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Abstract. It has been noted that if the *-Ricci tensor used to define *-Ricci soliton is a constant multiple of the metric
tensor g(e;, ej), for all ¢;, € orthogonal to characteristic vector field &, then the manifold is *-Einstein manifold. The
metric associated with *-Einstein manifold is *-Einstein metric, and the *-Ricci soliton is its generalization. In this
paper we study an almost *-Ricci soliton (g, W, A) and an almost gradient *-Ricci soliton (g, grad (¢) ,A) by means of

mathematical operators on (2m + 1)-dimensional a-paraSasakian manifold $>"+1.

1. INTRODUCTION

A Ricci soliton is a self-similar solution to the Hamilton’s Ricci flow equation. R. S. Hamilton

in [1] given the evolution of a Riemannian metric over time t as

d .
Egl] = —2R1Ci]', (1.1)
here Ric;; is the Ricci tensor associated to the metric tensor g;;. This partial differential equation is
known as Ricci flow equation. Ricci solitons plays a significant role in understanding the singularity

of equation (1.1).

Definition 1.1. Let us consider a differentiable manifold M1 with pseudo-Riemannian metric tensor g,

then (g, W, A) which includes W as a vector field and A as a smooth function, is known as an almost Ricci
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soliton if
£wg +2Ric-21g =0, (1.2)

here £y is the Lie-derivative in the direction of W and Ric is the Ricci tensor of g. An almost Ricci soliton

on (IMZ’”“, g) is expanding if A is negative, steady if A is zero or shrinking if A is positive.

Definition 1.2. Let us consider a differentiable manifold M?"+1 with pseudo-Riemannian metric tensor g
and taking W = Do, for some smooth function g on M>" 1, in the definition of an almost Ricci soliton,
then (g, Do, A) is known as an almost gradient Ricci soliton if

VVo+Ric—-Ag=0. (1.3)

Remark 1.1. If W = 0 in equation (1.2) or o0 = 0 in equation (1.3), we have Ric = Ag, which is the
definition of an Einstein metric and soliton constant A becomes an Einstein constant. Thus, Ricci soliton is

a generalized notion of an Einstein metric, which has been a subject of intense study in differential geometry.

Similar to Ricci soliton, *-Ricci soliton is a self-similar solution to partial differential equations
known as *-Ricci flow equation and were firstly introduced by G. Kaimakamis and K. Panagiotidou

[2], where they replace Ricci tensor in equation (1.2) by *-Ricci tensor and it is given as
- 1
Ric" (X1, Xp) = > (trace{p - R (X1, 9X2)}), (1.4)

for any vector fields X; and X, on M?"*1. The concept of *-Ricci tensor has been given by S.
Tachibana in [3] on almost Hermitian manifolds and again defined on real hypersurfaces in non-
flat complex space forms by T. Hamada in [4]. Following that, other authors studied *-Ricci tensor
and *-Ricci soliton in various ambient spaces [5-9,11,12,14].

Almost Ricci solitons and almost gradient Ricci solitons were studied in both Riemannian and
pseudo-Riemannian manifolds. Interest of theoretical physicist increases towards the study of
Ricci solitons as (1.2) is a special case of an Einstien field equation. Several authors have been
studied almost Ricci soliton and almost gradient Ricci soliton on paracontact manifolds [15,20-25].
The study of paracontact manifolds have been started in 1985 [28], and after that focused on
paraSasakian manifolds. Recently, the authors of [29] have given the study of *-Ricci soliton and
almost gradient *-Ricci soliton within the frame-work of Sasakian manifold.

In the fields of submanifold theory, soliton theory, tangent bundles, and related topics, numer-
ous geometors have investigated geometric and topological characteristics concerning symmetry.
Their works from references ( [10,15-20,26,27]) are a great place to start when looking for ideas
and a desire to learn more about symmetry.

The above research works give us motivation to study almost #-Ricci solitons and almost gradient
*-Ricci solitons on paracontact geometry, particularly, on a-paraSasakian manifold. a-paraSasakian
manifold as a subclass of paracontact manifold have been defined by S. Zamkovoy and G. Nakova
in [30].
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Sectional study of this paper includes: In Sect.2, we give basic definition of a a-para-Sasakian
manifold S *! and its subclasses paraSasakian manifold and paraCosymplectic manifold C2"*1.
We also give an example of S*"*! for better understanding. Further, we find some curvature
identities on S¥"*1. In Sect.3, firstly we define an almost *-Ricci soliton (g, W, 1) on S2m+1l and
then discuss some properties of S§2m+1 with (g, W, A). Also, we give an example of *-Ricci soliton
on S?"*1 In Sect.4, we define Hessian of a smooth function which is used to define an almost
gradient *-Ricci solitons (g, grad (¢), 1) on S?"*! and then discuss some properties of S?"*1 with
(g grad () ,A). In last section, we give physical significance of a *-Ricci Soliton. Here are the
following results we will focus in the present paper:

Theorem 1.1. If S?"*! is a a-paraSasakian manifold with an almost *-Ricci soliton (g, W, A) which

includes W as paracontact vector field, then the metric g is *-Ricci soliton.

Theorem 1.2. If S*"*! is a a-paraSasakian manifold admitting a =-Ricci soliton (g, W, A), then either the
soliton vector field W is killing or leaves ¢ invariant.

Theorem 1.3. If S*"*! is a a-paraSasakian manifold admitting an almost gradient *-Ricci soliton, then

S+ js quasi Einstein manifold.

2. @-PARASASAKIAN MaNTFOLD S2" 11

Consider a differentiable manifold M?"*+!, then M2+ is known as an almost paracontact manifold

if it is enriched with (¢, 1, &)-structure (paracontact structure) and satisfies

n(&) =1, ¢? =I—n®é,}

2.1)
pc =0, nog=0.

Also, an endomorphism ¢ induces an almost paracomplex structure on each fiber of D = ker;
(horizontal distribution) i.e., the eigendistribution corresponding to eigenvalues +1 and -1, the
eigensubbundles D' and D~ have equal dimension m. Here, 7 is the identity transformation, ¢
is a (1,1)-tensor field, & is a characteristic vector field and 1) is a differential one-form on M?"+1.

Consider a pseudo-Riemannian metric tensor g, such that

g (pX1,pX2) = —g(X1, X2) + n(X1)n(Xa2), (2.2)

then g is compatible with paracontact structure. Here signature of g is (m + 1,m) and n(X;) =
g (X1, &), for any vector field X on M?"+1,

Definition 2.1. A differentiable manifold (Mzm“, g) is called (2m + 1)- dimensional almost paracontact
metric manifold if g is compatible with (@, 1, &)-structure.

From now on, we are taking M?""! as an almost paracontact metric manifold throughout this

paper.
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Definition 2.2. A manifold M>" is called (2m + 1)-dimensional paracontact metric manifold if it
satisfies ¥ = dn, where ¥ is the fundamental 2-form given by ¥ (X1, X2) = g(pXi, X2), for any vector
fields X1 and X, on M?"+1 [30].

Also, for a manifold M?"*! we can find @-basis which is a local orthonormal basis {X;, pX;, £} such
that g (X;, X;) = 1 and g (¢X;, ¢X;) =-1,i=1,--- ,m.

Next, we give the definition as well as example of a a-paraSasakian manifold which is a subclass
of M2+

Definition 2.3. A manifold M?"*1 is said to be a-paraSasakian manifold S*"+1 if
(Vx,0) X1 = ag (X2, X1) & - an (X1) Xy, (2.3)
where X1 and X, are vector fields on M?" ! and a (# 0) is a constant [30].

Example 2.1. Let S® := R3 (¢, 1, &), where & = e3 and given the one-form 1 and an endomorphism ¢ as:
pe; = ey, per = ey — ye3, pes =0, n = ydx +dz ((x,y,z), being the cartesian coordinates and e; = %,
e = a%, ez = % and the metric tensor g = dx* —dy? + n®mn. Then S® is a-paraSasakian manifold S°.

By further computation we have the following coefficients of Levi-Civita connection as

Ve e1 = yey, Ve o2 = Vo1 = %yq + %(1 - yz) e3, Ve,e2 =0,

Vee3 = Vee1 = %ez, Ve,e3 = Vo0 = % (e1 —ye3), Vees = 0. (2.4)
Using Egs. (2.3) and (2.4), we have a = 1.

Remark 2.1. If a = 1 in equation (2.3) and ¥ (X1, Xp) = dn (X3, Xa) for any vector fields Xy and X; on
S?"+1 then a-paraSasakian manifold S*"+1 is called paraSasakian manifold.

Remark 2.2. If a = 0 in equation (2.3), then a-paraSasakian manifold S*"+1 is called paracosymplectic
manifold C¥"+1,

Proposition 2.1. For a a-paraSasakian manifold S>" 1, we have

Vx, & =apXy, (2.5)
for any vector field Xy on S*"*1.
Proof. By using equation (2.3), we get the required result. m]

Proposition 2.2. For a a-paraSasakian manifold S>" 1, we have

(Vxsn) X1 = ag (X1, 9X3), (2.6)

for any vector fields X1 and X5 on S 1,

Proof. By using equation (2.5), we get the required result. m]
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2.1. Curvature Properties of S>"1. The curvature tensor R on a manifold S ! with pseudo-

Riemannian metric g is given as
R (X1, X2) X5 = [Vx;, Vi, X3 = Vx, 3, X3, (2.7)
where X;, Xo> and Xj are vector fields on S2"*1.

Proposition 2.3. For a a-paraSasakian manifold S> 1, we have the following curvature properties

R(X1,X2) & =a* (n(X1) X2 —1(X2) X1), (2.8)
R (X1, ) Xa =a® (g (X1, X2) £ =1 (X2) X1), (2.9)
R(X1,&) & =a” (n(X1) &~ X1), (2.10)
Ric (X1, &) = —2ma’n (Xy), (2.11)
Q& = -2ma’é, (2.12)

where X1, Xp and X3 are vector fields on S¥" 1,

Proof. By using equation (2.3), (2.5) and (2.7), we get the required expressions for curvature tensor
R. O

Proposition 2.4. For a a-paraSasakian manifold S>"*1, we have
R (X1, X2, X3, X4) + R (X1, X2, X3, pX4) = ag (X2, X3) dn (X1, X4)
—ag (Xo, Xq) dn (X1, X3) + ag (X1, X4) dn (Xo, X3) —ag (X1, X3) dn (X2, X4), (2.13)
R (9X1, pX2, X3, 0Xa) =R (X1, X2, X3, Xs) = a’g (X2, X3) 1 (X1) 1 (Xa)
—a?g (X2, Xa) 1 (X1) 1 (X3) + o’ (X1, Xa) 1 (X2) 1 (X3) — o’ (X1, X3) 1 (X2) 1 (Xa), (2.14)

where X1, X, X3 and X4 are vector fields on §2m+1,

Proof. By using the definition of curvature tensor and equation (2.3) and (2.5), we get
R (X1, X2) pX3 =a’g (X2, X3) pXi1 — a’g (9X1, X3) X2 + °g (X2, X3) X
- a’g (X1, X3) pXo + pR (X1, X2) X3, (2.15)

and scalar product of the above equation with Xy gives equation (2.13). Futher, replacing X; —
@Xj, X, — @X; and Xy — @X4 in equation (2.13), then the use of equation (2.2), (2.9) and (2.15)
gives equation (2.14). m]

Proposition 2.5. For a a-paraSasakian manifold S*" !, we have
Ric (X1, 9X2) + Ric (X1, X2) = —adn (X1, X2) . (2.16)
Alsofor X; L&, i=1---2m
Ric (X1, pXa) + Ric (9X1, X2) = 0. (2.17)

Proof. By using Proposition 2.4, we get the required result i.e. equation (2.16). Also for equation
(2.17), taking {X;, i = 1---2m} orthogonal to £ in equation (2.14). m|
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Proposition 2.6. On a a-paraSasakian manifold S*"+1, we have
Qp = Q- a’p, (2.18)
where Q is a Ricci operator.

Proof. By using the definition of Ricci operator i.e., g (QXi, X2) = Ric (X1, X2) and equation (2.6)
and (2.16), we have

—pQX1 + QX1 = —a’pXy,
which gives the required result. m]

Remark 2.3. For a a-paraSasakian manifold S+l with {X; L&, i=1---2m), the Ricci operator Q

commutes with an endomorphism ¢.

Proposition 2.7. For a a-paraSasakian manifold S>"*1, we have

(Vx,Q) & = —a(QpX + 2maPpXy), (2.19)
(VeQ) =y, (2.20)

for any vector field Xy on S*"*1 and Q is the Ricci operator.

Proof. Since,

0=£:(QX1) - Q(£:X1) = VeQXq1 = Vox, £ = Q (VeX1) + Q (Vx, &),

then equation (2.5) and (2.18) gives equation (2.20).
Further, covariant differentiation of equation (2.12) along an arbitrary vector field X; and (2.5)

gives equation (2.19). m]

Definition 2.4. A manifold S+ with pseudo-Riemannian metric g is known as =-quasi Einstein manifold
if
Ric* (X1, Xo) = a1 8 (X1, X2) +a21 (X1) n(X2), (2.21)

here a1 and a are given as non-zero functions, 1 as a one-form and Ric" as a *-Ricci tensor which is defined
in equation (1.4). If ap = 0 in equation (2.21) then S*"*+1 is a *-Einstein manifold.

3. ArLmosT *-Ricci Soritons on 27 +1

Similar to Ricci soliton, *-Ricci soliton is a generalized notion of *-Einstein metric and it is self-
similar solution to the partial differential equations known as *-Ricci flow equation.

Also, *-Ricci flow on a pseudo-Riemannian manifold S?”*! will be defined as:

9
a—f — —2Ric" (X1, X2), (3.1)

for any vector fields X; and X, on S2n+1 Here g is a smooth symmetric metric tensor and Ric" is a

+-Ricci tensor given in equation (1.4).
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Now, consider a differentiable manifold S¥"+1 with pseudo-Riemannian metric g then, (g, W, A)

is called an almost *-Ricci soliton on S2"+1 if
(Ew g+ 2Ric* - ZAg ) (X1, Xz) =0, (3.2)

for any vector fields X; and X; on S§Zm+1 Here £1y: Lie derivation along W, Ric™: *-Ricci tensor,

which is given in equation (1.4) and A: a smooth function.

Remark 3.1. An almost *-Ricci soliton on S*"*1 is expanding if A is negative, steady if A is zero or

shrinking if A is positive.

Theorem 3.1. For a a-paraSasakian manifold S*"*+1, the *-Ricci tensor can be expressed as

2 2

Ric* (Xl,Xz) = — Ric (Xl,Xz) + (% - [X2 (Zm - 1))g (Xl,Xz) - 3%1] (Xl) n (Xz) ’ (33)

where Xy and X are vector fields on S>"+1.

Proof. Covariant differentiation of eq. (2.8) in the direction of X3 on §2"+1 and the use of equation

(2.5) gives
(Vx,R) (X1, X2) &+ aR (X1, X2) X3 = &g (X1, pX3) X2 — a’g (Xa, pX3) X1, (3.4)
contracting equation (3.4) w.r.t an orthonormal frame {e;} of 7S*"*1, we left with
(divR) (X1, X2) &+ ag (R (X1, X2) pei, ei) = —2a3g (pX1,X7) .
Now, by using contracted Bianchi identity the above equation becomes
g ((Vx,Q) X2 = (Vx,Q) X1, €) + ag (R (X1, X2) pei, e1) = —2a°g (X1, X2) .

By virtue of equation (2.19) it follows from the above equation that

8 (R (X1, X2) pei, &) = 20° (2m —1) g (pX1, X2) - 8 (X1, QpXa) — 8 (pQX2, X1) .
Replacing X, — ¢X5 and using equation (1.4), we get

2Ric” (X1, Xo) = 20° (2m — 1) g (X1, 9X2) + 8 (QpX1, X2) + & (pQX1, pX2) -

Since Qp = ¢Q — a?p, and the use of equation (2.1) and (2.12), gives the required expression for
*+-Ricci tensor, i.e. equation (3.3). m|

Corollary 3.1. For a a-paraSasakian manifold S, «-Ricci operator and *-scalar curvature can be

expressed as

. @, 3a’
T = — 1 —4m?a® + ma?, (3.6)

where X1 and X5 are vector fields on §2m+1,
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Proof. The expression for *-Ricci operator i.e. equation (3.5) can be easily obtained by using
equation (3.3). Now, by contracting equation (3.3) we get the required expession for the -scalar

curvature, i.e., equation (3.6). m|

Corollary 3.2. For a a-paraSasakian manifold S*"*1 with {X; L &, i = 1---2m)}, the *-Ricci tensor is

given as
Ric* (X1, X2) = —Ric (X1, X)) —a? 2m—1) g (X1, X2) —a?n (X1) n(X2), (3.7)
where Xy and X are vector fields on S>" 1.

Proof. With the help of equation (2.17) in the proof of Theorem 3.1, we get the required expression
for #-Ricci tensor. m]

Proposition 3.1. For a a-paraSasakian manifold S>"*1, we have
* az
(Vx,Q") & =a (Q(pX1 - (? —a* (2m - 1)) (le), (3.8)
(VeQ) = - a’p, (3.9)
for any vector field Xy on S*"*1. Here Q" is the *-Ricci operator.

Proof. Replacing X; — ¢ in equation (3.5),

a? 3a?
Q&= —Q5+(7—a2 (27”—1))5—75, (3.10)
covariant differentiation of equation (3.10) along vector field X; gives
. 3a3
(Vle ) 5 - - (Vle) CE - T(P)(lr

then equation (2.19) gives equation (3.8).

Further, covariant differentiation of equation (3.10) along vector field & gives
(VeQ) &= -(VeQ) &,
then equation (2.20) gives equation (3.9). |
Proposition 3.2. For a a-paraSasakian manifold S*" 1 admitting an almost *-Ricci soliton, we have
(Ewn) (&) = A = -n(Ewe), (3.11)
where A is a smooth function.

Proof. By using Proposition 3.1, equation (3.2) can be written as
(Ewg) (X1, Xp) =2Ric (X1, Xa) + {207 (2m = 1) + 21 - a?} g (X1, Xy)
+3a%n (X1) 1 (X2).
Put X, = £ in the above equation and using equation (2.11) it follows that

(£Wg) (Xl,é) = 2/\1] (Xl) . (312)
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Next, Lie-differentiating equation 11 (X;) = g (X3, &) along W, we have
(Ewn) (X1) — g (Ewé&, X1) — (Ewg) (X1, &) = 0. (3.13)
Again, Lie-differentiating equation g (&, &) = 1 along W, we have
g (Ewé, &) = —A. (3.14)
Now, using equation (3.12), (3.13) and (3.14), we get the required result. m]

Definition 3.1. A vector field W on an almost paracontact pseudo-Riemannian manifold M>"+1 is called

an infinitesimal paracontact transformation if

£wn = on, (3.15)
for a scalar function g on M*"*1 and £y is the Lie differentiation along W [31].

Remark 3.2. If g in equation (3.15) is identically zero, then a vector field W on IM?"*1 is infinitesimal

strict paracontact transformation.

Theorem 3.2. Let us consider a a-paraSasakian manifold S>" 1 with an almost *-Ricci Soliton (g, W, A)
and potential vector field W is an infinitesimal paracontact transformation which leaves both *-Ricci tensor
and Ricci tensor invariant, then W is an infinitesimal strict paracontact transformation if and only if an
almost *-Ricci Soliton on S?"*1 is steady.

Proof. Since infinitesimal paracontact transformation W leaves both #-Ricci tensor and Ricci tensor

invariant, we have
(EwRic") (X1,X2) =0, and (EwRic) (X1,Xp) =0. (3.16)
Also,
(EwRic") (X1,&) =0, and (EwRic) (X4,&) =0. (3.17)

Taking Lie-derivation of equation (3.3), then using equation (2.11), (3.15) and (3.17), we get

2
Ric* (X1, £w&) = —Ric (X1, Ewé) + {?% - Zmaz} g (X1, £wé)

2
+ {9/\; —30a” — 4m/\a2} n(X1).
Replacing X1 — & and using equation (2.11), (3.3) and (3.14), we get
30=A(3-4m),

which gives the required result. O
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Proof of Theorem 1.1. Consider a a-paraSasakian manifold $*"*! with an almost *-Ricci soliton

(g, W, A) which includes W as a paracontact vector field, then the defining property of W gives
Ewdn = dLwn = don = do A+ o(dn). (3.18)
Further, v = n A (dn)™ # 0 on S>"*1, then the Lie-differentiation of this along W gives
Ewv = (m+1)ov. (3.19)
Also, the formula £yyv = (div W) v and above equation gives
diviW = (m+1)o. (3.20)
On the other hand, the trace of equation (3.2) gives
divW = A (2m + 1) + 7 — ma® + 4m>a?. (3.21)
Now, from equation (3.20) and (3.21), we have
T=-AQ2m+1) +ma®—4m*a®+ (m+1) 0.
Next, the Lie-differentiation of 11 (X1) = g (X3, &) along W, and the use of equation (3.3) and (3.15)
gives
£wé = (0—2A) ¢, (3.22)

taking scalar product of equation (3.22) with &, we have

8(Ewe, &) = (0-24),
from equation (3.14), we get ¢ = A. Using this in equation (3.15) and (3.22), we have
Ewn = An
Ewe = —A& }

Now, the Lie-differentiation of dn (X1, X2) = a g (pXi, X») along W, and the use of equation (3.3)
and (3.15) gives

(3.23)

2 (Ewep) X1 = —4QpX1 +2{0- 24 + 30% — 4ma?} Xy + (X10) E—n (X1) Do, (3.24)

Replacing X1 — &, we get

2 (Ewp) &€ = (X10) €= 1 (X1) Do. (3.25)
Now, the Lie-differentiation of p& = 0 along W, and the use of equation (3.23) gives
(Ewep) £ =0, (3.26)
using the above equation in equation (3.25), we get
do = (£0) 1. (3.27)

Taking exterior derivative of the above equation and using d? = 0 and nAn=0,wegetdo =0,

which implies g is constant, and hence A is also constant. m]
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3.1. =Ricci solitons on S?"*1, An almost *-Ricci soliton on S?"*1 is called a *-Ricci soliton if A in

equation (3.2) is constant.

Theorem 3.3. Consider a a-paraSasakian manifold S* 1 with *-Ricci Soliton (g, W, A), then S*"1 is a

quasi-Einstein manifold and expression for the Ricci tensor is given as
: A A
Ric (X1, Xz) = — (E +a* (2m - 1))g (X1, X2) + (E - a2)n (X1)7n(X2),

where X1 and X are vector fields on S*"+1,

(3.28)

Proof. Consider a a-paraSasakian manifold S?”*! admitting a *-Ricci Soliton (g, W, ). With the

help of Proposition 3.1, equation (3.2) can be written as
(Ewg) (X1, X2) = 2Ric (X1, Xp) + {207 (2m = 1) + 24 - o*} g (X1, Xa)
+3an (X1) 1 (X2),
covariant differentiation of equation (3.29) in the direction of X3 on §?"*1 gives
(Vxa£wsg) (X1, X2) = 2 (Vx;Ric) (X1, X2) + 3’ (X1, 9X3) 1 (Xa)
+30°g (X2, 0X3) 1 (X1) -
According to [32], we have

(EwVxs8 = Vxaws = Viw,x8) (X1, X3) = —g ((EwV) (X3,X1) , X2)
-8 ( (EWV) (X3/ XZ) /Xl) .

By the parallelism of pseudo-Riemannian metric the above equation gives
(Vx;Ewg) (X1, X2) = g ((EwV) (X3, X1), X2) + g ((EwV) (X3, X2) , X1).-
Now, using equation (3.30) in (3.31), we have
g ((EwV) (X5, X1),X2) + 8 ((EwV) (X3, X2), X1) = 2 (Vx,Ric) (X1, X>)
+3a°g (X1, 9X3) 1 (X2) +3a’g (X2, pX3) 1 (X1) -
By a straight forward combinatorial combination equation gives
g ((EwV) (X1, X2),X3) = — (Vx,Ric) (X3, X2) + (Vx,Ric) (Xp, X3)
+ (Vx,Ric) (X3, X1) —3a’g (X1, 9X3) 1 (X2) — 3a°g (X0, X3) 1 (X4) .
Now, replacing X, — & and using equation (2.1),
(EwV) (X1, &) = —2aQpX; —2a° (Zm - g) ©X1.
Further, covariant differentiation of equation (3.33) in the direction of X, on §2m+l gives
(Vx, (EwV)) (X1,€) = = (EwV) (X1, a0X2) = 2a (Vx,Q) X1 + 2071 (X1) QX>

3
+ 20(4 (2m - E)T] (X1) Xo + 30(4g (Xl, Xz) é.

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)
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Now, using this equation in the given commutation formula [32]
(EwR) (X1, X2) X3 = (Vx, (EwV)) (X2, X3) = (Vx, (EwV)) (X1, X3) .
Replacing X3 — &,
(EwR) (X1, X2) & = (EwV) (X1, a9X3) — (EwV) (X2, a9pX1) — 2 (Vx,Q) X2

+ 20 (%) QX1 + 20 (2m = 3] (X2) X +20 (Vi Q) s

- 201 (X;) QXo - 2a* (Zm —~ g) n(X1) Xo. (3.34)
Replacing X, — & and using equation (2.1), (2.20)
(EwR) (X1, €) & = 40> {QX1 + (2m = 1) &Ky + o7 (X1) &} (3.35)
Taking Lie-derivative of (2.10) along W and using equation (2.9), (2.8) and (2.10)
(EwR) (X1,&) & = —a’g (X1, £wE) & + 2071 (Ewé) X1 + &® (Ewn) (X1) &.

Now with the help of Proposition 3.2 and equation (3.35), (3.12) and (3.13), we get
A A
Ric (X1, X;) = — (E + a? (2m — 1))g (X1, Xo) + (E - az)q (X1) 1 (X2), (3.36)

where X; and X; are vector fields on $?"*! and S?"*1 is quasi Einstein manifold, which is the
q

required result. o

Proof of Theorem 1.2. Consider a a-paraSasakian manifold S*"*! with *-Ricci Soliton (g, W, A).
With the help of equation (3.36), equation (3.29) reduces to

(Ewg) (X1, X2) = Ag (X1, X2) + An (X1) n(Xz2). (3.37)
Taking covariant differentiation of equation (3.36) along X3 on $*"*! and using equation (2.5), we
get
(VxRic) (X1, Xs) = (5 —?) lag (X1,0%3) 1 (X2) +ag (Xa,9Xs) 1 (X2)),
with the help of above equation, equation (3.32) reduces to
(EwV) (X1, X2) = AafpXan (X2) + @Xon (X1)} . (3.38)
Covariant differentiation of equation (3.38) in the direction of X3 on $?"*1 and equation (2.5) gives
(Vx,EwV) (X1, X2) = Aa’g (X1, 9X3) 9Xo + AaPg (X2, 9X3) X
=270’ (X1) 0 (X2) X5 + Aa’n (X1) g (X3, X2) & + Aa’n (X2) g (X3, X1) &
By using the above equation in equation (3.34), we get
(EwR) (X3, X1) Xo =2Aa’g (X1, pX3) X3 + Aa’g (Xa, 9X3) pX1 — AaPg (Xa, 9X1) X3

+ 1071 (X1) 8 (X3, X2) & = Ao (X3) g (X1, X2) €
+2Aa%n (Xo) n (X3) X1 = 2Aa?n (X1) n(X2) X3.
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Now, contraction of the above equation over X3 gives

(EwRic) (X1, X2) = 2Aa?g (X1, Xo) —2Aa? 2m 4+ 1) n(X1) n (X2) .

Lie-differentiating equation (3.36) in the direction of W and using equation (3.37), we get

(EwRic) (X1, Xa) = (§ = a2) Euem) (60 1 () + (5 = ) ) (%) 1 (%)

A A
-A (E +a? (2m - 1))g (X1,X0) - A (5 +a? (2m - 1))’7 (X1)n(X2)
Now, comparison of equation (3.39) with (3.40) and use of equation (3.37) gives
A A
(5 =) (Ewm) (X0)m (X2) + (5 =2 (Ew) (X2) 1 (X2)
A 2 A 2

— A(E +a? (2m + 1))g (X1,X2) + /\(E —a® (2m +3))n (X1) 1 (X2).

Replacing X; — ¢?X; and X» — ¢X; in the above equation then we have

A (% Fa@m+1))dn (X1, %) = 0.

Since dn is non-vanishing everywhere on §2m+1
A
A(£+a(zm+1)) —0.

Then, we have either A = 0or A = -2 (2m + 1) a?.

(3.39)

(3.40)

(3.41)

(3.42)

Case I : If A = 0, then equation (3.37) gives W is Killing vector field and equation (3.36) gives

§?m+1 i quasi-Einstein i.e.

Ric (X1, Xp) = —a? (2m —1) g (X1, X2) — a®n (X1) n(X2) .
CaseIL: If A = —2(2m + 1) a?, then using this value of A in (3.41), we have

(5= ) ) (1) 1 (32) + (5 =) (Enem) (x2) 1 (1)
= —4Aa® (m+1)n(X1) n(Xa).
Replacing X, — & and X1 — ¢Xj, we have
(5 =) (ewm) (9x1) = 0.
Since A = =2 (2m + 1) a? then A # 2a?, which implies
(Ewn) (9X1) = 0.

Further using A = —2 (2m + 1) 2 in equation (3.36), we have

Ric (X1, Xp) = 2a°g (X1, X2) —2a% (m+1) 1 (X1) n(X2) .
Replacing X1 — ¢X; in equation (3.43), we have

(Ewn) (X1) = =2(2m +1) a’n (X4).

(3.43)

(3.44)

(3.45)
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Also,
£wE =2(2m+1) a?E.
Moreover, operating d in equation (3.45). Note that d commutes with £y, we have
(Ewdn) (X1, X2) = =2 (2m + 1) &°g (X1, X2) - (3.46)

Next, the Lie-derivative of equation dn (X1, X2) = ag (¢Xi, X») along the vector field W and the

use of equation (3.37) gives
(Ewdn) (X1,X2) = -2 (2m + 1) a’g (X1, X2) + ag (Ewe) X1, X2), (3.47)

comparing the above equation with (3.46), we get (Ew¢) = 0. Thus, from case I and case II, we get

either the soliton vector field W is killing or leaves ¢ invariant, which is the required result. m]

Example 3.1. Consider a paraSasakian manifold S*™*+ of dimension (2m + 1), m > 1 and if the paraholo-
morphic sectional curvature does not depend on the paraholomorphic section at a point then the curvature

tensor is given by
R (X1,X2) X3 21%3 {8 (X2, X3) X1 — g (X1, X3) Xo} + I%l {n(X1)n (X3) X2
-1 (X2) 1 (X3) X1 -8 (X2, X3) n(X1) £+ 8 (X1, X3) n(X2) &
+ 8 (X2, 9X3) X1 — g (X1, 9X3) X2 + 28 (X1, X2) X3} (3.48)

where X1, Xp and X3 are vector fields on S*" 1,

Next, contraction of the above equation over X; gives

Rie (%1,5) =27V tg 06,3001 - KX e xn 0) + g 0x0 %)) 49)

As we know, a paraSasakian manifold with constant paraholomorphic sectional curvature is a paraSasakian
space form, and we can find the expression of *-Ricci tensor on such space form.

Now, taking S*" 1 with constant paraholomorphic sectional curvature k and using equation (3.49) in
equation (3.3), we get

Ric" (X1, Xa) ={(m + 1) k+ (m =2)} g (¢X1,9X2), (3.50)

for any vector fields Xy and X, on S*™+1. Here, if we choose k = 2= then S*"*1 becomes -Ricci flat.

Again, using equation (3.49) in equation (3.7), we get
Ric" (X1, Xp) ={(m+1)k+ (m-1)}g(X1,X2), (3.51)

for any vector fields X1, Xo L & on S+ and S*"*1 becomes *-Einstein. Thus, any paraSasakian space
form S+ (k) with {X; L &,i=1---2m} on 8> is +-Einstein.
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4. Armost GRADIENT *-Riccr SorLitons on 27 +1

In this section, firstly we define mathematical operators gradient and Hessian on S*"*1. So,
consider a manifold S?"*! with pseudo-Riemannian metric g and ¢ : $*"*! — R is a smooth
function over S?"*1. Then, the gradient (first order differential operator) V : C! (SZ’”H) —>

r (TSZ’”“) of a function ¢ is given as:

g(Vo(x),X1) = X10(x),

for any vector field X; on $?"*! and Hessian ( covariant derivative of the gradient operator ) of a

function g is given as:
V20 (X1,X2) = X1X20 - (Vx,X2) 0,
for any vector fields X; and X, on §zm+1

Definition 4.1. An almost *-Ricci soliton is known as an almost gradient *-Ricci soliton if W of equation
(3.2) is of gradient type, i.e.. W = grad (%) and satisfies:

(Hess (o) + Ric" - A g) (X1,X2) =0, (4.1)

where X1, Xy and X3 are vector fields on S>" 1 and the Hessian of ¢ is given as: Hess () (X1, X2) :=
8 (VXI &, XZ)'

Proof of Theorem 1.3. Consider a a-paraSasakian manifold S?”*! admitting an almost gradient

*+-Ricci soliton, then equation (4.1) gives
Vx, Do+ QX1 -AX; =0, (4.2)

here Q" is #-Ricci operator and D is gradient operator of metric g. By using the expression of #-Ricci

tensor the above equation reduces to

2 a? 3a?
VXlDQ:QX1+ o (2m—1)+/\—? X1+71](X1)c§ (43)

Covariant differentiation of equation (4.3) in the direction of X, on g2m+1 gives

2
Vx,Vx, Do = (Vx,Q) X1 + Q (Vx, X1) + {az @m-1)+A- %} Vi, X4
3a 302 3a
+(X2d) X1+ —=g (X1, 9X0) £+ =1 (Vi Xa) £+ =11 (X1) X, (4.4)

using differential equations (4.4) and (4.3) in the expression of the curvature tensor given in (2.7),

we get

R (X1,X2) Do = (Vx,Q) X2 — (Vx,Q) X1 + (X34) Xp — (X2A) X3

33XX—3L[3XX£XX 45
+3a’g (Xa, pX1) & 2’7(1)€02+277(2)<P1- (4.5)
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Now, the scalar product of equation (4.5) with £ and the use of equation (2.19) gives

g (R (X1,X2) Dg, &) = ag (QpXa, X1) — ag (QpXy, X2) + (XaA) n(X2)
— (X2A) n (X1) + 3a°g (X2, pX1) . (4.6)

Replacing X, — ¢ in (4.6) and using (2.8) and (2.12), we get
3 (/\ - 0(2@) n(X1) =X ()\ - azp),
writing the above equation as
E(A—azg)n = d(/\—azp),
operating exterior differentiation operator d in the above equation and using d> = 0, we have
(&(A-a%0))dn =d(£(A-a%0))n, (4.7)
Also, wedge product of equation (4.7) with one-form n and the use of n A1 = 0 gives
(cf ()\ - azg)) dnan=0.
As 11 Adn # 0 everywhere on $?"1, we have & (/\ - azg) = 0. Which implies
A— a2p =, cisconstant. (4.8)

Setting X; = & in equation (4.5), then the scalar product of resulting equation with X; and the use
of (2.19) and (2.20) gives

g (R (& X2) Do, X1) =g (QpX2, X1) + (EA) g (X1, X2) — (X2A) 1 (X1)
+a? (Zm - %)g (pXo,X7),
using equation (2.8) in the above equation, we have
a? (£0) g (X1, X2) — a1 (X1) (X20) =8 (QpXa, X1) + (1) g (X1, X2) = (X24) 1 (X1)
+a? (2m - %)g (X2, X1),
using equation (4.8) and (2.18) in the above equation, we have
aQeXy + a’ (Zm - g)qul =0.

Replacing X1 — ¢X; and the use of equation (2.12) gives

2
Ric (X1, Xa) = —a(2m— 2 ) g (X1, Xa) — 22 (31) 1 (Xa), (4.9)
2 2

which implies, §2m+l jg quasi-Finstein. By using equation (4.8) and (4.9) in (4.3), we have
Vx,DA = a?AX],

for any vector field X; on S2"+1, m
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4.1. Gradient *-Ricci solitons on S?”*1. An almost gradient *-Ricci soliton on §?"*! is called a

gradient *-Ricci soliton if A in equation (4.1) is constant.

Theorem 4.1. Consider a a-paraSasakian manifold S>" 1 with gradient *-Ricci soliton, then S*"*1 is
+-Einstein manifold.

Proof. Consider a a-paraSasakian manifold $*"*! with gradient *-Ricci soliton. By using equation

(4.2) in the definition of curvature tensor R given in (2.7), we get
R (X1,X2) Do = (Vx,Q") X1 — (Vx,Q") Xo. (4.10)
Replacing X1 — & and X, — X in (4.10), we get
R (&,X1) Do = (Vx, Q") &= (VeQY) X;. (4.11)
Also, taking scalar product of equation (4.10) with &, we get

2] (R (5, Xl) Do, 5) =8 ((VX1Q*) <, 5) -8 ((VEQ*) X1, 5) . (4.12)

By using Proposition 3.1, we get

g (R(& X1)Dg, &) = 0. (4.13)

Now, equation (3.5) and (4.13) gives
X10 = X1 (0).
Therefore, either o = 0 or g is constant. Thus, equation (4.2) gives
Ric" (X1, X2) = Ag (X3, X2),

which is the definition of *-Einstein manifold. m]

5. CoNcCLUSION

In differential geometry as well as in physics, Ricci soliton plays a very important role as they are
the generalized notion of an Einstein metric on Riemannian and pseudo-Riemannian manifolds.
Similar to Ricci soliton, a new notion have been defined by replacing Ricci tensor in soliton equation
to *-Ricci tensor, which is *-Ricci soliton. In physics literature, *-Ricci solitons were first introduced
as *-Einstein metric on Riemannian and pseudo-Riemannian manifolds.

As it is known, the concept of *-Ricci tensor has been defined only on complex and contact
manifolds. But in the literature, some categorizations are also available in terms of *-Ricci tensor.
Over the last few years, several authors have been studied *-Ricci soliton on different ambient
spaces. So, we study #-Ricci soliton on paracontact manifold, particularly, on a-paraSasakian
manifold. Also, the results we have found are playing a significant role in differential geometry

and in mathematical physics.
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