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ABSTRACT. The concept of p-th upper record value was introduced by Dziubdziela and Kopocinski [5]. Estimation of 

the location and scale parameters of the Lomax exponential (LE) distribution are obtained based on generalized record 

values.  The best linear unbiased methods of estimation are used for this purposes. 

 

1. Introduction 

The record values have been effectively applied in numerous real-world scenarios as well 

as in scientific domains such as weather, education, economics, sports data, meteorology, 

epidemiology, and Olympic and COVID-19 records. Chandler [3] defined record values as a 

model of the next extremes in a series of independent, identical random variables.  

The literature has reviewed the theory of record values and its distributional features in great 

detail. Asgharzed and Abdi [2], Minimal and Thomas [11,12], Khan et al. [7], Khan and Khan [8], 

Khan et al. [9], Kumar and Dey [10], Singh et.al [13] are just a few of the authors who have recently 

used the idea of "record values" in their writing. 

Let ,21,WW  to an independent and identically sequence of random variables (rv) with a 

continuous distribution function  )(wF  and probability distribution function ( pdf ) )(wf over 

the support ),( − . Denote the p-th upper record times by 1)(
1 =pU  and 1a  
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The sequence }1,{ )( aV p
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a WV =  is called the sequence of generalized upper 

values (p-th upper record values) of }1,{ aWa .  Note that for 1=p , we have 
,

)1(

aUa WV = 1,a

which are record values of }1,{ aWa  as define in Ahsanullah [1]. 

The marginal densities of )( p
aV and joint marginal densities of )( p

bV and )( p
aV  are given by 

(Dziubdziela and Kopocionski [5], Grudziaen [6]):  
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The pdf and cdf of the Lomax-G family for any continuous probability distribution are as follows 

(Cordeiro et al. [4] ) 
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and it cdf is given by  

 















−−
−=

)](1log[
1)(

wI
wF ,   w0 ,  0,                                                     (1.5) 

where 0 is a scale parameter, 0  is a shape parameter respectively. 

In this paper, we have considered LE distribution with pdf 
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and corresponding df 
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The precise expressions for the mean, variance, and covariance of record statistics obtained from 

the LE distribution are presented in this study. Additionally, these results are used to derive their 

BLUEs and maximum likelihood estimates of the parameters.  

2. Single Moments 

Theorem 2.1:  Fix a positive integer, 1p  and 1  . 
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Proof: It can easily be shown, on using (1.6), (1.7) and (1.1), that 
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after simplification, we get the result. 

3. Product Moments: 

Theorem 3.1:  For 21 − ab  
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Proof: It can easily be shown, on using (1.6), (1.7) and (1.2), that  
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We obtain the outcome by substituting the value of )(wl  in (3.2) and simplifying. 

4. Estimation of the Parameters  and  When Shape Parameter   is Known 

In view of (2.1), we have 
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By employing it recursively, it can be achieved to confirm that 
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Let us consider the following transformation 
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The best linear unbiased estimates  ˆ,ˆ  of   and  , respectively, based on 
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Substituting for 1)'( −BB  in (4.10) and simplifying the resulting expression, we obtain 
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which on further simplification gives 
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The coefficients for BLUE of the location and scale parameter of LE distribution based on record 

values have been obtained but not presented here. 
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The variance and covariance of 
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Further, it can be seen that  212 ee = . 

5. Unbiased Estimates of  When  and  are Known 

In view of (1.3), (1.6) and (1.7), the likelihood function of LED is given as  
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The maximum likelihood estimates of  is 
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Further, 
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Note that   is a biased estimator for  . The unbiased estimator ** for  is given by  
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and it can easily be verified that 
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