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Abstract. The main purpose of this paper is to establish some results on positive solutions for a p-Laplacian elliptic
system with strongly coupled critical terms and concave nonlinearities. With the technique of variational method,
namely Nehari manifold and Palais-Smale condition we show that there are at least two nontrivial solutions for our

problem.

1. INTRODUCTION AND MAIN REsuLTS

In this paper we consider the existence and multiplicity of nonnegative solutions to

—Ap n; ! | |a1 2|U|ﬁ1u + p |u|a2 2|U|ﬁ2u + /\l || | ; XE Q’

q—2
—Apv = nlﬁl ——u|*1 [v]f172 —ﬂ |u|*2[vlf2~20 + HH—U, x €, D
R x €00,

where () is an open bounded set of RN with Lipschitz boundary such that 0 € (O, 1,12, A, u, are
positive parameters, p* := % denotes the critical Sobolev exponent and A, = div(|VulP~2Vu) is
the p-Laplacien operator. The coefficients a1, a2, f1, and o > 1, satisfy a1 +p1 =p*, ax +p2 =p

Setmm =m =1 a1 = a» = a, p1 = 2 = p,and y = 0. Then problem (1.1) becomes the
following elliptic system with concave-convex nonlinearities:

a .
[ul*2uplf  in Q,

z
P — u*Plf?0  inQ, (1.2)
a+p

—@m:AMW%+
—Apo = ulol” + ——
u=v=20 on 0Q),
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Tsing-San Hsu [8] proved the existence of multiple positive solutions to (1.2). There are other mul-
tiplicity results for critical elliptic systems involving concave-convex nonlinearities. For example,
see [1]. Following this work, the existence of possibly multiple solutions of systems involving the
strongly-coupled critical terms has been extensively investigated. See, for example, [4,5,7,10-12].
In the literature [14], the authors studied the problem (1.1) for the case when p = 2. They obtained
the existence and multiplicity of positive solutions using the fibering method and the technique
of Nehari manifold decomposition. To the best of our knowledge, there are no results concerning
the existence and multiplicity of positive solutions for (1.1).
We assume that

N
(Hi): 1<gq<p<N and OSy<N+q—q7.

N - N
(Hr): 1<g<p<N and N_MS')/<N+£]—(1—,

(p—1)2 p

Our main results are

Theorem 1.1. Assume (Hy) holds. Then for any (A, u) € Se, system (1.1) has a positive ground state
solution, where Sg, is defined by (2.9).

Theorem 1.2. Assume (Hy) holds. Then there exists A > 0 such that for any (A, i) € Sa, system (1.1)
admits at least two positive solutions, one of which is a positive ground state solution.

This paper is divided into four sections. The properties of the Nehari manifold are provided in
the next section and the formulation of the variational method. The proof of Theorem 1.1 is in the

third section, and, finally, by Palais-Smale condition, we prove in the last section Theorem 1.2.

2. ANArysis oF FIBERING MAPs

We define the functional space as follows:
X :=WY(Q)
the usual Sobolev space endowed with the norm
lallx == Nl () + V2l -

The space Z is defined as Z = Wé’p (Q) :={u e X:u=0ondQ}, endowed with the norm

1
P
llullz == (f IVuI’”dx) -
Q
We set E := Z X Z, with the norm

1 1
1 p
12,011 == (Ihall + ol =( fﬂ VuPdx + fQ |Vv|”dx) .
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We say that (u,v) € E is a weak solution of problem (1.1) if (u,v) € E, one has
f (IVuI”_Zqub + IVUIP_ZVZN,D) dx
= f (’“ 2o + 224w |“2-2|v|ﬁ2uqb) dx
o\ 7 P

2.1)
+ f (”llf AP o1 v¢+”zﬁ 2 |ul®2 ol w)dx
@)

|ul~*u [o""0
+f0( 7 ¢+ X gb)dx forall (¢,¢) € E

Thus, the corresponding energy functional of (1.1) is defined by

Tau(u,v) = E f (IVulP + |VolP) dx — %Q(u,v) - 1K;W(u, v), (2.2)
P Ja p q

where

Qu,v) == f (bt ol + nalulof?) dx
Q

_ |ul? o]
K/W(u,v) = f(; (AW + yw)dx

We can clearly observe that I , € C!(E,R) and

and

(75,0 @) = [ (|w|p-2wq>+|vU|v—2vw)dx
o) P P
_f (m—fllul“llvlﬁl‘sznzﬁ 2 ufe2 olf v’vl’)dx
a\ P
[ul?"u o720
- dx.
fQ( a “9+u V)
Let S denote the best Sobolev embedding constant defined by
f [VulPdx
S:= inf
ey [~ \PIP
( f [ul? dx)
fqul”dx+f |VolPdx
Syap = inf Q o .
T (woeE\o) p/y
( f (mlulallvlﬁl+nz|u|“2|vlﬁ2)dX) (2.4)
0

-p/v
= inf ||(u,v)||P( f (m|u|“1|v|ﬁ1+nz|u|“2|v|ﬁ2)dx) ,
QO

(u,v)eE\{0}

(2.3)

and
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Then it is easy to get that

f (ol + malul®2[of?) dx < (Spap) ™ /Pll(u, )| (2.5)
Q

This is achieved if and only if O = RN by the function (see [2])

. e>0. (2.6)

is an extremal function for the minimization problem (2.3), that is, it is a positive solution to the

following problem
—Apu = [uP'~', inRN.
Moreover,

f VU Pdx = | U dx=57.
@] RN

Let Ry > 0 be a constant such that Q) € B (0, Rg), where B (0,Rg) = {x € RN : |x| < Ro}. By Holder’s
inequality and (2.3), forall (u,v) e Eand1<g<p,0<y <N+g— %, we get

a2 r
q . ¥ e
f o< ( f frs dx)” I(L) i
ol o o\

p'=q
i

%

* P9
_1 1\ "
< S |ul, f () ax
B(0,R,) M
. 2.7)
Ro N-1 P
< S lul, f L—dr
O |
p_:‘l
_ N
| P ek et i S b )
PN(N-y-2=+9)
P_:‘l
q _1 N —gN + S N
f”—dxss Hlollt | P T Pg RN 2.8)
a ANN-y-F+q)) "
Set
P
N —gN S N g
@.—| P11 ijq Ry T s,
pN(N-y-1=+9)

(2.9)

pp |Fi(p-a\7 g
@ = S Q, F/
' ,®(ri*—q)] (p*—q) (Snas)

So = (A, 1) € R2\{(0,0)} : 0 < A77 + uii < ©).
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We consider the Nehari manifold

Ny = 1(w,0) € E(0,0)} : (T}, (,0), (,0)) = 0}.

Thus, (1,v) € Ny, if and only if

12, )1 = Q(,0) = K (1, 0) = 0. (2.10)
1
Let z = (u,v), then |zl = |[(1,0)|| = (||M||§ + IIUIIZ)”. Note that N, , contains every nonzero
solution of (1.1). Define ®(z) := <j'/’\ H(z),z>, then for all z = (u,v) € Ny, we have

(?'(2),2) = pllall, - pQ(2) - 4K u(2)
= (p-q)llzllz - (v - 9) Q(z) (2.11)
= (p=p") llzllz + (7" = 9) Kau(2).
Now, following the approach in [13], we divide N, , into three separate parts:
N/{H = {z € Ny i (P (2),2) > 0},
Ng,y = {z €Ny (D (2),2) = O}, (2.12)
Ny i=1{z € Nay: (@ (2),2) < 0}.

To present our main result, we will outline some important properties of NLl, Ng’“ and NA_M
Lemma 2.1. The functional J},, is coercive and bounded from below on N ,,.

Proof. If z € N ,,. From (2.10), (2.7) and (2.8), by applying the Holder inequality, we obtain

s (-2

1 1 1

> ~llalf - (5 - 1;) (Allulll, + plloll}) © (2.13)
1 1 1\(,2 P\

> it - (5 - E)(W + pﬁ) " zlte,

where @ is as in (2.9). Thus, J,, is coercive and bounded from below on N, ,. The proof is
complete. O

Lemma 2.2. Suppose that zq € E is a local minimizer of Ja,, on Ny, and zo ¢ N 0 W then zg is a critical
point of the T 5 ..

Proof. If zg € E is a local minimizer of J3 ,, on Ny ., then T , (z0) = rr)\i/n Jau(z) and (2.11) holds.
ZEN A u

By applying the theory of Lagrange multipliers, we can assert that there exists 0 € R such that
jf,\u (z0) = 0P (20). As zg € Ny, we get

0= (I}, (20),20) = 6(P’ (20) ,20)-
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As (A, u) € Se, and 2o ¢ Ngy. Then, (@’ (z0),z0) # 0. Consequently, 6 = 0 and j/,\# (z0) = 0in
E-L O

When (A, i) € Sg,, we will prove that N;—'y # 0 and N}?# = 0.

Lemma 2.3. Assume that (A, i) € Se,, then for every z € E with Q(z) > 0, there exist unique 0 < t* <
Foax <t~ such that ttz € NXL#, tze NA‘Pand

T u (t+z) inf jA w(t2), Tau(t7z) = sup Ju(tz),

0<t<fma 2> Fmax

that is, Ny, # 0;
Proof. For every z € E where Q(z) > 0, and for any ¢ > 0, we have
(T4 4(12),12) = PII2IE — 7 Q(2) = 17K (2).

We define g, i : RT — R by

g(t) =7l — #"71Q(2) - Ky u(2),

h(t) == |zl — #"79Q(z).
Clearly, we obtain #(0) = 0, and h(t) — —co as t — oo. Sinse

W(t) = #1 [(p - q)llzll’; -(p"—9q) t”i_pQ(z)] , forallt>0,

there exists a unique fmax > 0 such that h(t) achieves its maximum at fnax > 0, increasing for

t € [0; Fmax ) and decreasing for t € (Fmax; 1). solving I’(t) = 0, we obtain

_1

N )] = A
fmax = [(p*—q) Q(Z)} =
Moreover,
_ B (p— )l s P-p,
h (tmax) - [(P* _q) Q(Z)l P* ” ”

Then from, (2.7), (2.8) and (2.9) by the Holder inequality, we obtam

8 (Fmax) = I (fmax) = Kau (1, 0)

(P CI)”ZHP ’fqpp -p o
_[(P -q)Q(z )1 P - ” I - f( ||y+”|x|y)d

r-q
p
(p = q)llzIl
- _r i 5”2”’7 (Alllll, + plio}) © (2.14)
[ (p* =) IIzIl% (Sw,ﬁ) 7

p=q

q
’9“7)"* (s ) e (—” )7 e
. 2L = (A7 4 p- ) z
P =q ek P :

\%

*

&

\%

>0
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where O is as in (2.9) and the last inequality valid for all (A, u) € Sg,. Consequently, there exist
tTand tsuch that

g(t+) =g¢(t)and ¢ (t+) >0>¢ (1),
for0 <t <fpax <t . Wehavettz e NLI, tze N;Hand

Tru (£ 2) 2 Tau(tz) 2 Tau (t*z) ,
foreacht € [t7,t7], and Thu (ttz) < Ju(tz) for each t € [0,++]. Thus

Tu (t+z) = inf T ,(tz), Jau(t"z) = sup Jau(tz).

<t<tmax £2Fmax

Lemma 2.4. For (A, u) € Se,, we have Ng 0= 0 and NA_His a closed set.

Proof. From Lemma 2.3 we have that there exist exactly two numbers t* and t~ such that0 < t+ < t~
and ¢ (") = g (t7) = 0. Furthermore, ¢’ (t7) > 0 > ¢’ (+7), If, by contradiction, z € V' O/H’ then we
have that g (1) = 0 with ¢’ (1) = 0. Then, either t© = 1 or t~ = 1. In turn, either ¢’ (1) > 0 or
¢’ (1) < 0, which is a contradiction. Thus, Ng’y = Qforall (A, u) € Se,.

Finally, we demonstrate that NA"”is a closed set for all (A, u) € Sg,. Assume that {z,} C NA"“such
that z;, — zin E as n — +o00, then we must demonstrate that z € NX,M. As z, € NX’V, from the

definition of N;“, one has
(p =) llzallf, = (P = 9) Q (z4) < 0. (2.15)
Consequently, as z, — zin E as n — 400, it follows from (2.15) that
(p=glizll, = (P —q) Q(z) <0,
thusze N U Ng/y, thenz € N because N}OW = (Qforall (A, 1) € Sg,. Therefore, Ny isaclosed

setin E for all (A, u) € Se,. o

Lemma 2.5. For each z € E such that K, ,,(z) > 0, if (A, u) € Se,, where Se, is defined as in (2.9), then
there exist t1, 1~ with 0 < t+ < tax <t~ such that t+z € N;# andt™z € N;H. We have

1

* K . ﬁ
tmax = |:—(p q) A’F (Z)l > O/

(p* = p) lIzIl
) — ) —
T (t Z) N 05%25““ Trpltz) Tap(£2) = tilifx Tau(tz)
Proof. The proof is almost the same as that Lemma 2.3 and is omitted here. m]

Since N, = NI# UN " then from Lemma 2.1 and Lemma 2.3, the following quantities are

well defined

6 - 11’1f zZ 6+ = lnf Z 6_ = lnf 7).
M 2€Nu j/\,y @) A zeN;# j)w ) A zENy, jA/# )

Lemma 2.6.
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(i) if (A, u) € Se,, then 6, < 6+ <0;

(ii) if (A, 1) € S(q) 2 then there exists a positive constant
1P @,
4

dO - dO(A/ [J/ P/ q/ N/ ST],O(,‘B/ ®)/
such that 6;}1 > dp.

Proof. (i) Forz = (u,v) € Njy. By (2.10), (2.11) and (2.12), we have

ﬁiym&>Q@» (2.16)

Based on (2.10) and (2.16), we have
1 1 1 1
Tau(z) = (l; - 5) ||Z||Z + (5 - I;) Q(z)

)

_ ququznp <0,

Therefore, using the definition of 6, , and QXH, we can deduce that 6, , < 9;{# <0.
(ii) Suppose that (A, u) €S » andz = (u,v) e NA_H' By (2.9), (2.11) and (2.12), one has

(e

p—q ‘”*
jj?m@<g(><spwﬂﬁ

which implies that

1

P=a\"7 g
||z||E>(p*_q) spr. 2.17)

Based on (2.13) and (2.17), we can deduce that
r—q

1 . p'—q L\T
Tp(@) = N2 | <zl ( - )(N e ] ) G)] > dp,
u(z) E [N E g IS
where dy = dy (/\, a9, 0. N, Snap, @) is a positive constant. O

3. Proor or THEOREM 1.1

First, we introduce the following definitions related to the (PS).-sequence.

Definition 3.1. Let ¢ € R, E be a Banach space and ), € CY(E,R).

(i) {zu} is a (PS)c-sequence in E for T if Tau (zn) = ¢ +0(1) and j/,\,y (zn) = o(1) strongly in E™! as
n — oo.

(ii) We say that T, , satisfies the (PS). condition if any (PS)-sequence {z,} for I, admits a convergent
subsequence in E.

Lemma 3.1.
(i) If (A, 1) € Se,, then there exists a (PS)g, ,-sequence {zu} C Ny, in E for Tpu,
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(i) If (A, u) € S(g)%&, then there exists a (PS)QK’#—sequence {zu} € N7 in E for T u-

Proof. The proof is similar to the one in [13]. m|
Now, we will demonstrate the existence of a local minimum for J, ;, on N;ry.

Proposition 3.1. If (Hy) holds and (A, u) € Se,. Then g, has a minimizer z; = (u1,v1) € NLI and
satisfies the following:

(i) j/\,y (Zl) - 9/\,;[ = 9/—{# <0;

(ii) z is a positive solution of system (1.1).

Proof. By Lemma 3.1, there exists a (PS)gw-sequence {zn} = {(un,vn)} € Ny of T such that

j/\,,u (Zn> = GA,y + On(l)/ j)/\,‘u (Zn) = On(1)~ (3.1)

Combining with Lemma 2.1, we can conclude that the sequence {z,,} is bounded in E. After passing

to a subsequence (still denoted by {z,}), we can find z; = (u1,v1) € E such that

Up — Uy, Uy — 01, weakly in Z,
Uy = U1, Up =01, strongly in L"(Q)) (1 <r <p*), (3.2)

Uy(x) = up(x), vy(x) > o1(x), ae inQ.

From (3.1), we have <j'/’\ " (zn) ,(p> — 0asn — oo forall ¢ € E. By (3.1) and (3.2), it is easy to see

that z; is a solution of system (1.1). Because {z,} C N, ,, we deduce that

rq q(p"-p)
P = p(p—a)
Taking n — oo in (3.3), by (3.1), (3.2) and the fact 0, ;, < 0, we obtain

K/\,y (Zn) = - j/\,y (Zn) + ”Zn”]; (33)

K/\,y (21) > — P

*_

QA,y > 0.

Therefore, z; € N, , is a nontrivial solution of system (1.1). Next, we prove that z, — z; strongly

in E and J, (z1) = 04, Similar to (2.7) and (2.8), for some g < r < p*, by the Holder inequality,

_ || [0, |7
K}\,‘u (Zn) = f(; (/\ |X|V + 1% |X|7/ )dx

o [t ([ () o)

r—
r

+u(f0 |Un|q'§dx)g(f(;(%)ﬁ dx)Tq

9 ~ 1
<Clun|" + Cloa|",

one gets,
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where C,C > 0 are constants. By (3.2) and the Lebesgue dominated convergence theorem, we have

nlgl;lo K)\,‘u (Zn) = K)\,‘u (Zl) . (34)
Noting z; € N, , and applying the Fatou lemma and (3.4), one has

1 -
O < o 21) = el = B (1)

.. (1 -
< h,ﬂg‘f(ﬁ ||Zn||i" - pp*quA,# (zn)

= liyllr_l)glfj&p (Zn) = 6)\,#/

which implies that 7, (z1) = 60,, and lim ||zn||’é = ||21||’Z,. Combining with (3.2), z, — z; as
n—oo

n — oo in E, it shows that z,, — z;. Moreover, we have z; € NAJFM. Otherwise, if z1 € N ‘y, then by

Lemma 2.3 there exist unique #;such that t5z; € Njy and t§ < t; = 1. Because of

dZ

a2

there exists f € (to+ Sty )such that ) . (tgzl) < Jau (fz1). Again by Lemma 2.3, we have

T (t0+21) < I (f21) < T (tazl) =T (21)

which is a contradiction. Thus, by Lemma 2.6(i), A, (z1) = 0, and z; € NIM. Consequently,

C%jw (t5z1) =0, —Tu(tfz)>0

we get that J , (z1) = 01, = QLI < 0. We conclude by proving that z; is a positive solution of
the system (1.1). Specifically, u; # 0,v; £ 0. Without loss of generality, let’s assume that v; = 0.

Then, since u; is a nontrivial nonnegative solution of the system

7-2 .
~Apu =AM inQ,

x| 7

u=20, on dQ).

By the standard regularity theory, we have u; > 0 in () and
||(u1,0)||p = Ky (u1,0) > 0.
Moreover, we may choose w € Z\{0} such that
10, @)IP = Ky,(0,) > 0.

Now,
KA,y (ul,a)) = K/\”u (I/ll,O) + K;W(O,a)) > 0.

Consequently, by Lemma 2.5 there is a unique 0 < t* < fmax such that (t7uq, 7 w) € N;Lr#. Moreover,

1
_ [(P*—q) Kz (ul,cu)r _ (p*—q)ﬁqu g
(r*=p) ||(u1, )| p-p
and
Tna(Fruntt0) = inf Tou (tuy, tw)

0<t<tmax
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This implies
QI# ST (t*ul, t*a)) < Tapu (U1, 0) < Jou (u1,0) = QIP,
which is a contradiction. Finally, by Lemma 2.2 and the strong maximum principle, we deduce

that 11,01 > 0in () and z; is a positive solution of system (1.1). O

Proof of Theorem 1.1. By Proposition 3.1, we get that for all A, u > 0 and (A, 1) € Sg,, (1.1) has a
positive solution z; € Njy. O

4. Proor orF THEOREM 1.2

To the existence of a second positive solution for the system (1.1), we must impose a stronger

condition. In this section, we will first find the range of ¢ where (PS). condition holds for 7, -

Lemma 4.1. Assume that {z,} C E is a (PS)-sequence for 7, Auand z, — z in E, then z is a critical point

of I a,u, and there exists a positive constant Co such that

Tau(z) 2 -Co (/\’“ 1+ WL) (4.1)
where ,
co—P1 [(PN—qI;’ﬂLPQ)@]ﬁ
p p
Proof. Let z, = (un,vy) and z = (u,v). If {z,} is a (PS).-sequence for J , such that

T (zn) = c+o04(1), j’i/y (zn) = 0u(1). (4.2)

We claim that the sequence {z,} is bounded in E. Indeed, for sufficiently large n, we have

1
e-+0(1) + lzulle 2 Ty (zn) = (T7, (20),2)

- (1 - l) lzalll - (% - %)KM (zn)

p r
1 1 1
> 5 llzallf - (5 - E)(A leall], + et lf0al}) ©
1 1 o
> =iz, —(— - —)(Aﬂ T+079) " [l e
N ET\g T p H E

The given statement implies that the sequence z, is bounded in E. Therefore, our claim is true.
Passing to a subsequence (still denoted by {z,} ), there exists z = (u,v) € 7, Au such that z, — z in
E and
Uy — U, v, —0, weakly in Z,
Uy = U, Uy >0, strongly in L"(Q)) (1 <r<p), (4.3)
Uy (x) > u(x), vy(x) > o(x), ae inQ.
By taking ¢ = (¢1, ¢2) € E. Combining with (2.7), (2.8) and (4.3), one gets
- -2
r}g&f Iunl T/ln _ Iull - o dx n_mf |Un| Un _ |U||i|yv¢2dx' (4.4)

Q Q
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Since {Iunl"‘i‘zlvnlﬁfun} and {Iunlaflvnlﬁf‘zvn} for i = 1,2 are uniformly bounded in (LV(Q)), and

converge to [u|%=2|vlPiu and |u|%|v]Pi—20 respectively, we can get that
|2 oulPiey — [l o, | onlP 20, — U0l

weakly in (U’* (Q))l X (U’* (Q)), fori =1,2asn — co. Thus, it is concluded from (4.2) and (4.4) that

lim <j'}’w (zn) ,(p> = <j3,u (z),(p> =0 4.5)

n—-oo

In particular, choosing ¢ = zin (4.5), one get <j 3 y(z),z> = 0 and (2.10) is true. Consequently,

1 1 1 1
Tnu(z) = (——7)|IZIIP —(——7)KA, z). (4.6)
O P A i R
Combining (2.7), (2.8) and the Young inequality, we have

Kpu(1,0) < (Allul), + plioll},) ©

q
131(1_1)‘1]” ,W]
qN\q p* ‘

177 1777
p1 (1 1) oallle 1 ( 1) !
Izl = lollz |[1=% =~ = © 47
-1
1(1 1 r A
<5 (5 - :) (Il + Iolly) + C(W + u)
-1
1(1 1 o i
—< o= o +T(a7 + )
N(q P) () ¢
with
q £ P
-1 —; p=q q p—q
= p-qllp1l(1l 1 _P=q|(PN—gN +pq\r
C="—||t=|=-= o = . o
p ([aN\g p p p
Then (4.1) follows from (4.6) and (4.7) with Cy = (% - pl) C. O

Lemma 4.2. Suppose that (H) holds, then [ , satisfies the (PS). condition in E, with c satisfying
1.5 A A
o< <y = NST;},a,ﬁ -G (/U’-'7 + y”‘ﬂ)

where Cy is in Lemma 4.1.

Proof. Let {z,} C E be a (PS).-sequence satisfying J ,, (z,) = ¢ +0(1) and J u (zn) = o0(1), where
2y = (Uy, vy). Similarly to Lemma 4.1, the sequence z, isbounded in E. Additionally, we can derive
(3.2) for some z = (u,v) € E. Set uy, = u, —u,v, = v, —v and z, = (uy, v,). From Brézis-Lieb’s

lemma [3], it follows that
|Za][: = lzalll, = 1211} + 0(1) (4.8)
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and by Lemma 2.3 in [6] one has

f (12| [0 Piddx = f || 0 Piddx — f ul*[olfidx 4+ o(1), i=1,2. (4.9)
Q O Q

Consequently, from (3.4), one gets

Ea|l’ + 12 = Q G) = Q(2) = Ki(2) = o(1)
and

lim (7, (20),2) = Izl = Q(z) = Ky u(2) = 0. (4.10)

n—-oo

Since Jpu (zn) = c+ 0(1),3341 (zn) = 0(1) and by (4.8) to (4.10), we can deduce that

II”II” Q('n—c—mm o(1) 411)

and
Il - Q @) = o(1)
Now, we can assume that

lim [[Z]f, = lim Q (Z) = L. (4.12)

n—oo

If I = 0, the proof is complete. For [ > 0, it follows from (4.12) and the definition of S, 4 4 that

Eoll; 2 $10sQ” @)

which means that

P
> Sn o (4.13)
From (4.10) to (4.13) and Lemma 4.1, we have
1 1
c=(===|l+Tnu(z) 2 crn
Q P) g g
which contradicts the definition of c. Therefore, | = 0 and z, — z strongly in E. m]

Next, we will demonstrate the existence of a local minimum for J, ;, on NX’J, thereby obtaining
a second positive solution for the system (1.1)

We define

flr) = —1FT s (4.14)

7
(meht 4+ mef2)”
Since f is continuous on (0, o) such that lirg+ f(r) = lir+n f(t) = 400, then there exists 79 > 0
T— T—1+00
such that

f (7o) := rglglf(r) > 0. (4.15)

Lemma 4.3. Suppose that N > pand 0 < n; < oo (i = 1,2), then

(1) Sr],a,ﬁ = f (TO) S;
(ii) Sp,ap has the minimizers (U (x), TrinUe (X)), Ve > 0, where U (x) are defined as in (2.6).
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Proof. i) Suppose w € Z\{0}. Choosing (u,v) = (w, Tow) in (2.4) we have

L = > Syap (4.16)

Taking the infimum as w € Z\{0} in (4.16), we have

f(10)S = Spap. (4.17)

Let {(uy,v,)} C E be a minimizing sequence of S, , g and define z,, = s,v,, where

4 L
sn:((f |vn|”*dx) f|un|p*dx) .
(@) (@)
f |znlP dx = f ||V dx (4.18)
(@) Q

From the Young inequality and (4.17) it follows that

f |un|“f|zn|ﬁfdxsﬁj f |u,1|ﬁ*dx+ﬁ—j f |2V dx
Q P Jo P Ja

= f |uylP dx = f lzulPdx, i=1,2.
0 0
fqunlpdx+f|an|”dx f|Vun|”dx
Q Q N Q

p/p
(f (nllunlallvnlﬁl + UZI”nlazlvnlﬁz)dx) ((ThS,;ﬁl + T]ZS;;ﬁz)f |un|p*dx)
@) Q

s;pf |Vz,[Pdx
Q

7
_ - .\
((Thsnﬁ1 +U25nﬁz) f |znl? dx)
o)

Then

(4.19)

Consequently,

x

‘EI-Q

_|_

As n — oo we have

Sn,a,ﬁ 2 f (TO) S,
which together with (4.17) implies that
Sn,ﬂé,ﬁ = f (To) S.

ii) By (2.4) and (4.15), S;a 4 has the minimizers (U, (x), ToUe(x)). m]



Int. J. Anal. Appl. (2025), 23:23 15

Lemma 4.4. There exist a nonnegative function Z € E\{0} and a positive constant A. such that for all
(A, u) € Sa, we have

sup Ju(t2) < cppu-
=

where cy ,, is the constant defined in Lemma (4.2). In particular, QXP < cpu forall (A, u) € Sa..

Proof. Since 0 € (), there exists pg > 0 such that B(0, pp) € Q.
Also, let us introduce a cut-off function ¢ € C°(Q) such that i(x) = 1 for [x] < 2, ¢(x) = 0 for
x| > po, 0 < Pp(x) < 1for & < x| < poand [Vy| < C.

Define -
w) = e T yu (2) = — (),
(s?’% + |x|”%) ’
where
() = — (4.20)
(1 + le’%)T

Set z = (ug, ToUs ), where ¢ > 0 small enough. For any ¢ > 0, we denote
q)é(t) = j/\,y (tzs)
=9 o (tu& tTng)

: t1 ul
1+t ugp—— T+ T fuf:dx— A+ ut! —f—gdx
p( o) el o (m7y' +mry) a (A +u O)q o I
= @1 (t) = (A + pth) @ea(t).
Notice that ®.(0) = O,tligrn P.(f) = —oco, and lim ®,(t) = 0 uniformly for all e. If

t—0+
N

P

S
Omf1 sup ¢ (t) < 0 then ), (fze) < 0 < cpy, for any 0 < AP + ,W’L I\'}gf Thus, for any
<e< >0

N
P

L S
0< /\V 74 ura NCﬁ’ one obtains

sup I (tze) < cap
=

On the other hand, if 1nf1 sup @, (t) > 0, then sup ®.(t) > 0 and it attains for some t, > 0. So,
O<esl 450 £0
there exist two constants t1,t, > 0 such that t; < t. < 5.

Step 1. We show that

N-p
D.1(t) < ngaﬁ + Coert.

From Hsu [9] (Lemma 4.3), we have the following estimates:

V|l = fquslpdx—SN/”—kO( —f)

(4.21)
f e (0P dx =sN7 4 O(e77)
Q
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as e — 0.

Note that ®, ; is increasing in (0, tmax) and decreasing in (fmax, ), where tmax satisfies <I>;’1 (tmax) =
0, one has

e

- (14 ) luellf

tmax - 7

(thgl +1727g2) f uffdx
0

Then, from 4.21 and Lemma 4.3, we conclude that

q>8,1 (t) < qDe,l (tmax)

=z

(1 + h) leclt,

ﬂ*
P1 ﬁ2f p )p
T, + Mt u, dx
_((771 0 TR O) Q

IA
Z|=

(4.22)

p-1
r P \N7
Step 2. Now, we estimate @, » (t,) and we claim thatif we set ¢ = (A P 4 ‘uf’*‘i) ! , then there exists

A, > 0 such that for all (A, u) € Sp, we have sup ) ,(t2) < cj .

t>0
#1 ul
(I)grz (tg) :—gf —gydx
q Ja Il
(N=p)q
tz Y (x)e 1)
- (N-p)q dx
1 Ja £ L_\plp-1)
(e -+ 177
(N=p)q
tz e P p (4.23)
>— X
9 Imsl e
o (e + 177
P (N=p)q
ttli 7 v pN-1
=— o dr
q Jo (N-p)q £
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Mlo
T
—_

HoNey .
=1, v f _ ir
q » ( —_p)q
(1 + r_l) vy
i‘q
—1g
- f o 7 (4.24)
q y 1 + = 1) p-1)
r r
# N4 N p—? N-1
-I——leN VR T f‘z r dr.
(N-p)q
q 1 (1 n Ll) p(p-1)
r
From (4.24), we get
9 _ _ 4N
Cse TP 07, > N - ((1;’_{7))261,
_& ut e (N-p)g
Pealt) =2 | Gpdx = Cael T Inel, Y =N- o5,
Q
gN__ q_ N—
Csepp-D 71, y<N- ((p_f))gl

where C; > 0(i = 3,4,5) are positive constants (C; independent of ¢). The case of y > N — ((I;I__f))f ,

combining (4.22) with (4.24), one has

sup Ju (tze) = e (te)

t20
=D, (k) = (A + uth) Do (t)
1.7 Np N
= ﬁsr;]aﬂ + Cae - Cs (/\ + #Tg) €N VE G e,
4 N-p 4 p =
N-p
Let A77 + uri = er 1, thatis, ¢ = (/\PT‘i + yﬁ) , then we can choose 01 > 0 such that for all
(A, u) € S5, we have
N-p N—‘;/J,»L_ﬂ
Coe? T —(C3 ()\ + ut ) (-1 p(p-1)?
, , , P(P*l)ZN*P(P£1)27’+P4*4N
:Cz(/\ﬁ —|—[ﬂ‘_) C3(A—|—[J’L’ )(AP‘I—}—‘uP_) Plp=D)7(N=)

Then, for for all (A, u) € Ss,, one gets

4 14
sup Ty () <~/ —C (M_+ ﬁ).
tz(I)) e (£2e) < Nnap 0 H
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The case of y = N - (( ))2 , it follows from (4.22) and (4.24) that

sup T u (tze) = Pe (te)

£20
=1 (te) = (A + ptp) Dea (te)
Ls7 4 Coett = Cy (A + ) e 7 Ine
_N Wﬁ+ &Pt — 4( +[JTO)é |In €|
pl
i Lo LN
Let Ar=i 4+ ur1 = e7T, that is, ¢ = (AP T4 ) , choosing 6, > 0 such that for all for all
(A, u) € Ss,, then one has
Nop N__ g
Coer Tt = Cy (A + ) e 7| Ine|

Consequently, for for all (A, u) € Ss,, we obtain

sup I (tze) < cppu.
£20

N

s? i
If weset A, := min{l\’}'—é’f,él,@} >0and ¢ = (/\P%ﬂ + ylﬂ%)N then for (A, i) € Sp,, we have

sup T (tze) < cpu,
£20

Step 3. We prove that 0 < ¢y, for all (A, u) € Sa..

By the definition of z. and u,, we have

Kau(ze) >0, Q(ze) >0

Combining this with Lemma 2.3 and Lemma 2.5, from the definition of 0, wwe obtain t,z, € NA_y

and
0< 0y, <Tnpu(tize) <sup T (tze) <cpp
t20
forall (A, i) € Sa.. The proof is finalized by taking Z = z,. o

Proposition 4.1. If (H3) holds and (A, u) € Sa. Then J , has a minimizer zp = (u2,v2) € NA‘# which
satisfies the following:
(i) Tau(z2) = 0w

(ii) zp is a positive solution of system (1.1),

where A = mm{A*,( )” O }
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Proof. If (A, ) € S(q) R then by Lemma 3.1 there exists a (PS)Q; -sequence {z,} C NA‘y in
1\P 1 @, i ’
P
E for J),. From Lemmas 2.6(ii), 4.2 and 4.4 for (A, u) € Sa,, Ja, satisfies (PS)Q; condition
s
and GX# e (0, CA,H). By Lemma 2.1 and from coercivity of J,, in N, ,, we get that {z,} is
bounded in E. Therefore, there exists a subsequence still denoted by {z,} and a nontrivial solution
2y = (up,m) € NA‘y such that z, — z» weakly in E. Finally by the same arguments as in the proof

of Proposition 3.1, for all (A, u) € Sx, we have that z; is a positive solution of (1.1). ]

Proof of Theorem 1.2. By Proposition 3.1 and 4.1 we obtain that for all A, u > 0 and (A, u) € Sa,
(1.1) has two positive solutions z1,z, with z; € N;H and z, € NA‘#. Since N;H NN} u = @, this

implies that z; and z; are distinct. This completes the proof. m]
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