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Abstract. Objectives: To develop an efficient algorithm for decomposing arbitrary graphs into circuits and paths, thereby

enabling a more comprehensive analysis of molecules for fragment-based drug design. Methods: We have devised

Algorithm GD for decomposing any graph into its constituent circuits and paths. A MATLAB implementation of this

algorithm was developed to generate the necessary outputs. Algorithm GD was applied to identify non-overlapping

fragments within drug molecules. Results: The MATLAB code’s performance was evaluated in terms of sample outputs

and runtime calculations. Algorithm GD was successfully employed to determine the non-overlapping fragments of

fungicides. Subsequently, the Wiener Index of these fragments was calculated. Conclusion: A regression equation was

established between the graph Wiener Index estimated from non-overlapping fragments and log KOC values. This

model can be utilized to predict the log KOC values of fungicides without the need for experimental setups, thereby

streamlining the drug discovery process.

1. Introduction

Decomposing graphs involves breaking down complex structures into simpler building blocks.

Research in graph decomposition explores various approaches, including decomposing regular

graphs, directed graphs, and complex multipartite graphs with ascending subgraph structures

( [1], [2]). Decomposition helps in crystal structure prediction, defining new class of graph through

vertex neighbourhoods ( [3], [4]). New approaches for breaking down G into paths, trees and

cycles were developed for various type of graphs ( [5], [6], [7], [12]). The relationship between

decomposing graphs by preserving specific connectivity properties and inherent non-adjacency

properties within a graph, decomposing complete graphs into fork graphs, tensor graphs into

cycles and star graphs etc are also discussed by authors ( [8], [9], [10], [11]).
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Some studies focus on constructing larger graphs entirely from smaller ones, like paths or stars,

with a specific number of edges. For instance, one approach investigates the number of edges

needed to build a graph only from paths, stars and crown graphs, and other research tackles the

efficient decomposition of planar graphs ( [13], [14], [15]). Generalizing the concept further, some

research tackles decomposing a special class of graphs called NC-graphs into two subgraphs [16].

After reviewing the literature on graph decomposition, we observed that classical methods often

rely on the symmetry of the underlying graph structures. This raises the following questions

(1) Can we decompose only graphs with specific symmetries, or can we decompose any given

graph G with n vertices into known structures?

(2) Can we develop algorithms to generate outputs for the decomposition?

(3) Can we apply these algorithms to various domains?

This article focuses on answering these questions. The rest of the paper is organized as followed

in Graphical Representation.

Figure 1.
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2. G = (V, E) Decomposition

2.1. Decomposition into Circuits and Paths. In this section we provide a solution for Question

1. To achieve this, we focused on existing results in graph theory that are applicable to our graph

with n vertices. We recalled the following famous theorems related to Euler graphs:

R1: A connected graph G is an Euler graph if and only if all vertices of G are of even degree.

R2: A connected graph G is an Euler graph if and only if it can be decomposed into circuits.

The next question that can be posed is what if G is non-Euler? In this angle we picked the following

result.

R3: In a connected graph G with exactly 2k odd vertices, there exist k edge-disjoint subgraphs such

that they together contain all edges of G and that each is a unicursal graph.

The proof technique of R3 results in a characterization of a non-Euler graph into unicursal graphs

using an Euler line of a constructed Euler graph. This gives a clue that a non-Euler graph can be

constructed into an Euler graph by adding edges. In this article we decided to use R1, R2, and R3.

To make this possible we shall use adjacency matrix, since a graph is best represented as a matrix

using adjacency matrix. The matrix representation is efficient for computational purpose. The

representation of the adjacency between vertices and the symmetry of the adjacency matrix can

be used for developing an algorithm to decompose any Euler graph G into circuits as R2 states. In

case of non-Euler graphs R3 can be used for the same. With all these observations, in this article

we have developed an algorithm to decompose

(1) An Euler graphs into circuits

(2) A non-Euler graphs into circuits, paths and null graphs.

We shall recollect the definitions used in the article for a comfortable reading of the article. De-

composition of a graph G is defined as a collection of edge disjoint subgraphs H1, H2, H3. . . , Hk

such that
k⋃

i=1

Hi = G,
k⋂

i, j=1
i, j

(
E(Hi)∩ E(H j)

)
= ∅,

Figure 2 presents an example of a graph G and its decomposition into 3 subgraphs H1, H2, H3.

Figure 2. Example of graph G and its decomposition.

A path Pn with n vertices is an alternating sequence of vertices and edges, starting and ending

with a vertex, where each vertex and edge is visited only once. A walk with n vertices is a similar
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sequence, but vertices can be repeated, while edges are still visited only once. The length of a path

is the number of edges it contains. A closed path is called a circuit. A circuit with n vertices is

denoted by Cn. A connected graph G is called Eulerian if it has a closed walk that includes all its

edges of G. A graph G with no edges is called a null graph. The adjacency matrix A = [ai j] of a

graph G with n vertices and e edges is defined as an n× n matrix such that

ai j =

1, if there is an edge between vi and v j

0, otherwise

We shall now continue to decompose G into circuits and paths.

Theorem 2.1. Let G = (V, E) be a graph such that |V(G)| = n. There exist subgraphs H1, H2, . . . , Hh of
G such that

h⋃
i=1

Hi = G,
h⋂

i, j=1
i, j

(
E(Hi)∩ E(H j)

)
= ∅,

such that each Hi is either a path, a circuit, or a null graph.

Proof. Let G be a graph with n vertices {v1, v2, . . . , vn}. If G is Euler, we retain the graph, else

let G′ be the graph obtained from G using R3. We know that G or G′ can be decomposed into

circuits by R2. Let A be the adjacency matrix of G. Let us denote every row of A as a vector. Let

r(vi) = 〈c(ai1), c(ai2), . . . , c(ain)〉 denote the row vector corresponding to the ith row of A. By the

definition of A, for every r(vi), i = 1, 2, . . . , n,

c(ai j) =

1, if vi is adjacent to v j

0, otherwise

Case I Start with any row r(vk1) = 〈c(ak11), c(ak12), . . . , c(ak1n)〉. Pick column k2 such that ak1k2 , 0

and ak1ki = 0, for every i = 1, 2, . . . , k2 − 1, also k2 , k1. This implies vk1 is adjacent to vk2 , but vk1 is

not adjacent to vki , for i = 1, 2, . . . , k2 − 1.

Next, pick r(vk2) = 〈c(ak21), c(ak22), . . . , c(ak2n)〉. Pick column k3 such that ak2k3 , 0 and ak2ki = 0,

for every i = 1, 2, . . . , k3 − 1, also k3 , k2. This implies vk2 is adjacent to vk3 , but vk2 is not adjacent

to vki , for i = 1, 2, . . . , k3 − 1.

Thus, vk1 is adjacent to vk2 , and vk2 is adjacent to vk3 , with k1, k2, k3 distinct.

Continue this procedure to generate a sequence of vectors vk1 , vk2 , . . . , vkt such that vk1 is adjacent

to vk2 , vk2 is adjacent to vk3 , . . . , vkt−1 is adjacent to vkt , where k1, k2, . . . , kt are distinct.

Pick row r(vkt) = 〈c(akt1), c(akt2), . . . , c(aktn)〉. Pick column kt+1 such that vkt+1 , vkt . If vkt+1 = vki

for some i = 1, 2, . . . , t− 1, then vkt+1 is adjacent to vki , and vki is adjacent to vki+1 , . . . , vkt−1 is adjacent

to vkt . This implies 〈vki , vki+1 , . . . , vkt , vkt+1〉 = ci+t+1.

In matrix A, set akskr = akrks = 0 for every s = ki, ki+1, . . . , kt and r = ki+1, ki+2, . . . , kt+1. If

vkt+1 , vki for all i = 1, 2, . . . , t − 1, then continue the tracing procedure until there exists a
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sequence vk1 , vk2 , . . . , vkt , vkt+1 , . . . , vkt+p , where p ≥ t + 2, such that vkt+p is adjacent to some vki ,

i = 1, 2, . . . , kt+p − 2 to generate a sequence vki , vki+1 , . . . , vkt+p such that vkt+p is adjacent to vki , vki is

adjacent to vki+1 , . . . , vkt+p−1 is adjacent to vkt+p . This implies 〈vki , vki+1 , . . . , vkt+p〉 = Ci+t+p.

In matrix A, set akskr = akrks = 0 for every s = ki, ki+1, . . . , kt+p−1 and r = ki+1, ki+2, . . . , kt+p.

Label the resulting adjacency matrix as A1. The number of non-zero entries of matrix A1 is at

least 6 less than the number of non-zero entries of matrix A. The graph G1 resulting from matrix

A may be connected or disconnected. But G1 is an Euler graph. In G, every vertex is of even

degree. In any circuit, all vertices are of degree two. So, the vertices vki , vki+1 , . . . , vkt+p in G1 have

degree two less than the degree of these vertices in G. Since even minus even is an even number,

all vertices in G1 have even degree, which implies G1 is Euler. If G1 is a disconnected graph, then

each component of G1 is an Euler graph.

Continue with G1 to trace circuits, as we traced the circuit Ci+t+p. By repeating this iteration, we

generate a sequence of matrices A1, A2, . . . , Az such that Az is a null matrix, and A, A1, A2, . . . , Az−1

are not null matrices. It is possible that Az is a null matrix since by R2, we know that G can be

decomposed into circuits. Each Ai has one circuit less than Ai−1 for every i = 1, 2, . . . , z. Each

iteration generates a circuit Ci, i = 1, 2, . . . , z− 1. By this iterative procedure, we decompose G into

circuits S1, S2, . . . , Sz−1.

Case II Let G be a non-Euler graph with n vertices {v1, v2, . . . , vn}. By R3, we know that G can be

modified into an Euler graph by adding edges between vertices of odd degree. Let G be non-Euler

with 2k odd-degree vertices. Let G′ be the Euler graph obtained by adding edges E = {e1, e2, . . . , ek}.

Continue as discussed in Case I to generate a sequence of matrices A, A1, A2, . . . , Az and hence a

sequence of circuits S1, S2, . . . , Sz−1.

Consider any random circuit Ci+t+1 = 〈vkiekiki+1vki+1 . . . vktektkt+1vkt+1〉. Remove ek jk j+1 from Ci+t+1

for every j = i, i + 1, . . . , t + 1, if ek jk j+1 ∈ E to generate a sequence of graphs X1, X2, . . . , Xq1 , where

1 ≤ q1 ≤ t + i + 1. The resulting graphs Xi can be either of the following:

(1) Path Pkt+1 if only one edge of Ci+t+1 ∈ E.

(2) Either

(a) A sequence of paths T1, T2, . . . , Ty, where 2 ≤ y ≤
⌊

n
2

⌋
.

(b) A sequence of paths T1, T2, . . . , Tx and a null graph N, if more than one edge of Ci+t+1 ∈

E.

(3) A null graph N if every edge of Ci+t+1 ∈ E.

(4) A circuit Ci+t+1 if no edge of Ci+t+1 ∈ E.

In general, while decomposing G into subgraphs H1, H2, . . . , Hk, each subgraph Hi should contain

at least one edge. In this case, null graphs may be generated due to the addition of edges in E
to create an Euler graph. These null graphs, if any, can be neglected as they do not belong to the

original graph G.

The non-Euler graph G = G′ − {E}will be decomposed into either:

(1) Circuits and paths,
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(2) Circuits only,

(3) Paths only.

From Case I and Case II, we conclude that any graph G can be decomposed into subgraphs

H1, H2, . . . , Hh such that each Hi is either a circuit or a path.

�

Remark. In any graph G, we know that there are 2k odd degree vertices. We add edges randomly

between these vertices to create an Euler graph. These edges can be added in many ways. We

generate a maximum number of non isomorphic Euler graphs. We note that these graphs generate

different fragments. If the graphs are different the fragments generated may also be different. The

graphs in Figure 3b and 3c provide two possible ways of adding edges (presented as dotted lines)

to create an Euler graph for the non-Euler graph in Figure 3a. We observe that the fragments are

different for these graphs as seen in Figure 3d and 3e.

Figure 3. Fragments generated by different edge additions to G.

2.2. Algorithm Graph Decomposition (GD). By Theorem 2.1 we know that G can be decomposed

into circuits and paths. In this Section we continue further to develop an algorithm using Theorem

2.1. We label this algorithm as Algorithm Graph Decomposition. Algorithm GD is divided into

two parts: GD1 and GD2. GD1 is designed for decomposing Euler graphs into circuits, while GD2

decomposes non-Euler graphs into circuits and paths.

GD1 GD1 requires that the vertices of the graph be assigned integers 1, 2, . . . , n in any order.

The algorithm identifies a circuit C1 from the input adjacency matrix A and iteratively repeats
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this process to generate a sequence of circuits C1, C2, . . . , Cz by updating matrix A, (z – 1) times.

To determine each circuit Ci, 1 ≤ i ≤ z, GD1 utilizes two primary arrays in addition to the one

representing the graph. The first array is a 1-dimensional array containing a set of vertices V

of an elementary path. The second array is a 2-dimensional array E containing the edges of

an elementary path E. Both V and E are initially empty. As building V is a basic process, GD1

constructs the first path starting at vertex 1. This path is extended one edge at a time, subject to

two conditions:

(1) The vertex to be added to the path must not be on our current list of visited vertices.

(2) The vertex to be added should not connect back to any vertex already in our path, creating

a circuit.

Condition 1 ensures that an elementary path is found, while Condition 2 guarantees that each

circuit is considered only once. Condition 1 is implemented in GD1 by introducing a variable J to

represent the previously visited row. Initially, J is set to zero. If V = {v1, v2, . . . vk} then to extend

the path V, J is updated as vk . This ensures that the smallest possible circuit has a length of three

(as we are dealing with simple graphs), satisfying Condition 2.

At some point no vertex will be available for extension of V. A circuit confirmation Ci is now

performed. i.e., there is an edge connecting the last vertex of V to any other vertex in V. In this

case a circuit Ci is reported. The algorithm then continues to process the following steps.

(1) Add Ci to the circuit list C which is initially zeroed.

(2) Update matrix A by replacing non-zero entries of A to zero. Vertices included in Ci are

only updated.

(3) Repeat the above process with the updated matrix starting from row 1.

Condition 2 is processed by determining the position of the already visited vertex in V for deter-

mining Ci. A substring E1 of E is determined from the same position in E for replacing ai j = a ji = 0

for i , j ∈ E1. The algorithm is terminated when the updated matrix is a null matrix. An overview

of the algorithm GD1 is presented in Algorithm GD1.

Algorithm GD1:

Initialize: S = 1

While S ≤ number of rows in the Adjacency matrix:

For Z1 = 1 to n1, 1 ≤ n1 ≤ n (each element in the row):

If A(S, Z1) = 1:

Initialize r1 = 0, J = 0, V = [ ], E = [ ], D = [ ], C = [ ]

For r = 1 to n:

If r1 , 0:

r = r1

end
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For c = 1 to n:

If A(r, c) = 1:

If c , J:
Update the values of V, E, J

end
end
break

end
If A(r, c) = 1:

Set r1 = c
Initialize already visited = 0

For Z2 = 1 to V:

Check whether the next row to be travelled is already visited
end
If already visited = 1:

For Z3 = 1 to E:

Find the position of the already travelled edge

end
For Z4 = Z3 to E:

Replace the entries of the matrix with zero

Update the adjacency matrix

Store the Circuit in D and C
end

break
end

end
end

Set S = S + 1

end
GD2: Using GD1, we decompose G′ into a sequence of circuits C = C1, C2, . . . , Cz−1. GD2 depends

on the input E = {e1, e2, . . . , ek}, an array of edges.

GD2 utilizes R3 to generate an Euler graph G′ by adding edges e1, e2, . . . , ek between odd-degree

vertices, as described in Theorem 2.1. GD1 is then applied to decompose G′ into a sequence of

circuits C = {C1, C2, . . . , Cz−1}. GD2 operates on an input array of edges E = {e1, e2, . . . , ek}. Every ei,

1 ≤ i ≤ k, is removed from Ci, 1 ≤ i ≤ z− 1 by using for loops. We know that each removal generates

at least one path. GD2 outputs a sequence of circuits and paths C1, C2, . . . , Ca, P1, P2, . . . , Pb, where

0 ≤ a ≤ z− 1 and b ≥ 1. That is, GD2 decomposes the original non-Euler graph G into circuits and

paths. An overview of GD2 is presented in Algorithm GD2.
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Algorithm GD2:
Input: The edges to be removed

For k = 1 : length(C):
C = circuits{k};
For j = 1 : length(E):

E = E{ j};
For i = 1 : length(C):

If C(i) = E:

C(i) = [];

break;

end
end

end
circuits{k} = C;

end

Theorem 2.2. By Algorithm GD

(1) All edges are exhausted.
(2) No circuit is repeated more than once.
(3) G is decomposed into cycles.

Proof. After tracing the first circuit {v1, v2, . . . , vk}, 3 ≤ k ≤ n, we generate a new matrix A1 from A by

fixing a12 = a21 = · · · = a1k = ak1 = 0 in matrix A. The algorithm is then processed by initializing

A1 as A. GD terminates when the adjacency matrix A becomes a null matrix, indicating that all

edges in G have been exhausted. Since the algorithm initializes a new updated matrix after tracing

each circuit, no circuit is repeated. The algorithm initializes a new matrix only after completing

the tracing of a circuit. The process terminates when the matrix becomes null, indicating that G
has been fully decomposed into circuits, which are then printed. �

2.3. Algorithm GD Analysis. We have used a Lenovo Ideapad S340 equipped with a 1.6 GHz Intel

Core i5-8265U processor and 12GB of 2400 MHz DDR4 RAM. MATLAB version R2023a served as

the software platform for running the algorithm.
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Figure 4. Runtime Estimation.

We know that an Euler graph is always connected. So, we determine the execution speed of

GD using only connected graphs. The results are trivial when n = 1, 2. The number of possible

circuits for a small graph is less in number. So, when n = 3, 4, 5, 6 we have estimated the execution

speed for 19 random graphs. A graph that is minimally connected is a tree. Adding edges to a

tree will retain back the graph connected. We start with any arbitrary tree T and estimate the run

time by adding edges one at a time until we cannot continue any further. We have estimated the

execution time of these 94 graphs when n = 7, 8, 9, 10. Based on these calculations, Table in Figure

4 presents the average runtime calculations. The graph in Figure 4 provides a comparison of the

average execution time for n = 1 to 10. It is clear from the graph that the execution time gradually

increases as n increases.

3. Algorithm GD for FBDD

Fragment based drug design has developed as an essential step in the drug discovery pro-

cess. This process involves breaking down a larger drug molecule into smaller molecules, in

other words into a better manageable parts or fragments that can be analysed. By doing this it

is possible to focus on the key elements of a drug, often considered to contribute to the activity

of drugs. These smaller fragments are also easy to analyse and manipulate which can speed up

the drug discovery process. There are various methods for making this fragmentation possible

like retrosynthesis analysis, manual decomposition, graph theory approaches. Graph theory ap-

proaches use molecular representation of graphs. Algorithms are developed for these graphs to

identify the subgraphs (fragments) that are relevant to the drug activity. Not all fragment based

drug designs target on decomposing molecules into nonoverlapping fragments. Researchers feel

that nonoverlapping fragments are better since in medical fields it is important to consider the

contribution of the binding energy of each of them, as different fragments are found responsible for
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different kinds of intermolecular interactions [17]. These are found useful in various drug discov-

ery practice. Determining non overlapping fragments is equivalent to decomposing a chemical

graph into nonoverlapping subgraphs. Algorithm GD can be used for this purpose since this

algorithm decomposes a graph into paths and circuits, where no edge of G is considered more

than once. We now concentrate only on nonoverlapping fragment decomposition.

Any given chemical graph can be decomposed into fragments using algorithm GD. We now further

plan for using this fragmentation for drug analysis. Physiochemical properties are usually deter-

mined from the chemical structures [18]. The question now that arises is ‘Can the nonoverlapping

fragments be used for predicting physiochemical properties of drugs?’ We now try to answer this

question.

When it comes to physiochemical property prediction topological indices are in wider use. We

continue this article to use topological indices and nonoverlapping drug fragmentation for phys-

iochemical property prediction. We recollect the view of Harry Wiener which states “The boiling

point of organic compounds as well as their physical properties depends functionally upon the

number kind and structural arrangements of atoms in the molecules. Within the group of isomers

both the number and kind of atoms are constant and variations in the physical properties are due

to changes in structural interrelationships alone” [19]. He used this idea to predict the boiling

point of paraffins. So, we shall choose Wiener index as a topological index for our study.

Powdery Mildew occurs when fungal growth covers the surface of plants. It often attacks foliage

stems, flowers and fruits. This is noted as white powdery patches [20]. Anthracnose is a disease

causing dark lesion on leaves. This often affects vegetables, flowers and fruits [21]. Black spot

is a disease that affects the leaves of rose plant causing them to drop off. This reduces the plants

photosynthesis which causes a decrease in rose production. Sometimes the entire plant may de-

foliate [22]. Apple scab is caused by a fungus that infects the leaves, buds, fruits and blossoms.

This is often noticed as small spots on the surface of leaves and fruits [23]. These are few of the

various fungal diseases that infect plants. Other commonly known fungal diseases are Sheath

blight, Premature leaf fall, Alternaria spot/blight, Sooty blotch etc [24]. Figure 5 shows fungal

infections affecting both plants and fruits.

Figure 5. Various fungal diseases.
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When fungicides are manufactured, care has to be taken because they may be harmful to the

ecosystem. Apart from protecting the plants from infections, attention needs to be given to the

surrounding environment. There are many possibilities that fungicides will move in irrigation or

run off from the site of application due to storms or rainfall. This often happens because they re-

main in the field for many weeks. Various properties like the pesticide’s field dissipation half-life,

adsorption coefficient (KOC), etc., may have a negative impact on the surroundings, as fungicides

last longest in the environment.

KOC represents the soil adsorption coefficient, which generally depends on the hydrophobicity

of the fungicides. KOC determines how fungicides move in runoff. Larger KOC values mean the

soil absorbs the fungicides strongly. A high KOC value for fungicides means that they move by

associating with eroded soil or sediment particles. Lower KOC values, along with higher solubility,

mean that fungicides will move in dissolved form. As water solubility increases, KOC generally

decreases [25]. From this, we understand that pesticide applicators should have knowledge of

whether the pesticide is more likely to move in dissolved form or by associating with eroded soil

particles, possibly entering surface streams. These fungicides are most likely to cause toxicity to

sediment organisms. Since logKOC values play a key role in impacting the environment, we shall

focus on the logKOC values of fungicides.

There are various methods, such as OECD 106 and OECD 121, for the estimation of KOC values [26].

OECD 121 uses HPLC for the estimation of KOC, which is considered more reliable than the calcula-

tions from the QSAR method. All these methods require some basic experimental setups. If these

values can be determined without such setups, it would be more user-friendly and save experi-

mental time and costs associated with experimental implementations. We shall continue further to

predict logKOC values of fungicides using the Wiener index and fragment-based drug design. For

this purpose, we choose 10 fungicides: Azoxystrobin, Benomyl, Carpropamid, Difenoconazole,

Edifenphos, Flutolanil, Hexaconazole, Iprodione, Tetrachlorophthalide, and Thiabendazole.

We shall now analyse if the Wiener index of the fragments can be as efficient as the Wiener index

of the chemical graph in physiochemical property predictions. We continue as follows:

(1) Determine the chemical graph G of the fungicides.

(2) Determine the Wiener index of the graph G.

(3) Decompose G into fragments H1, H2, . . . , Hs using Algorithm GD to generate a graph G1 =

H1 ∪H2 ∪ · · · ∪Hs.

(4) Determine the Wiener index of G1.

Let us now decide how to implement step 4.
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3.1. Fragment Wiener Index from Algorithm GD.

Figure 6. Example for Section 3.1 discussion.

Figure 6(a) presents the 3D molecular structure of Tricyclazole and Figure 6(b), the graph

structure of Tricyclazole. Figure 6(c) presents the decomposed graph of the graph in Figure 6(b)

using Algorithm GD by adding edges between vertices (2, 4), (3, 8) and (9, 13) respectively. The

distance between vertices 9 and 13 is 3 in Figure 6(b) while it is 11 in Figure 6(c). So, we observe

that when a graph is decomposed the distance between two vertices might vary drastically and

hence affect the Wiener index value. To overcome this, we shall continue further to reduce the

distance value. In any graph G with n vertices the length of the longest possible path between two

vertices can be n – 1 and the smallest possible path between two vertices is 1. In general distance

between a pair of vertices can be close to n/2 in many cases. So, whenever the length of the path of

the decomposed graph is greater than n/2 we shall split the path into two paths Pbn/2c. This will

help us to maintain a value closure to the original Wiener index value. With this observation we

now proceed to determine the Wiener index of the decomposed graph.

(1) Determine the chemical graph G of the fungicides from the molecular structure.

(2) Decompose G into circuits and paths C1, C2, . . . , Ck, P1, P2, . . . , Pt using Algorithm GD.

(3) For any Pi, 1 ≤ i ≤ t, if the length of Pi is greater than n
2 , decompose Pi into two paths:

Pi =

Pbn/2c ∪ Pbn/2c, if i is odd

Pbn/2c+1 ∪ Pbn/2c, if i is even

Applying steps 1, 2, and 3, G is decomposed into subgraphs H1, H2, . . . , Hs where each Hi

is either a circuit or a path with at most bn
2 c vertices.

(4) The Wiener index of G1 is the sum of the Wiener indices of the subgraphs:

Wiener index of G1 = Wiener index of H1 + Wiener index of H2 + · · ·+ Wiener index of Hs.

For the graph in Figure 3(c), we observe that the path Pn has length greater than bn
2 c. So, P12 is

decomposed into P7 and P6. Thus, the final decomposition of G is P7 + P6 + 2P3. This implies:
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Wiener index(G) = Wiener index(P7) + Wiener index(P6) + 2×Wiener index(P3)

= 56 + 35 + (2× 4)

= 99.

4. Results and Discussions

4.1. Comparative Analysis. Table 1 presents the Wiener index of G and the Wiener index of the

decomposed graph G1 and logKOC values for all the 10 fungicides. For logKOC values and molecular

structures of fungicides we refer to ChemSpider [27].

S. No Fungicides Wiener Index of G Wiener Index of G1 log KOC

1 Azoxystrobin 2834 122 2.869

2 Benomyl 1143 90 2.716

3 Carpropamid 828 72 4.616

4 Difenoconazole 1930 165 4.384

5 Edifenphos 730 99 2.646

6 Flutolanil 900 95 3.730

7 Hexaconazole 790 110 4.181

8 Iprodione 1024 110 2.148

9 Thiabendazole 341 66 3.345

10 Tetrachlorophthalide 258 39 2.790

Table 1. Wiener index and logKOC values.

The graph in Figure 7 presents the correlation between the Wiener index values of G and G1 for all

the fungicides. Figure 7 shows that there is a good correlation between the original Wiener index

and the Wiener index of the fragments estimated by Algorithm GD. Also, correlation coefficient

(W, W1) = 0.73. Since there is a good correlation, we can use the Wiener index of the decomposed

graph for logKOC value prediction.
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Figure 7. Correlation between Wiener index of chemical graphs and Wiener index

of the fragments of these graphs.

4.2. Regression Analysis and Conclusion. Consider the following regression equations.

log KOC = 3.313 + 2.709× 10−5
×W (1)

log KOC = 2.824362 + 0.005353×W1 (2)

where W is Wiener index and W1 is Wiener index for fragments. Equation 1 presents the regression

of logKOC with the Wiener index of the chemical graph of the 10 fungicides. Equation 2 presents

the regression of logKOC with the Wiener index of the fragments obtained from algorithm GD for

the 10 fungicides.

Figure 8. Wiener index Estimation for Lidocaine.

Now let us consider a new fungicide Lidocaine. Let us use Algorithm GD for decomposing

the chemical graph of Lidocaine into fragments. Figure 8 presents the 3D molecular graph,
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chemical graph and the decomposed graph of Lidocaine using Algorithm GD structure and the

corresponding Wiener index values. We observe that the chemical graph of Lidocaine is non-Euler.

We add edges between the vertex pairs (1, 5), (8, 13), (12, 17), (10, 16), (6, 14), so that the resulting

graph is Euler.

Figure 9. Algorithm GD output and runtime calculation for Lidocaine.

Figure 9 presents the output of the decomposed fragments for Lidocaine. Lidocaine is decom-

posed into 7 nonoverlapping paths. These fragments are listed out in the figure. The runtime
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estimation for determining the fragments of Lidocaine is also shown in the Figure 9.

Predicted log KOC values from equations (1) and (2) are:

log KOC = 3.313 + 0.00002709× 556

= 3.313 + 0.01506764

= 3.3281

log KOC = 2.824362 + 0.005353× 69

= 2.824362 + 0.369357

= 3.1937

We observe that both equations give almost the same prediction of log KOC values. From this

discussion, we conclude that Algorithm GD can be used for determining the fragments of any

chemical graph and hence can be used for predicting physiochemical properties of fungicides

using the Wiener index. This method requires no experimental setup for prediction of log KOC

values. Thus, this approach can be used for initial prediction of physiochemical properties of

fungicides, pesticides, etc.

Determining the Wiener index of graph G1 is straightforward since Algorithm GD decomposes G
into paths and circuits.

The Wiener index of these graphs is predefined:

• Wiener index of cycle Cn:

Wiener index(Cn) =


n3

8 , if n is even
n3
−n
8 , if n is odd

• Wiener index of path Pn:

Wiener index(Pn) =
n(n2

− 1)
6

This simplifies the calculation of the Wiener index of G1 and makes it easy to determine, requiring

fewer calculations. To conclude, in this article, we have developed Algorithm GD for decomposing

any graph into circuits and paths. This algorithm is used for determining the non-overlapping

fragments of drugs. The fragments determined by Algorithm GD are utilized for predicting the

physiochemical properties of fungicides. The proposed method does not require any experimental

setup. We believe that the algorithm developed for determining non-overlapping fragments can

be used for the initial prediction of physiochemical properties of drugs, and hence this algorithm

can be used for decomposing small molecules for fragment-based drug design.
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