 0 as n → ∞, so Θ′∞ is closed, compact and convex as L is Meir Keeler

condensing operator.

Also K(Θn) ⊆ (Θn) and J(Θn) ⊆ (Θn), so we obtain

K(Θ′n) = K(L(Θn) ⊆ K(L(Θn)) ⊆ L(K(Θn) ⊆ L(Θn) = Θ′n

J(Θ′n) = J(L(Θn) ⊆ J(L(Θn)) ⊆ L(J(Θn) ⊆ L(Θn) = Θ′n

and similarly

L(Θ′n) = L(L(Θn) ⊆ L(L(Θn)) ⊆ L(L(Θn) ⊆ L(Θn) = Θ′n.

Hence the set Θ′∞ is invariant under the operators J, K, L belongs to Kerm∗,so by S.f.t J, K, L have fixed

point in Θ. Now, Suppose GL = {t ∈ Θ : J(t) = t}. Then obviously GL is closed because of continuity

of L and by assumption K&L are Meir Keeler condensing operator,so K(GL) ⊆ GL, L(GL) ⊆ GL. So

K(t) is the fixed point of L for any t ∈ GL and

m∗(GL) = m∗(L(GL))

≤ ξ(m∗K(GL)) − ξ(m∗(K(convJ(GL)))})

≤ ξ(m∗K(GL))

≤ m∗K(GL)

≤ m∗(GL).

Therefore GL is compact as m∗(GL) = 0 . Thus K has fixed point and thus K and L have common

equilibrium marketing fixed-point and set G = {t ∈ Θ : L(t) = K(t) = t} is convex and closed

subset of Θ and J(G) ⊆ G. Hence a fixed point of J exists in G and so a common fixed point exists

in Θ of J, K and L. �
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