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Abstract. In this paper, we introduce the theory of possibility Fermatean interval valued fuzzy soft (PFIVFS) set and its

application to real life problems. The PFIVFS set is a generalization of Pythagorean fuzzy soft and soft set. We define

some operations consist of complement, union, intersection, AND and OR. Notably, we show DeMorgan’s laws and

associative laws and distributive laws are valid in PFIVFS set theory. We discuss the need to buy a laptop and find

several stages for consumer goes through before purchasing a product. We propose an algorithm to solve the decision

making problem based on soft set method. To compare PFIVFS set and Fermatean interval valued fuzzy soft (FIVFS) set

for dealing with decision making problems, we find a similarity measure. Finally, an illustrative example is discussed

to prove that they can be effectively used to solve problems with uncertainties.

1. Introduction

In most real problems, uncertainty can be seen everywhere. In order to cope with the

uncertainties, many uncertain theories are put forward such as fuzzy set [1], intuitionistic fuzzy

set [2], Xiao et al initiated the concept of interval valued fuzzy soft sets [3] and Pythagorean fuzzy

set [4]. Zadeh was introduced by fuzzy set suggests that decision makers are to be solving uncertain

problems by considering membership degree. After, the concept of intuitionistic fuzzy set is
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introduced by Atanassov and is characterized by a degree of membership and non-membership

satisfying the condition that the sum of its membership degree and non membership degree is not

exceeding unity [2]. However, we may interact a problem in decision making events where the

sum of the degree of membership and non-membership of a particular attribute is exceeding unity.

So Yager was introduced by the concept of Pythagorean fuzzy sets characterized by the condition

that the squares of sum of its degree of membership and non membership are not exceeding unity.

In decision making problems, sometimes squares of sum of its degree of membership and non

membership are exceeding unity. So Senapati et al. introduced by Fermatean fuzzy set [5]. It has

been to extend the intuitionistic fuzzy sets and Pythagorean fuzzy sets and its characterized by the

condition that the cubes of sum of its degree of membership and non membership is not exceeding

unity.

The theory of soft sets was proposed by Molodtsov [6]. It is a tool of parameterization for coping

with uncertainties. In comparison with other uncertain theories, soft sets more accurately reflect

the objectivity and complexity of decision making during actual situations. It has been a great

achievement both in theories and applications. Moreover, the combination of soft sets with other

mathematical models is also a critical research area. For example, Maji et al. proposed the concept

of fuzzy soft set [7] and intuitionistic fuzzy soft set [8]. These two theories are applied to solve

various decision making problems. Alkhazaleh et al [9] defined the concept of possibility fuzzy

soft sets. In recent years, Peng et al [10] has extended fuzzy soft set to Pythagorean fuzzy soft set.

Also, Fermatean fuzzy soft set is a generalization of the Pythagorean fuzzy soft set. In general, the

possibility degree of belongingness of the elements should be considered in multi attribute decision

making problems. The purpose of this paper is to extend the concept of possibility Pythagorean

interval valued soft set to parameterization of the possibility Fermatean interval valued fuzzy set.

Recently, many authors discussed the extension of fuzzy logic such as [11–15].

The paper is organized into seven sections as follows. Section 1 is called an introduction. Section

2 brief descriptions of Pythagorean interval valued soft set and Fermatean interval valued soft set

information are given. Section 3 discuss about for some operations for PFIVFS set. Section 4 discuss

method for finding similarity measure under PFIVFS set set. Section 5 talks trough an application

of PFIVFS set and FIVFS set information, an algorithm with a numerical examples. Section 6 deals

with a comparison of the PFIVFS set and FIVFS set approaches. Finally, the conclusion is provided

in Section 7. Throughout this paper, χA(u) and ψA(u) represent the degree of membership and

degree of non-membership of Fermatean fuzzy set A respectively, satisfying the condition that

χA(u) +ψA(u) � 1 and χ2
A(u) +ψ2

A(u) � 1, but χ3
A(u) +ψ3

A(u) ≤ 1.

2. Preliminaries

In this section, we discuss some preliminary definition which are useful for this paper.

Definition 2.1. [4, 15] Let U be a non-empty set of the universe, Pythagorean fuzzy set (PFS) A in
U is an object having the following form : A = {u,χA(u),ψA(u)|u ∈ U}, where χA(u) and ψA(u)
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represent the membership grade and non-membership grade of A respectively. Consider the mapping
χA : U → [0, 1], ψA : U → [0, 1] and 0 ≤ (χA(u))2 + (ψA(u))2

≤ 1. The indeterminacy grade is

determined as πA(u) =
[√

1− (χA(u))2 − (ψA(u))2
]
. Since A = 〈χA,ψA〉 is called a Pythagorean fuzzy

number(PFN).

Definition 2.2. [12–14] Let U be a non-empty set of the universe, Pythagorean interval valued fuzzy
set (PIVFS) A in U is an object having the following form : Â = {u, χ̂A(u), ψ̂A(u)|u ∈ U}, where
χ̂A(u) = [χ−A(u),χ

+
A (u)] and ψ̂A(u) = [ψ−A(u),ψ

+
A (u)] represent the degree of membership and degree

of non-membership of A respectively. Consider the mapping χ̂A : U → [0, 1], ψ̂A : U → [0, 1] and
0 ≤ (χ̂A(u))2 + (ψ̂A(u))2

≤ 1 means that 0 ≤ (χ+A (u))
2 + (ψ+

A (u))
2
≤ 1. The degree of indeterminacy is

determined as π̂A(u) = [π−A(u),π
+
A (u)] =

[√
1− (χ+A (u))

2 − (ψ+
A (u))

2,
√

1− (χ−A(u))
2 − (ψ−A(u))

2
]
.

Since A = 〈[χ−A,χ+A ], [ψ
−

A,ψ+
A ]〉 is called a Pythagorean interval valued fuzzy number(PIVFN).

Definition 2.3. [12] For any three PIVFNs Â1, Â2 and Â3 over (U, E). Then the following properties are
holds:

(1) Â1
c
= (ψ̂A1 , χ̂A1)

(2) Â2 d Â3 =
(
max(χ̂A2 , χ̂A3), min(ψ̂A2 , ψ̂A3)

)
(3) Â2 e Â3 =

(
min(χ̂A2 , χ̂A3), max(ψ̂A2 , ψ̂A3)

)
(4) Â2 ≥ Â3 iff χ̂A2 ≥ χ̂A3 and ψ̂A2 ≤ ψ̂A3

(5) Â2 = Â3 iff χ̂A2 = χ̂A3 and ψ̂A2 = ψ̂A3 .

Definition 2.4. [5] Let U be a non-empty set of the universe, Fermatean fuzzy set (FFS) A in U is an object
having the following form : A = {u,χA(u),ψA(u)|u ∈ U}, where χA(u) and ψA(u) represent the degree
of membership and degree of non-membership of A respectively. Consider the mapping χA : U → [0, 1],
ψA : U → [0, 1] and 0 ≤ (χA(u))3 + (ψA(u))3

≤ 1. The degree of indeterminacy is determined as

πA(u) =
[

3
√

1− (χA(u))3 − (ψA(u))3
]
. Since A = 〈χA,ψA〉 is called a Fermatean fuzzy number(FFN).

Definition 2.5. Let U be a non-empty set of the universe, Fermatean interval valued fuzzy set (FIVFS)
A in U is an object having the following form : Â = {u, χ̂A(u), ψ̂A(u)|u ∈ U}, where χ̂A(u) =

[χ−A(u),χ
+
A (u)] and ψ̂A(u) = [ψ−A(u),ψ

+
A (u)] represent the degree of membership and degree of non-

membership of A respectively. Consider the mapping χ̂A : U → [0, 1], ψ̂A : U → [0, 1] and 0 ≤

(χ̂A(u))3 + (ψ̂A(u))3
≤ 1 means that 0 ≤ (χ+A (u))

3 + (ψ+
A (u))

3
≤ 1. The degree of indeterminacy is

determined as π̂A(u) = [π−A(u),π
+
A (u)] =

[
3
√

1− (χ+A (u))
3 − (ψ+

A (u))
3, 3

√
1− (χ−A(u))

3 − (ψ−A(u))
3
]
.

Since A = 〈[χ−A,χ+A ], [ψ
−

A,ψ+
A ]〉 is called a Fermatean interval valued fuzzy number(FIVFN).

Definition 2.6. [11] Let U be a non-empty set of the universe and E be a set of parameter. The pair (P̂ , A)

is called an interval valued fuzzy soft (IVFS) set on U if A v E and P̂ : A→ P̂(U), where P̂(U) is the
set of all interval valued fuzzy subsets of U.

Definition 2.7. [9] Let U be a non-empty set of the universe and E be a set of parameter. The pair (U, E) is
a soft universe. Consider the mapping P : E→P(U) and χ be a fuzzy subset of E, ie. χ : E→P(U).
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Let Pχ : E → P(U) ×P(U) be a function defined as Pχ(e) = (P(e)(u),χ(e)(u)),∀u ∈ U. Then
Pχ is called a possibility fuzzy soft (PFS) set on (U, E).

3. Operations for PFIVFS set

Definition 3.1. Let U be a non-empty set of the universe and E be a set of parameter. The pair (U, E) is
called a soft universe. Suppose that P̂ : E→ ̂PP(U), and p̂ is a Fermatean interval valued fuzzy subset
of E. That is p̂ : E→ ̂PP(U), where ̂PP(U) denotes the collection of all Fermatean interval valued fuzzy
subsets of U. If P̂p : E→ ̂PP(U) × ̂PP(U) is a function defined as P̂p(e) = (P̂(e)(u), p̂(e)(u)), u ∈
U, then P̂p is a Possibility Fermatean interval valued fuzzy soft (PFIVFS) set on (U, E). For each

parameter e, P̂p(e) =
{〈

u, 〈χ
P̂(e)(u),ψP̂(e)(u)〉, 〈χp̂(e)(u),ψp̂(e)(u)〉

〉
, u ∈ U

}
Example 3.1. Let U = {u1, u2, u3} be a of three motorbike under consideration and parameters E =

{e1 = Best design, e2 = Maximum durable, e3 = Maximum mileage, e4 = Best price}. Suppose that
P̂p : E→ ̂PP(U) × ̂PP(U) is given by

P̂p(e1) =


x1

〈([0.55,0.75],[0.6,0.75]),([0.75,0.8],[0.2,0.7])〉
x2

〈([0.75,0.85],[0.55,0.6]),([0.65,0.8],[0.3,0.65])〉
x3

〈([0.5,0.7],[0.55,0.75]),([0.65,0.7],[0.6,0.8])〉

 ; P̂p(e2) =


x1

〈([0.8,0.95],[0.35,0.45]),([0.5,0.6],[0.35,0.8])〉
x2

〈([0.75,0.85],[0.55,0.65]),([0.55,0.75],[0.45,0.75])〉
x3

〈([0.85,0.9],[0.45,0.6]),([0.65,0.75],[0.55,0.7])〉


P̂p(e3) =


x1

〈([0.65,0.7],[0.6,0.8]),([0.55,0.85],[0.25,0.55])〉
x2

〈([0.8,0.85],[0.55,0.7]),([0.45,0.85],[0.35,0.7])〉
x3

〈([0.6,0.8],[0.55,0.65]),([0.55,0.75],[0.7,0.75])〉


Then, P̂p is a PFIVFS.

Definition 3.2. Let U be a non-empty set of the universe and E be a set of parameter. Suppose that P̂p and
Q̂q are two PFIVFS sets on (U, E). Now Q̂q is a possibility Fermatean interval valued fuzzy soft subset of
P̂p (denoted by Q̂q v P̂p) if and only if

(1) Q̂(e)(u) v P̂(e)(u) if χ
P̂(e)(u) ≥ χQ̂(e)(u), ψ

P̂(e)(u) ≤ ψQ̂(e)(u),
(2) q̂(e)(u) v p̂(e)(u) if χp̂(e)(u) ≥ χq̂(e)(u), ψp̂(e)(u) ≤ ψq̂(e)(u), ∀e ∈ E.

Example 3.2. Consider the PFIVFS set P̂p over (U, E) in Example 3.1. Let Q̂q be another PFIVFS set
over (U, E) is defined as:

Q̂q(e1) =


x1

〈([0.5,0.65],[0.65,0.8]), ([0.7,0.75],[0.4,0.75])〉
x2

〈([0.6,0.75],[0.7,0.75]), ([0.6,0.65],[0.5,0.8])〉
x3

〈([0.45,0.6],[0.65,0.8]), ([0.55,0.6],[0.65,0.85])〉

 ; Q̂q(e2) =


x1

〈([0.6,0.9],[0.45,0.55]),([0.45,0.55],[0.65,0.85])〉
x2

〈([0.65,0.75],[0.65,0.75]),([0.5,0.65],[0.5,0.8])〉
x3

〈([0.8,0.85],[0.55,0.65]),([0.35,0.45],[0.6,0.9])〉


Q̂q(e3) =


x1

〈([0.45,0.55],[0.7,0.85]), ([0.5,0.65],[0.65,0.8])〉
x2

〈([0.7,0.75],[0.6,0.75]), ([0.25,0.45],[0.75,0.9])〉
x3

〈([0.55,0.65],[0.75,0.85]), ([0.35,0.55],[0.8,0.9])〉


Then Q̂q v P̂p
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Definition 3.3. Let U be a non-empty set of the universe and E be a set of parameter. Suppose that P̂p

and Q̂q are two PFIVFS sets on (U, E). Now P̂p and Q̂q are possibility Fermatean interval valued fuzzy
soft set equal(denoted by P̂p = Q̂q) if and only if

(1) P̂p v Q̂q

(2) P̂p w Q̂q.

Definition 3.4. Let U be a non-empty set of the universe and E be a set of parameter. Let P̂p be a PFIVFS
set on (U, E). The complement of P̂p is denoted by P̂c

p and is defined by P̂c
p = 〈P̂c(e)(u), p̂c(e)(u)〉,

where P̂c(e)(u) = 〈ψ
P̂(e)(u),χP̂(e)(u)〉, p̂c(e)(u) = 〈ψp̂(e)(u),χp̂(e)(u)〉.

It is true that (P̂c
p)

c = P̂p

Definition 3.5. Let U be a non-empty set of the universe and E be a set of parameter. Let P̂p and
Q̂q be two PFIVFS sets on (U, E). The union and intersection of P̂p and Q̂q over (U, E) are denoted
by P̂p d Q̂q and P̂p e Q̂q respectively and are defined by B̂ j : E → ̂PP(U) × ̂PP(U), Âi : E →

̂PP(U) × ̂PP(U) such that B̂ j(e)(u) = (B̂(e)(u), ĵ(e)(u)), Âi(e)(u) = (Â(e)(u), î(e)(u)), where
B̂(e)(u) = P̂(e)(u) d Q̂(e)(u), ĵ(e)(u) = p̂(e)(u) d q̂(e)(u), Â(e)(u) = P̂(e)(u) e Q̂(e)(u) and
î(e)(u) = p̂(e)(u)e q̂(e)(u), for all x ∈ U.

Example 3.3. Let P̂p and Q̂q be the two PFIVFS sets on (U, E) where U = {x1, x2, x3, x4} and E =

{e1, e2, e3}, we define

P̂p(e1) =



x1
〈([0.5,0.75],[0.6,0.75]), ([0.75,0.8],[0.2,0.7])〉

x2
〈([0.75,0.8],[0.65,0.75]), ([0.65,0.8],[0.3,0.65])〉

x3
〈([0.65,0.7],[0.8,0.85]), ([0.65,0.7],[0.6,0.8])〉

x4
〈([0.55,0.8],[0.5,0.75]), ([0.55,0.75],[0.3,0.7])〉


; P̂p(e2) =



x1
〈([0.55,0.9],[0.5,0.6]),([0.35,0.65],[0.45,0.85])〉

x2
〈([0.7,0.75],[0.6,0.75]),([0.45,0.85],[0.45,0.65])〉

x3
〈([0.8,0.85],[0.35,0.65]),([0.55,0.6],[0.55,0.9])〉

x4
〈([0.55,0.9],[0.5,0.6]),([0.35,0.65],[0.45,0.85])〉


;

P̂p(e3) =



x1
〈([0.25,0.75],[0.7,0.8]), ([0.45,0.85],[0.45,0.55])〉

x2
〈([0.4,0.7],[0.65,0.85]),([0.5,0.8],[0.65,0.7])〉

x3
〈([0.65,0.8],[0.6,0.75]),([0.65,0.7],[0.7,0.85])〉

x4
〈([0.25,0.75],[0.7,0.8]), ([0.45,0.85],[0.45,0.55])〉


;

Q̂q(e1) =



x1
〈([0.75,0.9],[0.4,0.55]), ([0.4,0.55],[0.6,0.85])〉

x2
〈([0.65,0.8],[0.5,0.75]), ([0.5,0.7],[0.4,0.8])〉

x3
〈([0.6,0.9],[0.3,0.6]),([0.4,0.75],[0.6,0.7])〉

x3
〈([0.75,0.9],[0.4,0.6]),([0.6,0.7],[0.5,0.85])〉


; Q̂q(e2) =



x1
〈([0.65,0.85],[0.5,0.6]), ([0.25,0.35],[0.5,0.95])〉

x2
〈([0.75,0.85],[0.6,0.7]),([0.55,0.6],[0.55,0.85])〉

x3
〈([0.85,0.9],[0.35,0.55]),([0.25,0.35],[0.7,0.95])〉

x3
〈([0.65,0.85],[0.5,0.6]),([0.25,0.35],[0.5,0.95])〉


;
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Q̂q(e3) =



x1
〈([0.55,0.65],[0.55,0.85]), ([0.45,0.6],[0.5,0.85])〉

x2
〈([0.75,0.8],[0.5,0.75]),([0.25,0.7],[0.75,0.85])〉

x3
〈([0.35,0.75],[0.65,0.8]),([0.55,0.65],[0.5,0.8])〉

x3
〈([0.55,0.65],[0.55,0.85]),([0.45,0.6],[0.5,0.85])〉


;

Then, (P̂p d Q̂q) and (P̂p e Q̂q) is calculated below.

(P̂p d Q̂q)(e1) =



x1
〈([0.75,0.9],[0.4,0.55]),([0.75,0.8],[0.2,0.7])〉

x2
〈([0.65,0.8],[0.5,0.75]),([0.65,0.8],[0.3,0.65])〉

x3
〈([0.6,0.7],[0.3,0.6]),([0.65,0.75],[0.6,0.7])〉

x4
〈([0.55,0.8],[0.4,0.6]),([0.6,0.75],[0.3,0.7])〉


; (P̂p d Q̂q)(e2) =



x1
〈([0.65,0.9],[0.5,0.6]),([0.35,0.65],[0.45,0.85])〉

x2
〈([0.7,0.75],[0.6,0.7]),([0.55,0.85],[0.45,0.65])〉

x3
〈([0.8,0.85],[0.35,0.55]),([0.55,0.6],[0.55,0.9])〉

x4
〈([0.55,0.85],[0.5,0.6]),([0.35,0.65],[0.45,0.85])〉


;

(P̂pd Q̂q)(e3) =



x1
〈([0.55,0.75],[0.5,0.8]), ([0.45,0.85],[0.45,0.55])〉

x2
〈([0.4,0.7],[0.5,0.75]),([0.5,0.8],[0.65,0.7])〉

x3
〈([0.35,0.75],[0.6,0.75]),([0.65,0.7],[0.5,0.8])〉

x4
〈([0.25,0.65],[0.55,0.8]), ([0.45,0.85],[0.45,0.55])〉


; (P̂pe Q̂q)(e1) =



x1
〈([0.5,0.75],[0.6,0.75]), ([0.4,0.55],[0.6,0.85])〉

x2
〈([0.65,0.8],[0.65,0.75]), ([0.5,0.7],[0.4,0.8])〉

x3
〈([0.6,0.7],[0.8,0.85]), ([0.4,0.7],[0.6,0.8])〉

x4
〈([0.55,0.8],[0.5,0.75]), ([0.55,0.7],[0.5,0.85])〉


;

(P̂pe Q̂q)(e2) =



x1
〈([0.55,0.85],[0.5,0.6]),([0.25,0.35],[0.5,0.95])〉

x2
〈([0.7,0.75],[0.6,0.75]),([0.45,0.6],[0.55,0.85])〉

x3
〈([0.8,0.85],[0.35,0.65]),([0.25,0.35],[0.7,0.95])〉

x4
〈([0.55,0.85],[0.5,0.6]),([0.25,0.35],[0.5,0.95])〉


; (P̂pe Q̂q)(e3) =



x1
〈([0.25,0.65],[0.7,0.85]), ([0.45,0.6],[0.5,0.85])〉

x2
〈([0.4,0.7],[0.65,0.85]),([0.25,0.7],[0.75,0.85])〉

x3
〈([0.35,0.75],[0.65,0.8]),([0.55,0.65],[0.7,0.85])〉

x4
〈([0.25,0.65],[0.7,0.85]), ([0.45,0.6],[0.5,0.85])〉


;

Definition 3.6. A PFIVFS set ∅̂θ(e)(u) = 〈̂∅(e)(u), θ̂(e)(u)〉 is said to be a null PFIVFS set ∅̂θ : E →

̂PP(U) × ̂PP(U), where ∅̂(e)(u) = ([0, 0], [1, 1]) and θ̂(e)(u) = ([0, 0], [1, 1]), ∀x ∈ U.

Definition 3.7. A PFIVFS set Ω̂Λ(e)(u) = 〈Ω̂(e)(u), Λ̂(e)(u)〉 is said to be absolute PFIVFS set Ω̂Λ :

E→ ̂PP(U) × ̂PP(U), where Ω̂(e)(u) = ([1, 1], [0, 0]) and Λ̂(e)(u) = ([1, 1], [0, 0]), ∀x ∈ U.

Remark 3.1. Let P̂p be a PFIVFS set on (U, E). If P̂p , Ω̂Λ or P̂p , ∅̂θ, then P̂p d P̂c
p , Ω̂Λ and

P̂p e P̂c
p , ∅̂θ.

Theorem 3.1. Let P̂p be a PFIVFS set on (U, E). Then the following properties hold:

(1) P̂p = P̂p d P̂p, P̂p = P̂p e P̂p

(2) P̂p d ∅̂θ = P̂p, P̂p e ∅̂θ = ∅̂θ

(3) P̂p d Ω̂Λ = Ω̂Λ, P̂p e Ω̂Λ = P̂p.

Theorem 3.2. Let P̂p, Q̂q and R̂r are three PFIVFS sets over (U, E), then the following properties hold:

(1) P̂p d Q̂q = Q̂q d P̂p

(2) P̂p e Q̂q = Q̂q e P̂p

(3) P̂p d (Q̂q d R̂r) = (P̂p d Q̂q)d R̂r
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(4) P̂p e (Q̂q e R̂r) = (P̂p e Q̂q)e R̂r

(5) (P̂p d Q̂q)e P̂p = P̂p

(6) (P̂p e Q̂q)d P̂p = P̂p.

Theorem 3.3. Let P̂p and Q̂q are two PFIVFS sets over (U, E), then the following properties are hold:

(1) (P̂p d Q̂q)c = P̂c
p e Q̂c

q

(2) (P̂p e Q̂q)c = P̂c
p d Q̂c

q.

Theorem 3.4. Let P̂p, Q̂q and R̂r are three PFIVFS sets over (U, E), then the following properties are
hold:

(1) P̂p d (Q̂q e R̂r) = (P̂p d Q̂q)e (P̂p d R̂r)

(2) P̂p e (Q̂q d R̂r) = (P̂p e Q̂q)d (P̂p e R̂r).

Definition 3.8. Let (P̂p, X) and (Q̂q, Y) be two PFIVFS sets on (U, E). Then the operations
“(P̂p, X) AND (Q̂q, Y)” is denoted by (P̂p, X)Z (Q̂q, Y) and is defined by (P̂p, X)Z (Q̂q, Y) = (R̂r, X×
Y), where R̂r(x, y) = (R̂(x, y)(u), r̂(x, y)(u)) such that R̂(x, y) = P̂(x) e Q̂(y) and r̂(x, y) = p̂(x) e
q̂(y), for all (x, y) ∈ X ×Y.

Example 3.4. By the Example 3.3, the values of P̂p(e1), P̂p(e2) and Q̂q(e1), Q̂q(e2) are stated above. we
apple to Definition 3.8, we have

R̂r(e1, e1) =



x1
〈([0.5,0.75],[0.6,0.75]), ([0.4,0.55],[0.6,0.85])〉

x2
〈([0.65,0.8],[0.65,0.75]), ([0.5,0.7],[0.4,0.8])〉

x3
〈([0.6,0.7],[0.8,0.85]), ([0.4,0.7],[0.6,0.8])〉

x4
〈([0.55,0.8],[0.5,0.75]), ([0.55,0.7],[0.5,0.85])〉


; R̂r(e1, e2) =



x1
〈([0.5,0.75],[0.5,0.6]),([0.25,0.35],[0.2,0.7])〉

x2
〈([0.75,0.8],[0.6,0.7]),([0.55,0.6],[0.3,0.65])〉

x3
〈([0.65,0.7],[0.35,0.55]),([0.25,0.35],[0.6,0.8])〉

x4
〈([0.55,0.8],[0.5,0.6]),([0.25,0.35],[0.3,0.7])〉


;

R̂r(e2, e1) =



x1
〈([0.55,0.9],[0.4,0.55]),([0.35,0.55],[0.45,0.85])〉

x2
〈([0.65,0.75],[0.5,0.75]),([0.45,0.7],[0.4,0.65])〉

x3
〈([0.6,0.85],[0.3,0.6]),([0.4,0.6],[0.55,0.7])〉

x4
〈([0.55,0.9],[0.4,0.6]),([0.35,0.65],[0.45,0.85])〉


; R̂r(e2, e2) =



x1
〈([0.55,0.85],[0.5,0.6]),([0.25,0.35],[0.5,0.95])〉

x2
〈([0.7,0.75],[0.6,0.75]),([0.45,0.6],[0.55,0.85])〉

x3
〈([0.8,0.85],[0.35,0.65]),([0.25,0.35],[0.7,0.95])〉

x4
〈([0.55,0.85],[0.5,0.6]),([0.25,0.35],[0.5,0.95])〉


;

Definition 3.9. Let (P̂p, X) and (Q̂q, Y) be two PFIVFS sets on (U, E). Then the operations
“(P̂p, X) OR (Q̂q, Y)” is denoted by (P̂p, X)Y (Q̂q, Y) and is defined by (P̂p, X)Y (Q̂q, Y) = (R̂r, X×
Y), where R̂r(x, y) = (R̂(x, y)(u), r̂(x, y)(u)) such that R̂(x, y) = P̂(x) d Q̂(y) and r̂(x, y) = p̂(x) d
q̂(y), for all (x, y) ∈ X ×Y.

Example 3.5. By the Example 3.3, the values of P̂p(e1), P̂p(e2) and Q̂q(e1), Q̂q(e2) are stated above. we
apple to Definition 3.9, we have

R̂r(e1, e1) =



x1
〈([0.75,0.9],[0.4,0.55]),([0.75,0.8],[0.2,0.7])〉

x2
〈([0.65,0.8],[0.5,0.75]),([0.65,0.8],[0.3,0.65])〉

x3
〈([0.6,0.7],[0.3,0.6]),([0.65,0.75],[0.6,0.7])〉

x4
〈([0.55,0.8],[0.4,0.6]),([0.6,0.75],[0.3,0.7])〉


; R̂r(e1, e2) =



x1
〈([0.65,0.85],[0.6,0.75]),([0.75,0.8],[0.5,0.95])〉

x2
〈([0.75,0.85],[0.65,0.75]),([0.65,0.8],[0.55,0.85])〉

x3
〈([0.85,0.9],[0.8,0.85]),([0.65,0.7],[0.7,0.95])〉

x4
〈([0.65,0.85],[0.5,0.75]),([0.55,0.75],[0.5,0.95])〉


;
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R̂r(e2, e1) =



x1
〈([0.75,0.9],[0.5,0.6]),([0.4,0.65],[0.6,0.85])〉

x2
〈([0.7,0.8],[0.6,0.75]),([0.5,0.85],[0.45,0.8])〉

x3
〈([0.8,0.9],[0.35,0.65]),([0.55,0.75],[0.6,0.9])〉

x4
〈([0.75,0.9],[0.5,0.6]),([0.6,0.7],[0.5,0.85])〉


; R̂r(e2, e2) =



x1
〈([0.65,0.9],[0.5,0.6]),([0.35,0.65],[0.45,0.85])〉

x2
〈([0.7,0.75],[0.6,0.7]),([0.55,0.85],[0.45,0.65])〉

x3
〈([0.8,0.85],[0.35,0.55]),([0.55,0.6],[0.55,0.9])〉

x4
〈([0.55,0.85],[0.5,0.6]),([0.35,0.65],[0.45,0.85])〉


;

Remark 3.2. Let (P̂p, X) and (Q̂q, Y) be two PFIVFS sets on (U, E). For all (x, y) ∈ X × Y, if x , y.
Then (P̂p, X)Y (Q̂q, Y) , (Q̂q, Y)Y (P̂p, X) and (P̂p, X)Z (Q̂q, Y) , (Q̂q, Y)Z (P̂p, X).

Theorem 3.5. Let (P̂p, X) and (Q̂q, Y) be two PFIVFS sets on (U, E). Then
(i) ((P̂p, X)Z (Q̂q, Y))c = (P̂p, X)c Y (Q̂q, Y)c

(ii) ((P̂p, X)Y (Q̂q, Y))c = (P̂p, X)c Z (Q̂q, Y)c.

Proof. (i) Suppose that (P̂p, X)Z (Q̂q, Y) = (R̂r, X×Y). Now, R̂c
r (x, y) = (R̂c(x, y)(u), r̂c(x, y)(u)),

for all (x, y) ∈ X × Y. By Theorem 3.3 and Definition 3.8, R̂c(x, y) = (P̂(x) e Q̂(y))c = P̂c(x) d
Q̂c(y) and r̂c(x, y) = (p̂(x) e q̂(y))c = p̂c(x) d q̂c(y). On the other hand, given that (P̂p, X)c Y

(Q̂q, Y)c = (Λ̂o, X × Y), where Λ̂o(x, y) = (Λ̂(x, y)(u), ô(x, y)(u)) such that Λ̂(x, y) = P̂c(x) d
Q̂c(y) and ô(x, y) = p̂c(x) d q̂c(y) for all (x, y) ∈ X × Y. Thus, R̂c

r = Λ̂o. Hence, ((P̂p, X) Z

(Q̂q, Y))c = (P̂p, X)c Y (Q̂q, Y)c.

(ii) Suppose that (P̂p, X) Y (Q̂q, Y) = (R̂r, X × Y). Now, R̂c
r (x, y) = (R̂c(x, y)(u), r̂c(x, y)(u)), for

all (x, y) ∈ X×Y. By Theorem 3.3 and Definition 3.9, R̂c(x, y) = (P̂(x)d Q̂(y))c = P̂c(x)e Q̂c(y)
and r̂c(x, y) = (p̂(x) d q̂(y))c = p̂c(x) e q̂c(y). On the other hand, given that (P̂p, X)c Z (Q̂q, Y)c =

(Λ̂o, X × Y), where Λ̂o(x, y) = (Λ̂(x, y)(u), ô(x, y)(u)) such that Λ̂(x, y) = P̂c(x) e Q̂c(y) and

ô(x, y) = p̂c(x) e q̂c(y) for all (x, y) ∈ X × Y. Thus, R̂c
r = Λ̂o. Hence, ((P̂p, X) Y (Q̂q, Y))c =

(P̂p, X)c Z (Q̂q, Y)c. �

4. Similarity measure between two PFIVFS sets

In this section, we discuss similarity measure between two PFIVFS sets.

Definition 4.1. Let U be a non-empty set of the universe and E be a set of parameter. Suppose that P̂p

and Q̂q are two PFIVFS sets on (U, E). Then the similarity measure between two PFIVFS sets P̂p and
Q̂q is denoted by Sim(P̂p, Q̂q) and is defined as:

Sim(P̂p, Q̂q) =
[
Sim(P−

p , Q−q ), Sim(P+
p , Q+

q )
]

=
[
(Υ(P−, Q−) ·Ψ(p−, q−)), (Υ(P+, Q+) ·Ψ(p+, q+))

]
such that Υ(P̂ , Q̂) =

[
Υ(P−, Q−), Υ(P+, Q+)

]
=Γ(P−(e)(u),Q−(e)(u)) + ∆(P−(e)(u),Q−(e)(u))

2 , Γ(P+(e)(u),Q+(e)(u)) + ∆(P+(e)(u),Q+(e)(u))
2

 and
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Ψ(p̂, q̂) =
[
Ψ(p−, q−), Ψ(p+, q+)

]
=


1−

m∑
j=1

|δ−j − κ
−

j |

m∑
j=1

|δ−j + κ−j |

, 1−

m∑
j=1

|δ+j − κ
+
j |

m∑
j=1

|δ+j + κ+j |


.

since, m = |E|, where
[
Γ(P−(e)(u), Q−(e)(u)), Γ(P+(e)(u), Q+(e)(u))

]
=



m∑
j=1

(
χ3/2−

P(e j)
(u) · χ3/2−

Q(e j)
(u)

)
m∑

j=1

 1−
3

√(
(1− χ3−

P(e j)
(u)) · (1− χ3−

Q(e j)
(u))

)3/2


,

m∑
j=1

(
χ3/2+

P(e j)
(u) · χ3/2+

Q(e j)
(u)

)
m∑

j=1

 1−
3

√(
(1− χ3+

P(e j)
(u)) · (1− χ3+

Q(e j)
(u))

)3/2



and

[
(∆(P−(e)(u), Q−(e)(u))) , (∆(P+(e)(u), Q+(e)(u)))

]
=

3

√√√√√√√√√√√√√√√√√√1−

m∑
j=1

∣∣∣∣ψ3−
P(e j)

(u) − ψ3−
Q(e j)

(u)
∣∣∣∣

m∑
j=1

1 +
(
ψ3−

P(e j)
(u) · ψ3−

Q(e j)
(u)

) , 3

√√√√√√√√√√√√√√√√√√1−

m∑
j=1

∣∣∣∣ψ3+
P(e j)

(u) − ψ3+
Q(e j)

(u)
∣∣∣∣

m∑
j=1

1 +
(
ψ3+

P(e j)
(u) · ψ3+

Q(e j)
(u)

)


and δ−j =
χ3−

p(ej)
(u)

χ3−
p(ej)

(u) + ψ3−
p(ej)

(u)
, δ+j =

χ3+
p(ej)

(u)

χ3+
p(ej)

(u) + ψ3+
p(ej)

(u)
and

κ−j =
χ3−

q(ej)
(u)

χ3−
q(ej)

(u) + ψ3−
q(ej)

(u)
, κ+j =

χ3+
q(ej)

(u)

χ3+
q(ej)

(u) + ψ3+
q(ej)

(u)
.

Theorem 4.1. Let P̂p, Q̂q and R̂r be three PFIVFS sets over (U, E). Then, the following properties hold:

(1) Sim(P̂p, Q̂q) = Sim(Q̂q, P̂p)

(2) 0 ≤ Sim(P̂p, Q̂q) ≤= 1

(3) P̂p = Q̂q =⇒ Sim(P̂p, Q̂q) = 1

(4) P̂p v Q̂q v R̂r =⇒ Sim(P̂p, R̂r) ≤ Sim(Q̂q, R̂r).

Proof. The proof (1), (2) and are trivial. Now we proof (3). Suppose that P̂p = Q̂q implies that

χ
P̂(e)(u) = χ

Q̂(e)(u), ψP̂(e)(u) = ψ
Q̂(e)(u), χp̂(e)(u) = χq̂(e)(u) and ψp̂(e)(u) = ψq̂(e)(u).

Thus,

[χ−
P(e)(u),χ

+
P(e)(u)] = [χ−

Q(e)(u),χ
+
Q(e)(u)],

[ψ−
P(e)(u),ψ

+
P(e)(u)] = [ψ−

Q(e)(u),ψ
+
Q(e)(u)],

[χ−p(e)(u),χ
+
p(e)(u)] = [χ−q(e)(u),χ

+
q(e)(u)],

[ψ−p(e)(u),ψ
+
p(e)(u)] = [ψ−q(e)(u),ψ

+
q(e)(u)]

RETRACTED
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. Now,
[
Γ(P−(e)(u), Q−(e)(u)), Γ(P+(e)(u), Q+(e)(u))

]

=



m∑
j=1

(χ−
P(e j)

(u))
3
2+

3
2

m∑
j=1

(
1− 1 + (χ−

P(e j)
(u))3

) ,

m∑
j=1

(χ+
P(e j)

(u))
3
2+

3
2

m∑
j=1

(
1− 1 + (χ+

P(e j)
(u))3

)


=



m∑
j=1

(χ−
P(e j)

(u))3

m∑
j=1

(χ−
P(e j)

(u))3

,

m∑
j=1

(χ+
P(e j)

(u))3

m∑
j=1

(χ+
P(e j)

(u))3


= 1

and
[
∆(P−(e)(u), Q−(e)(u)), ∆(P+(e)(u), Q+(e)(u))

]
=

[
3
√
(1− 0), 3

√
(1− 0)

]
= 1.

Thus, Υ(P̂ , Q̂) =
[
Υ(P−, Q−), Υ(P+, Q+)

]
=

[
1+1

2 , 1+1
2

]
= 1 and

Ψ(p̂, q̂) =
[
Ψ(p−, q−), Ψ(p+, q+)

]
= 1.

Hence, Sim(P̂p, Q̂q) =
[
Sim(P−

p , Q−q ), Sim(P+
p , Q+

q )
]
= 1. Thus. (3) proved.

(4) Given that 

P̂p v Q̂q =⇒ χ
P̂(e)(u) ≤ χQ̂(e)(u), ψ

P̂(e)(u) ≥ ψQ̂(e)(u)

χp̂(e)(u) ≤ χq̂(e)(u), ψp̂(e)(u) ≥ ψq̂(e)(u)

P̂p v R̂r =⇒ χ
P̂(e)(u) ≤ χR̂(e)(u), ψ

P̂(e)(u) ≥ ψR̂(e)(u)

χp̂(e)(u) ≤ χr̂(e)(u), ψp̂(e)(u) ≥ ψr̂(e)(u)

Q̂q v R̂r =⇒ χ
Q̂(e)(u) ≤ χR̂(e)(u), ψ

Q̂(e)(u) ≥ ψR̂(e)(u)

χq̂(e)(u) ≤ χr̂(e)(u), ψq̂(e)(u) ≥ ψr̂(e)(u)


(4.1)

Thus, 

[
χ−

P(e)(u),χ
+
P(e)(u)

]
= χ

P̂(e)(u),
[
ψ−

P(e)(u),ψ
+
P(e)(u)

]
= ψ

P̂(e)(u)[
χ−p(e)(u),χ

+
p(e)(u)

]
= χp̂(e)(u),

[
ψ−p(e)(u),ψ

+
p(e)(u)

]
= ψp̂(e)(u)[

χ−
Q(e)(u),χ

+
Q(e)(u)

]
= χ

Q̂(e)(u),
[
ψ−

Q(e)(u),ψ
+
Q(e)(u)

]
= ψ

Q̂(e)(u)[
χ−q(e)(u),χ

+
q(e)(u)

]
= χq̂(e)(u),

[
ψ−q(e)(u),ψ

+
q(e)(u)

]
= ψq̂(e)(u)[

χ−
R(e)(u),χ

+
R(e)(u)

]
= χ

R̂(e)(u),
[
ψ−

R(e)(u),ψ
+
R(e)(u)

]
= ψ

R̂(e)(u)[
χ−r(e)(u),χ

+
r(e)(u)

]
= χr̂(e)(u),

[
ψ−r(e)(u),ψ

+
r(e)(u)

]
= ψr̂(e)(u).



RETRACTED
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By Equation 4.1, Clearly χ3/2
P̂(e)

(u) · χ3/2
R̂(e)

(u) ≤ χ3/2
Q̂(e)

(u) · χ3/2
R̂(e)

(u)

which implies
m∑

j=1

(
χ3/2

P̂(e j)
(u) · χ3/2

R̂(e j)
(u)

)
≤

m∑
j=1

(
χ3/2

Q̂(e j)
(u) · χ3/2

R̂(e j)
(u)

)
(4.2)

By Equation 4.1, Clearly, (χ
P̂(e)(u))

3
≤ (χ

Q̂(e)(u))
3

which implies (1− (χ
P̂(e)(u))

3) · (1− (χ
R̂(e)(u))

3) ≥ (1− (χ
Q̂(e)(u))

3) · (1− (χ
R̂(e)(u))

3) and(
(1− (χ

P̂(e)(u))
3) · (1− (χ

R̂(e)(u))
3)

)3/2
≥

(
(1− (χ

Q̂(e)(u))
3) · (1− (χ

R̂(e)(u))
3)

)3/2
and

1−
3

√(
(1− (χ

P̂(e)(u))
3) · (1− (χ

R̂(e)(u))
3)

)3/2
≤ 1−

3

√(
(1− (χ

Q̂(e)(u))
3) · (1− (χ

R̂(e)(u))
3)

)3/2

and
m∑

j=1

1−
3

√(
(1− (χ

P̂(e)(u))
3) · (1− (χ

R̂(e)(u))
3)

)3/2
 ≤ m∑

j=1

1−
3

√(
(1− (χ

Q̂(e)(u))
3) · (1− (χ

R̂(e)(u))
3)

)3/2
 (4.3)

Equation 4.2 is divided by 4.3,
m∑

j=1

(
χ3/2

P̂(e j)
(u) · χ3/2

R̂(e j)
(u)

)
m∑

j=1

1−
3

√(
(1− (χ

P̂(e)(u))
3) · (1− (χ

R̂(e)(u))
3)

)3/2

≤

m∑
j=1

(
χ3/2

Q̂(e j)
(u) · χ3/2

R̂(e j)
(u)

)
m∑

j=1

1−
3

√(
(1− (χ

Q̂(e)(u))
3) · (1− (χ

R̂(e)(u))
3)

)3/2


(4.4)

By Equation 4.1, Clearly, ψ3
P̂(e)

(u) ≥ ψ3
Q̂(e)

(u) and ψ3
P̂(e)

(u) −ψ3
R̂(e)

(u) ≥ ψ3
Q̂(e)

(u) −ψ3
R̂(e)

(u).

Hence
m∑

j=1

∣∣∣∣ψ3
P̂(e j)

(u) −ψ3
R̂(e j)

(u)
∣∣∣∣ ≥ m∑

j=1

∣∣∣∣ψ3
Q̂(e j)

(u) −ψ3
R̂(e j)

(u)
∣∣∣∣ (4.5)

Also,
(
ψ3

P̂(e)
(u) ·ψ3

R̂(e)
(u)

)
≥

(
ψ3

Q̂(e)
(u) ·ψ3

R̂(e)
(u)

)
implies

m∑
j=1

1 +
(
ψ3

P̂(e j)
(u) ·ψ3

R̂(e j)
(u)

)  ≥ m∑
j=1

1 +
(
ψ3

Q̂(e j)
(u) ·ψ3

R̂(e j)
(u)

)  (4.6)

Equation 4.5 is divided by 4.6, we get

m∑
j=1

∣∣∣∣ψ3
P̂(e j)

(u) −ψ3
R̂(e j)

(u)
∣∣∣∣

m∑
j=1

1 +
(
ψ3

P̂(e j)
(u) ·ψ3

R̂(e j)
(u)

) 
≥

m∑
j=1

∣∣∣∣ψ3
Q̂(e j)

(u) −ψ3
R̂(e j)

(u)
∣∣∣∣

m∑
j=1

1 +
(
ψ3

Q̂(e j)
(u) ·ψ3

R̂(e j)
(u)

) 
and

1−

m∑
j=1

∣∣∣∣ψ3
P̂(e j)

(u) −ψ3
R̂(e j)

(u)
∣∣∣∣

m∑
j=1

1 +
(
ψ3

P̂(e j)
(u) ·ψ3

R̂(e j)
(u)

) 
≤ 1−

m∑
j=1

∣∣∣∣ψ3
Q̂(e j)

(u) −ψ3
R̂(e j)

(u)
∣∣∣∣

m∑
j=1

1 +
(
ψ3

Q̂(e j)
(u) ·ψ3

R̂(e j)
(u)

) 

RETRACTED
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and

3

√√√√√√√√√√√√√√√√√√√√1−

m∑
j=1

∣∣∣∣ψ3
P̂(e j)

(u) −ψ3
R̂(e j)

(u)
∣∣∣∣

m∑
j=1

1 +
(
ψ3

P̂(e j)
(u) ·ψ3

R̂(e j)
(u)

) 
≤

3

√√√√√√√√√√√√√√√√√√√√1−

m∑
j=1

∣∣∣∣ψ3
Q̂(e j)

(u) −ψ3
R̂(e j)

(u)
∣∣∣∣

m∑
j=1

1 +
(
ψ3

Q̂(e j)
(u) ·ψ3

R̂(e j)
(u)

) 
(4.7)

Adding Equation 4.4, 4.7 and divided by 2,

Υ(P̂ , R̂) ≤ Υ(Q̂, R̂) (4.8)

By Equation 4.1, Clearly δ−j ≤ κ
−

j ≤ ρ
−

j and δ+j ≤ κ
+
j ≤ ρ

+
j ,

where [
δ−j , δ+j

]
=

 χ3−
p(e j)

(u)

χ3−
p(e j)

(u) + ψ3−
p(e j)

(u)
,

χ3+
p(e j)

(u)

χ3+
p(e j)

(u) + ψ3+
p(e j)

(u)


and [

κ−j ,κ+j

]
=

 χ3−
q(e j)

(u)

χ3−
q(e j)

(u) + ψ3−
q(e j)

(u)
,

χ3+
q(e j)

(u)

χ3+
q(e j)

(u) + ψ3+
q(e j)

(u)


and [

ρ−j ,ρ+j

]
=

 χ3−
r(e j)

(u)

χ3−
r(e j)

(u) + ψ3−
r(e j)

(u)
,

χ3+
r(e j)

(u)

χ3+
r(e j)

(u) + ψ3+
r(e j)

(u)

.
Hence

[
|κ−j | − |ρ

−

j |, |κ
+
j | − |ρ

+
j |

]
≤

[
|δ−j | − |ρ

−

j |, |δ
+
j | − |ρ

+
j |

]
and

−

[
|δ−j | − |ρ

−

j |, |δ
+
j | − |ρ

+
j |

]
≤ −

[
|κ−j | − |ρ

−

j |, |κ
+
j | − |ρ

+
j |

]
and [

|δ−j |+ |ρ
−

j |, |δ
+
j |+ |ρ

+
j |

]
≤

[
|κ−j |+ |ρ

−

j |, |κ
+
j |+ |ρ

+
j |

]
and hence,

−

m∑
j=1

[
|δ−j | − |ρ

−

j |, |δ
+
j | − |ρ

+
j |

]
≤ −

m∑
j=1

[
|κ−j | − |ρ

−

j |, |κ
+
j | − |ρ

+
j |

]
(4.9)

and
m∑

j=1

[
|δ−j |+ |ρ

−

j |, |δ
+
j |+ |ρ

+
j |

]
≤

m∑
j=1

[
|κ−j |+ |ρ

−

j |, |κ
+
j |+ |ρ

+
j |

]
(4.10)

Equation 4.9 is divided by 4.10, we get

RETRACTED
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−

m∑
j=1

|δ−j − ρ
−

j |

m∑
j=1

|δ−j + ρ−j |

, −

m∑
j=1

|δ+j − ρ
+
j |

m∑
j=1

|δ+j + ρ+j |


≤


−

m∑
j=1

|κ−j − ρ
−

j |

m∑
j=1

|κ−j + ρ−j |

, −

m∑
j=1

|κ+j − ρ
+
j |

m∑
j=1

|κ+j + ρ+j |


and


1−

m∑
j=1

|δ−j − ρ
−

j |

m∑
j=1

|δ−j + ρ−j |

, 1−

m∑
j=1

|δ+j − ρ
+
j |

m∑
j=1

|δ+j + ρ+j |


≤


1−

m∑
j=1

|κ−j − ρ
−

j |

m∑
j=1

|κ−j + ρ−j |

, 1−

m∑
j=1

|κ+j − ρ
+
j |

m∑
j=1

|κ+j + ρ+j |


.

Hence

Ψ(p̂, r̂) ≤ Ψ(̂q, r̂) (4.11)

Multiply by Equation 4.8 and 4.11, Υ(P̂ , R̂) ·Ψ(p̂, r̂) ≤ Υ(Q̂, R̂) ·Ψ(̂q, r̂).
Hence, Sim(P̂p, R̂r) ≤ Sim(Q̂q, R̂r). This proves (4). �

Example 4.1. We calculate the similarity measure between the two PFIVFS sets namely P̂p and Q̂q. We
choose the first sample of P̂p and Q̂q, E = {e1, e2, e3, e4} can be defined as below:

P̂p(e) e1 e2 e3 e4

P̂(e)(u) 〈[0.5, 0.75], [0.6, 0.75]〉 〈[0.75, 0.8], [0.65, 0.75]〉 〈[0.65, 0.7], [0.8, 0.85]〉 〈[0.55, 0.8], [0.5, 0.75]〉

p̂(e)(u) 〈[0.75, 0.8], [0.2, 0.7]〉 〈[0.65, 0.8], [0.3, 0.65]〉 〈[0.65, 0.7], [0.6, 0.8]〉 〈[0.55, 0.75], [0.3, 0.7]〉

Q̂q(e) e1 e2 e3 e4

Q̂(e)(u) 〈[0.75, 0.9], [0.4, 0.55]〉 〈[0.65, 0.8], [0.5, 0.75]〉 〈[0.6, 0.9], [0.3, 0.6]〉 〈[0.75, 0.9], [0.4, 0.6]〉

q̂(e)(u) 〈[0.4, 0.55], [0.6, 0.85]〉 〈[0.5, 0.7], [0.4, 0.8]〉 〈[0.4, 0.75], [0.6, 0.7]〉 〈[0.6, 0.7], [0.5, 0.85]〉

Now, Γ(P̂(e)(u), Q̂(e)(u)) =
[
Γ(P−(e)(u), Q−(e)(u)), Γ(P+(e)(u), Q+(e)(u))

]
.

where, Γ(P−(e)(u), Q−(e)(u)) = X1
Y1

,

X1 =
(
0.53/2

× 0.753/2
)
+

(
0.753/2

× 0.653/2
)
+

(
0.653/2

× 0.63/2
)
+

(
0.553/2

× 0.753/2
)
= 1.078506 and

Y1 =

1−
((
(1− 0.53) × (1− 0.753)

)3/2
)1/3

+

1−
((
(1− 0.753) × (1− 0.653)

)3/2
)1/3


+

1−
((
(1− 0.653) × (1− 0.63)

)3/2
)1/3

+

1−
((
(1− 0.553) × (1− 0.753)

)3/2
)1/3

 = 1.192847.

Γ(P−(e)(u), Q−(e)(u)) = 1.078506
1.192847 = 0.904144.

Similarly, Γ(P+(e)(u), Q+(e)(u)) = X2
Y2

= 2.177556
2.330567 = 0.934346.

Γ(P̂(e)(u), Q̂(e)(u)) =
[
0.904144, 0.934346

]
.

∆(P̂(e)(u), Q̂(e)(u)) =
[
∆(P−(e)(u), Q−(e)(u)), ∆(P+(e)(u), Q+(e)(u))

]
.

∆(P−(e)(u), Q−(e)(u)) =
(
1− X3

Y3

)1/3
,

X3 =
∣∣∣0.63

− 0.43
∣∣∣+ ∣∣∣0.653

− 0.53
∣∣∣+ ∣∣∣0.83

− 0.33
∣∣∣+ ∣∣∣0.53

− 0.43
∣∣∣ = 0.847625 and

Y3 =
(
1 + (|0.63

× 0.43
|)
)
+

(
1 + (|0.653

× 0.53
|)
)
+

(
1 + (|0.83

× 0.33
|)
)
+

(
1 + (|0.53

× 0.43
|)
)
= 4.069976.
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∆(P−(e)(u), Q−(e)(u)) =
(
1− 0.847625

4.069976

)1/3
= 0.925111.

∆(P+(e)(u), Q+(e)(u)) =
(
1−

X4

Y4

)1/3

=
(
1−

0.859500
4.471944

)1/3

= 0.931326.

∆(P̂(e)(u), Q̂(e)(u)) =
[
0.925111, 0.931326

]
.

Υ(P̂ , Q̂) =
[
Υ(P−, Q−), Υ(P+, Q+)

]
=

[
0.925111, 0.931326

]
×

[
0.904144, 0.934346

]
=

[
0.914627, 0.932836

]
.

Ψ(p̂, q̂) =
[
Ψ(p−, q−), Ψ(p+, q+)

]
=

1− 1.560045
5.063945

, 1−
0.978965
3.726702


=

[
0.691931, 0.737311

]
.

Sim(P̂p, Q̂q) =
[
Sim(P−

p , Q−q ), Sim(P+
p , Q+

q )
]

=
[
0.914627, 0.932836

]
×

[
0.691931, 0.737311

]
=

[
0.632859, 0.687790

]
.

5. Application of PFIVFS set in decision making

The personal computer is what the majority of people have in their homes at present.

With personal computers, people can use them at home, school, or business. These computers can

store abundant memory and space. Computers themselves have a glass monitor, like a television

screen, which enables people to see more colors. It also has a higher resolution rate so people can

see more clearly. A personal computer can have some remarkable features added to it. People can

add printers, bigger speakers, desktop scanner beds, and best of all,a hard drive of bigger energy.

Nowadays, the laptop is a computer that is lightweight and portable for easy transportation,

which makes life easier to take on business trips, vacations, and anywhere people want to take it.

A laptop simply means that people can set the computer down on their lap, desk, or on any flat

surface. Laptop computers themselves have a plastic screen that reduces the resolution rate. This

is why people have such a hard time seeing things on the computer. No matter where people sit

in front of the computer screen, it will always produce different colors; therefore, making it harder

to read the screen. Our goal is to select the optimal one out of a great number of alternatives based

RETRACTED
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on the assessment of experts against the criteria. The Need to buy a laptop can be due to various

reasons. A consumer goes through several stages before purchasing a product or service.

5.1. Algorithm for PFIVFS set model.

(1) Input the values for PFIVFS sets in tabular form.

(2) Input the set of choice parameters A v E.

(3) Compute the values for Γ and ∆.

(4) Calculate the Υ value by taking Γ+∆
2 .

(5) Determine the value Ψ(p̂, q̂) =


1−

m∑
j=1

|δ−j − κ
−

j |

m∑
j=1

|δ−j + κ−j |

, 1−

m∑
j=1

|δ+j − κ
+
j |

m∑
j=1

|δ+j + κ+j |


.

(6) Compute the similarity measure by taking the product of Υ and Ψ.

(7) Determine maximum similarity measure = Max{similarity measurei
} and 1 ≤ i ≤ m.

(8) Optimal output solution yields to the problem.

5.2. Decision making during laptop purchase. Let a customer decides to purchase a laptop form

the analyses five laptop brands namely A, B, C, D and E. The differentiates attributes of the laptop

evaluated by the experts is represented by E = {e1 = battery life, e2 = operating system, e3 = storage

capacity, e4= speed of the processor, e5 = overall cost}. Now, we have following five PFIVFS sets

for five laptop brands representatives along write PFIVFS source for the ideal laptop.

Table 1

PFIVFS set for the ideal laptop

Îp(e) e1 e2 e3

Î (e) 〈[0.9, 0.92], [0.35, 0.45]〉 〈[0.85, 0.95], [0.3, 0.35]〉 〈[0.9, 0.95], [0.25, 0.4]〉

p̂(e) 〈[1 1], [0 0]〉 〈[1 1], [0 0]〉 〈[1 1], [0 0]〉

Îp(e) e4 e5

Î (e) 〈[0.8, 0.9], [0.4, 0.5]〉 〈[0.85, 0.9], [0.35, 0.45]〉

p̂(e) 〈[1 1], [0 0]〉 〈[1 1], [0 0]〉

Table 2

PFIVFS set for the first laptop

Âp1(e) e1 e2 e3

Â (e) 〈[0.65, 0.85], [0.6, 0.63]〉 〈[0.7, 0.8], [0.7, 0.72]〉 〈[0.8, 0.85], [0.6, 0.62]〉

p̂1(e) 〈[0.6, 0.82], [0.65, 0.7]〉 〈[0.6, 0.78], [0.75, 0.78]〉 〈[0.7, 0.81], [0.65, 0.7]〉

Âp1(e) e4 e5

Â (e) 〈[0.75, 0.8], [0.65, 0.7]〉 〈[0.7, 0.85], [0.45, 0.55]〉

p̂1(e) 〈[0.7, 0.75], [0.7, 0.75]〉 〈[0.6, 0.7], [0.75, 0.8]〉
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Table 3

PFIVFS set for the second laptop

B̂p2(e) e1 e2 e3

B̂(e) 〈[0.85, 0.9], [0.36, 0.47]〉 〈[0.6, 0.85], [0.5, 0.53]〉 〈[0.55, 0.7], [0.75, 0.8]〉

p̂2(e) 〈[0.5, 0.6], [0.7, 0.8]〉 〈[0.4, 0.5], [0.6, 0.88]〉 〈[0.5, 0.6], [0.75, 0.85]〉

B̂p2(e) e4 e5

B̂(e) 〈[0.6, 0.88], [0.5, 0.52]〉 〈[0.65, 0.85], [0.55, 0.58]〉

p̂2(e) 〈[0.5, 0.65], [0.65, 0.8]〉 〈[0.6, 0.7], [0.7, 0.75]〉

Table 4

PFIVFS set for the third laptop

Ĉp3(e) e1 e2 e3

Ĉ (e) 〈[0.75, 0.8], [0.65, 0.68]〉 〈[0.65, 0.7], [0.72, 0.75]〉 〈[0.68, 0.73], [0.65, 0.7]〉

p̂3(e) 〈[0.7, 0.75], [0.7, 0.75]〉 〈[0.6, 0.65], [0.75, 0.8]〉 〈[0.5, 0.6], [0.7, 0.8]〉

Ĉp3(e) e4 e5

Ĉ (e) 〈[0.65, 0.8], [0.6, 0.63]〉 〈[0.55, 0.7], [0.73, 0.75]〉

p̂3(e) 〈[0.6, 0.7], [0.65, 0.75]〉 〈[0.5, 0.7], [0.75, 0.78]〉

Table 5

PFIVFS set for the fourth laptop

D̂p4(e) e1 e2 e3

D̂(e) 〈[0.8, 0.85], [0.65, 0.68]〉 〈[0.7, 0.75], [0.72, 0.75]〉 〈[0.7, 0.73], [0.75, 0.78]〉

p̂4(e) 〈[0.7, 0.75], [0.8, 0.85]〉 〈[0.6, 0.65], [0.75, 0.78]〉 〈[0.5, 0.6], [0.78, 0.85]〉

D̂p4(e) e4 e5

D̂(e) 〈[0.6, 0.85], [0.67, 0.69]〉 〈[0.6, 0.75], [0.8, 0.83]〉

p̂4(e) 〈[0.6, 0.7], [0.7, 0.75]〉 〈[0.5, 0.7], [0.8, 0.85]〉

Table 6

PFIVFS set for the fifth laptop

Êp5(e) e1 e2 e3

Ê (e) 〈[0.6, 0.71], [0.63, 0.73]〉 〈[0.75, 0.85], [0.56, 0.58]〉 〈[0.85, 0.92], [0.42, 0.45]〉

p̂5(e) 〈[0.6, 0.8], [0.65, 0.75]〉 〈[0.5, 0.75], [0.65, 0.7]〉 〈[0.8, 0.85], [0.45, 0.55]〉

Êp5(e) e4 e5

Ê (e) 〈[0.8, 0.85], [0.53, 0.55]〉 〈[0.75, 0.8], [0.64, 0.65]〉

p̂5(e) 〈[0.75, 0.8], [0.55, 0.7]〉 〈[0.7, 0.75], [0.65, 0.7]〉
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To find a laptop which is closest to the ideal laptop of the consumer. We should calculate the

similarity measures of PFIVFS sets as shown in Tables 2-6 with the PFIVFS set in Table 1. Similarity

measures between the 1-5 laptops and ideal laptop are given below in table 7. Table 7 represents

the relative calculation of Γ, ∆ and Υ for the similarity measures.

Table 7
Γ ∆ Υ

̂(I , A ) [0.919488, 0.953847] [0.93292, 0.933251] [0.926204, 0.943549]
̂(I , B) [0.848667, 0.943867] [0.951794, 0.952811] [0.900231, 0.948339]
̂(I , C ) [0.861673, 0.871448] [0.902856, 0.904415] [0.882265, 0.887932]
̂(I , D) [0.891595, 0.908378] [0.873559, 0.875805] [0.882577, 0.892091]
̂(I , E ) [0.932762, 0.950886] [0.950004, 0.951781] [0.941383, 0.951333]

Ψ Similarity
̂(I , A ) [0.605855, 0.688595] [0.561146, 0.649723]
̂(I , B) [0.443200, 0.463774] [0.398983, 0.439815]
̂(I , C ) [0.523886, 0.574241] [0.462206, 0.509886]
̂(I , D) [0.468822, 0.538181] [0.413772, 0.480106]
̂(I , E ) [0.739695, 0.755761] [0.696336, 0.718981]

From the above results, we infer that the laptops have similarity measures in order B ≤ D ≤ C ≤
A ≤ E. Hence, we find that the fifth laptop is closest to the ideal laptop due to having the highest

value of the similarity measure.

5.3. Algorithm for Fermatean Interval valued fuzzy soft set (FIVFS set) model.

(1) Input the values for FIVFS set in tabular form.

(2) Input the set of choice parameters A v E.

(3) Compute the values for Γ and ∆.

(4) Calculate the similarity measure = Γ+∆
2 .

(5) Determine maximum similarity = Max{similarity measurei
} and 1 ≤ i ≤ m.

(6) Optimal output yields solution to the problem.

We investigate the above mentioned decision making problem during laptop purchase using the

FIVFS set approach to consider the effect of the possibility parameter. Calculating the similarity

measures for the above mention five laptops, we have the following table.

Table 8
Γ ∆ Similarity

̂(I , A ) [0.919488, 0.953847] [0.93292, 0.933251] [0.926204, 0.943549]
̂(I , B) [0.848667, 0.943867] [0.951794, 0.952811] [0.900231, 0.948339]
̂(I , C ) [0.861673, 0.871448] [0.902856, 0.904415] [0.882265, 0.887932]
̂(I , D) [0.891595, 0.908378] [0.873559, 0.875805] [0.882577, 0.892091]
̂(I , E ) [0.932762, 0.950886] [0.950004, 0.951781] [0.941383, 0.951333]
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From the above results, it can be understood the parameter has a significant impact on similarity

measure of PFIVFS sets. It is observed that the first four laptops from the perspective of similarity

measure are quite away from the ideal laptop resource. If the fifth laptop it has one unit chooses

the threshold [0.60, 0.71], we should choose the fifth laptop resource as a potential laptop.

6. Comparison of approach of PFIVFS set and FIVFS set

On the contrary, when using the FIVFS set approach without the generalization parameter,

we cannot distinguish which laptop resource is the best one. So the possibility parameter has an

important influence on the similarity measure of the fifth laptop resource. Therefore, the PFIVFS set

approach is more scientific and reasonable than the FIVFS set approach without the generalization

parameter in the process of decision making.

7. Conclusion

The main goal of this work is to present a PFIVFS set to solve the phenomena related to decision

making in which cubes of the sum of its membership and non membership is not exceeding unity.

To illustrate the validity of this similarity measure, the PFIVFS set is applied to decision making

problems. Therefore, the PFIVFS set approach is more scientific and reasonable than the FIVFS set

approach without the generalization parameter in the process of decision making.
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