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Abstract. The fundamental focus of researching coefficient problems for various families of univalent functions involves

characterizing the coefficients of functions within a particular family based on the coefficients of Caratheodory functions.

Consequently, by employing known inequalities for the class of Caratheodory functions, coefficient functionals can be

scrutinized. This study will tackle several coefficient problems by applying the methodology to the aforementioned

family of functions. Our investigation centers on the family of Sokol-Stankiewicz star-like functions which is defined

in the open unit disk D. We explore the bounds of certain initial coefficients, including the Fekete-Szego inequality and

other results concerning logarithmic coefficients for functions within this class.

1. Introduction

Logarithmic functions find application in various branches of mathematics and other scientific dis-

ciplines. In order to provide a comprehensive grasp of the principal outcomes detailed in this paper,

we elucidate the fundamental terminology employed throughout our key findings, accompanied

by preliminary definitions and relevant results. We denote byA the class of analytic, holomorphic

normalized functions f : D −→ C defined in open unit disk D = {z : z ∈ C and |z| < 1}, which

satisfy the following normalization conditions

f (0) = 0 = f ′(0) − 1.
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Thus, each f ∈ A has the following series of the form:

f (z) = z +
∞∑

n=2

anzn (z ∈ D). (1.1)

Moreover, we denote by S the subclass ofA of functions which are univalent in D. For two func-

tions g1, g2 ∈ A, we say that the function g1 is subordinate to the function g2 (written as g1 ≺ g2) if

there exists an analytic function w with the property

|w(z)| ≤ 1 and w(0) = 0

such that

g1(z) = g2(w(z)) (z ∈ D).

In particular, if g2 is univalent in S, then we have the following equivalence

g1(z) ≺ g2(z) ⇐⇒ g1(0) = g2(0) and g1(|z| < 1) ⊂ g2(|z| < 1). (1.2)

In 1992, Ma and Minda [1] introduce the S∗(δ) as follows

S
∗(δ) =

{
f ∈ A :

(
z f ′(z)

f (z)

)
≺ δ, (z ∈ D)

}
. (1.3)

The function δ is expected to be analytic within a region D, where its real part is positive. In

simpler terms, S∗(δ) is imagined to have a symmetric shape like a star, but it’s confined within a

certain area that is δ(0) = 1 and δ′(0) > 0. Additionally, they explored several beneficial geometric

characteristics like expansion, deformation and coverage outcomes. This was achieved by taking

δ(z) = (1 + z)(1− z)−1.

Specifically, we observe that the function classS∗(δ) resembles the well-established class of starlike

functions. Depending on the particular function δ chosen, we encounter the following distinct

function classes.

1. If we let

δ(z) = 1 + sin(z),

then we obtain the class

S
∗

sin = S∗ (1 + sin(z)) ,

the class of starlike functions which maps to an eight-shaped figure within the open unit

disk D. This distinctive shape emerges when considering their image under the unit

disk [2].

2. If we put the class of functions

δ(z) = 1 + z−
1
3

z3,

then we get the class

S
∗

nep = S∗
(
1 + z−

1
3

z3
)

,
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the class of starlike functions which exhibits a unique feature when visualized within the

open unit disk D. It forms a nephroid-shaped region. This distinct shape becomes apparent

when examining their representation under the unit disk [3].

3. If we opt the class of functions

δ(z) =
√

1 + z,

then we acquire the class of functions

S
∗

L
= S∗

(√
1 + z

)
,

the function δ(z) =
√

1 + z transforms the domain D onto the image domain bounded by

the right half of the Bernoulli lemniscate represented by |w2
− 1| [4].

4. If we opt the class of functions

δ(z) = 1 +
4
3

z +
2
3

z2,

then we get the class

S
∗

Card = S∗
(
1 +

4
3

z +
2
3

z2
)

,

which is the class of starlike functions whose image under open unit is cardioid shaped

given by (9x2 + 9y2
− 18x + 5)2

− 16(9x2 + 9y2
− 6x + 1) = 0 and this was introduced by

Sharma et al [5].

5. If we let

δ(z) = ez,

then we derive the class of functions

S
∗

Exp = S∗ (ez) .

This is the class of starlike functions associated with exponential function and this was

introduced and studied by Mendiratta et al [6].

6. If we opt the class of functions

δ(z) =
(√

1 + z
)
+ z,

then we procure the class

S
∗

Cre = S
∗
(√

1 + z + z
)

,

which is the class of starlike functions associated with the crescent-shaped region as dis-

cussed in [7].

7. If we let

δ(z) = 1 +
4
5

z +
1
5

z4,

then we obtain the class

S
∗

Three lea f = S
∗

(
1 +

4
5

z +
1
5

z4
)

,
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which is the class of starlike functions linked to the defined geometric area called three leaf

shaped domain and studied in [44].

8. If we assign the class of functions

δ(z) = 1 +
5
6

z +
1
6

z5,

then we obtain the class

S
∗

Four lea f = S
∗

(
1 +

5
6

z +
1
6

z5
)

,

which in the class of starlike functions linked with outlined four - shaped region which

was introduced and studied is [51].

9. If we assign the class of functions

δ(z) = 1 + sinh−1(z),

then we get the class

S
∗

Petal = S
∗
(
1 + sinh−1(z)

)
,

which is the class of starlike functions associated with the petal - shaped region as discussed

in [45].

10. Moreover, if we take

δ(z) = cosh(z),

then we derive the class

S
∗

cosh = S∗ (cosh(z)) ,

whose image is bounded by the cosine of the functions which were contributed by A.

Alotaibi, M. Arif, M. A. Alghamdi, and S. Hussain [49] .

11. Furthermore if we pick

δ(z) = 1 + tanh(z),

then we get the class of functions

S
∗

tanh = S∗ (1 + tanh(z)) ,

this can be studied in [48] and starlike function associated with tan hyperbolic function.

12. If we put the class of functions

δ(z) = cos(z),

then we obtain the class

S
∗

cos = S
∗ (cos(z)) .

This is the class of starlike functions associated with the cosine function as discussed in [47].
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13. If we assign the class of functions

δ(z) =
1 + (1− 2ϕ)z

1− z

with 0 ≤ ϕ < 1, we get the class

S
∗ = S∗

(
1 + (1− 2ϕ)z

1− z

)
of starlike functions of order ϕ [14].

The class S∗ has been extensively explored by various researchers. They have substituted f with

different sequences such as Fibonacci numbers, Bell numbers, shell-like curves, conic domains and

a modified sigmoid function [8–11]. Furthermore, these researchers have established additional

subclasses within the broader class of starlike functions. The two most important and extensively

studied families of univalent functions are the class S∗(δ(z)) which represents starlike functions

with respect to symmetric points of order δ(z) (0 ≤ δ < 1) analytically defined by

S
∗(δ(z)) =

{
f ∈ A : Re

(
z f ′(z)

f (z)

)
> δ, (z ∈ D)

}
. (1.4)

The classK(δ(z)) ⊂ S∗ of convex functions of order δ, (0 ≤ δ < 1) is defined by

K(δ(z)) =
{

f ∈ A : Re
(
1 +

z f ′′(z)
f ′(z)

)
> δ, (z ∈ D)

}
. (1.5)

The classV(δ(z)) ⊂ S∗ of closed - to - convex functions of order δ, (0 ≤ δ < 1) is defined by

V(δ(z)) =
{

f ∈ A : Re
(

z f ′(z)
g(z)

)
> δ, (z ∈ D)

}
(1.6)

where g(z) = z +
∑
∞

n=2 bnzn belongs to starlike functions and so on. Thus we get, subclasses of

starlike varieties, convex types, close-to - convex forms, functions with bounded turning points

and more.

Consider an analytic and univalent function Pwithin domain D, with a positive real component,

satisfying p(0) = 0, p
′

(0) = 1, Re(p(z)) > 0. P transforms the unit disk D into a space of star-like

functions, respecting symmetric points along the real axis. Now, we delve into the Taylor series

expansion

p(z) = 1 +
∞∑

n=1

pnzn, |pn| ≤ 2. (1.7)

In this paper, we assume that the function p satisfies the aforementioned conditions unless stated

otherwise. We denote the classes of functions byS∗(p) andK(p) where all coefficients are real and

p > 0.

By we represent the following classes of functions

S
∗(p) =

{
f ∈ A : Re

(
z f ′(z)

f (z)

)
≺ p(z), (z ∈ D)

}
(1.8)
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and

K(p) =
{

f ∈ A : Re
(
1 +

z f ′′(z)
f ′(z)

)
≺ p(z), (z ∈ D)

}
. (1.9)

The categories S∗(p),K(p) expand upon the traditional collections of star shaped and convex

functions, as detailed in the work of Ma and Minda [1]. These functions act as the fundamen-

tal basis from which subsequent subclasses inherit their characteristics, all originating from the

Caratheodory function category P. Sokól and Stankiewicz [12] introduced a group designated as

SL
∗, encompassing normalized analytic functions f in D that adhere to specific criteria.∣∣∣∣∣∣∣

[
z f
′

(z)
f (z)

]2

− 1

∣∣∣∣∣∣∣ < 1.

The category is commonly known as Sokól-Stankiewicz starlike functions. Moreover, Raza and

Malik [13] have established the upper limit of the third Hankel determinant H3(1) for the classSL∗.

Furthermore, Sahoo and Patel [14] obtained some upper bound to the second Hankel determinant

for the class

R̃ =
{

f ∈ A : | f
′

(z)2
− 1| < 1, (z ∈ D)

}
. (1.10)

Inspired by the aforementioned research findings, as presented by previous scholars, Trailokya

Panigrahi and Janusz Sokól [18] introduced the following subclass of analytic functions

Definition 1.1. A function f ∈ A is said to be in the classAR∗δ, 0 ≤ δ ≤ 1, if it satisfies the condition∣∣∣∣∣∣∣
[

z f
′

(z)
(1− δ) f (z) + δz

]2

− 1

∣∣∣∣∣∣∣ < 1, (z ∈ D) . (1.11)

The familyA(δ) of new subclasses in analytical functions of type δ; 0 ≤ δ ≤ 1 provides a transition

from the class of starlike functions to the class of functions of bounded boundary rotation. To see

this, we note that for δ = 0, we have A(δ) ≡ S∗(0) ≡ S∗ the class of starlike functions f > A, so

that R
( z f ′

f

)
> 0 in D. For δ = 1, we get the family of functions R̃ of functions f > A, of bounded

boundary rotation so that R( f ′) > 0 in D. (For further details. [19]) Note that for δ = 0, the class

AR
∗

0, reduces to the class SL∗, studied by Raza and Malik [13] and while δ = 1, the class AR∗1,

reduces to R̃ studied by Sahoo and Patel [14]. In terms of subordination, relation (1.11) can be

written as

A(δ) =
z f
′

(z)
(1− δ) f (z) + δz

≺ p(z), (z ∈ D) . (1.12)

In this research paper, we investigate the bounds of some initial coefficients and estimates of

Fekete-Szego functionals which are extensively studied structured matrices with applications in

various fields such as statistics, image processing, quantum mechanics and more.

For each function f (z) ∈ S, we can define logarithmic functionAa(z) as follows

Aa(z) = log
(

f (z)
z

)
= 2

∞∑
n=1

snzn, (z ∈ D). (1.13)
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The logarithmic coefficients sn play a central role in the theory of univalent functions [42, 45–47].

A very few exact upper bounds for sn seem to have been established. The significance of this

problem in the context of Bieberbach conjecture was pointed by Milin [23] in his conjecture.

Milin [23] conjectured that for f ∈ S and n ≥ 2.

n∑
m=1

m∑
k=1

(
k|sk|

2
−

1
k

)
≤ 0 , (1.14)

which led De Branges, by proving this conjecture, to the proof of Bieberbach conjecture [24]. For

the Koebe function k(z) =
z

(1− z)2 , the logarithmic coefficients are sn = 1
n . Since the Koebe

function k plays the role of extremal function for most of the extremal problems in the class S, it

is expected that sn ≤
1
n holds for functions in S. But this is not true in general, even in order of

magnitude. Indeed, there exists a bounded function f in the class S with logarithmic coefficients

sn , O(n−0.83). By differentiating (1.13) and on equating coefficients we obtain

s1 =
1
2

a2 , (1.15)

s2 =
1
2

(
a3 −

1
2

a2
2

)
, (1.16)

s3 =
1
2

(
a4 − a2a3 +

1
3

a3
2

)
, (1.17)

s4 =
1
2

(
a5 − a2a4 + a2

2a3 −
1
2

a2
3 −

1
4

a4
2

)
, (1.18)

s5 =
1
2

(
a6 − a2a5 − a3a4 + a2a2

3 + a2
2a4 − a3

2a3 +
1
5

a5
2

)
. (1.19)

If f ∈ S, it is easy to see that |s1| ≤ 1, because |a2| ≤ 2. Using the Fekete-Szego inequality for

functions in S in (1.16), we obtain the sharp estimate

|s2| ≤
1
2
(1 + 2e−2) = 0.635 · · · .

For n ≥ 3, the problem seems much harder, and no significant bound for |sn| when f ∈ S appear

to be known. In 2017, Ali and Allu [25] obtained the bounds for the initial three logarithmic

coefficients for a subclass of f ∈ S. The problem of computing the bounds for the logarithmic

coefficients is also considered in [6, 18, 21] for several subclasses of close to convex functions. In

2021, Zaprawa [26] obtained the sharp bounds of the initial logarithmic coefficients sn for functions

in the classes S∗ andK .

We recall the definition of the Hankel determinant with k as a parameter and n ∈N := {1, 2, 3, ...}.

Hk,n( f ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
an an+1 · · · an+k−1

an+1 an+2 · · · an+k
...

... · · ·
...

an+k−1 an+k · · · an+2k−2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(n, k ∈N = 1, 2, 3, ...). (1.20)
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For example,

H2,1( f ) =

∣∣∣∣∣∣∣a1 a2

a2 a3

∣∣∣∣∣∣∣ , H2,2( f ) =

∣∣∣∣∣∣∣a2 a3

a3 a4

∣∣∣∣∣∣∣ , H3,1( f ) =

∣∣∣∣∣∣∣∣∣∣
a1 a2 a3

a2 a3 a4

a3 a4 a5

∣∣∣∣∣∣∣∣∣∣ . (1.21)

The evaluation of the upper bound of Hk,n( f ) across different subfamilies of A is an interesting

area of research within Geometric Function Theory in Complex Analysis. Noonan and Thomas

[27], as well as Noor [28], examined the growth rate of Hk,n( f ) as n −→ ∞ for fixed k and n,

focusing on various subfamilies of the class of univalent function S∗. The Hankel determinant

H2,1( f ) = a3 − a2
2 and H2,2( f ) = a2a4 − a2

3 are known as the Fekete-Szego functional and second

Hankel determinant respectively. The functional H2,1( f ) is further generalized as a3 − µa2
2 for

some real or complex parameter µ. Various researchers have obtained upper bounds of H2,1( f ) for

different subfamilies of classS∗ (refer to [29–31]). Recently, Srivastava et al. [29] derived bounds for

the second Hankel determinant for q-starlike and q-convex functions. Additionally, several studies

have focused on obtaining bounds for initial coefficients, exploring the Fekete-Szegö inequality,

and estimating Hankel determinants of different orders for various subclasses of univalent and

bi-univalent functions [30–33].

Building upon the previous concepts, we suggest investigating the Hankel determinant, where

its elements comprise of logarithmic coefficients of S. This exploration could unveil fascinating

insights into the interplay between logarithmic coefficients and Hankel determinants given by

Hk,n( f ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
sn sn+1 · · · sn+k−1

sn+1 sn+2 · · · sn+k
...

... · · ·
...

sn+k−1 sn+k · · · sn+2k−2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(n, k ∈N = 1, 2, 3, ...). (1.22)

The principal goal of this paper is to ascertain upper bounds for H2,1( f ) = a3 − a2
2 over the

category of Sokol-Stankiewicz starlike functions linked with Caratheodory functions. This pursuit

focuses on delineating boundaries for the behavior and characteristics of Sokol-Stankiewicz starlike

functions within the framework of caratheodory functions.

2. Definitions and Preliminaries

Lemma 2.1. [40] Let p ∈ P be given by (1.7), then∣∣∣pk

∣∣∣ ≤ 2 f or k ≥ 1 , (2.1)∣∣∣pn+k − µpnpk

∣∣∣ < 2 f or 0 ≤ µ ≤ 1 , (2.2)∣∣∣pnpk − pnpl

∣∣∣ ≤ 4 f or m + k = k + l, (2.3)∣∣∣∣∣p2 −
1
2

p2
1

∣∣∣∣∣ ≤ 2−
1
2

∣∣∣p1

∣∣∣2 . (2.4)
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Lemma 2.2. [19, 39] Let p ∈ P be given by (1.7), for complex number µ, we have

∣∣∣cn+k − µcnck

∣∣∣ ≤ 2 max
{
1,

∣∣∣2µ− 1
∣∣∣} =  2, for 0 ≤ µ ≤ 1;

2
∣∣∣2µ− 1

∣∣∣ , otherwise.
(2.5)

Also, if k1 ∈ [0, 1] and k1 (2k1 − 1) ≤ k2 ≤ k1, we get∣∣∣p3 − 2k1p1p2 + k2p3
1

∣∣∣ ≤ 2. (2.6)

Lemma 2.3. [40] Let p ∈ P be given by (1.7), then∣∣∣ξp3
1 −$p1p2 + σp3

∣∣∣ ≤ 2 (|ξ|+ |$− 2ξ|+ |ξ−$+ σ|) (2.7)

Lemma 2.4. [41] Let α, β, r and b satisfy the inequalities 0 < α < 1 , 0 < b < 1 and

8b(1− b)
[
(αβ− 2r)2 + (α(b + α) − β)2

]
+ α(1− α)(β− 2bα)2

≤ 4α2(1− α)2b(1− b) . (2.8)

If p ∈ P, be given by (1.7), then ∣∣∣∣∣rp4
1 + bp2

2 + 2αp1p3 −
3
2
βp2

1p2 − p4

∣∣∣∣∣ ≤ 2. (2.9)

Lemma 2.5. [42] If p ∈ P be given by (1.7), then∣∣∣p5
1 + 3p1p2

2 + 3p2
1p3 − 4p3

1p2 − 2p1p4 − 2p2p3 + p5
∣∣∣ ≤ 2. (2.10)

∣∣∣p6
1 + 6p2

1p2
2 + 4p3

1p3 + 2p1p5 + 2p2p4 + p2
3 − p3

2 − 5p4
1p2 − 3p2

1p4 − 6p1p2p3 − p6
∣∣∣ ≤ 2. (2.11)

Lemma 2.6. [43] Let p ∈ P be given by (1.7), then for some complex valued x with |x| ≤ 1, some complex
valued % with |%| ≤ 1 and some complex valued ψ with |ψ| ≤ 1, we have

2p2 = p2
1 + x

(
4− p2

1

)
, (2.12)

4p3 = p3
1 + 2

(
4− p2

1

)
p1x− p1

(
4− p2

1

)
x2 + 2

(
4− p2

1

) (
1− |x|2

)
% , (2.13)

8p4 = p4
1 +

(
4− p2

1

)
x
[
p2

1

(
x2
− 3x + 3

)
+ 4x

]
(2.14)

− 4
(
4− p2

1

) (
1− |x|2

) [
p (x− 1) %+ x̄%2

−

(
1− |%|2ψ

)]
.

In this section, we start with finding the bounds of the first few initial logarithmic coefficients for

the category of Sokol-Stankiewicz starlike functions linked with caratheodory functions.

3. Coefficient Estimates for LogarithmicA(δ)

Theorem 3.1. If f ∈ A(δ); (0 ≤ δ ≤ 1), then we have the sharp bounds
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|s1| ≤
1

(1 + δ)
,

|s2| ≤
1

(2 + δ)
,

|s3| ≤
1

(3 + δ)
,

|s4| ≤
1

(4 + δ)
,

|s5| ≤
1

(5 + δ)
.

Proof. First note that by equating the corresponding coefficients in the equation

z f
′

(z)
(1− δ) f (z) + δz

= p(z) , (3.1)

we get

a2 =
p1

δ+ 1
, (3.2)

a3 =
p2

1(1− δ)

(1 + δ)(δ+ 2)
+

p2

δ+ 2
, (3.3)

a4 =
p3

1(1− δ)
2

(δ+ 1)(δ+ 2)(δ+ 3)
+

p1p2(1− δ)(3 + 2δ)
(δ+ 1)(δ+ 2)(δ+ 3)

+
p3

δ+ 3
, (3.4)

a5 =
p4

1(1− δ)
3

(δ+ 1)(δ+ 2)(δ+ 3)(δ+ 4)
+

p2
1p2(1− δ)2(6 + 3δ)

(δ+ 1)(δ+ 2)(δ+ 3)(δ+ 4)
(3.5)

+
p1p3(1− δ)

(δ+ 3)(δ+ 4)
+

p2
2(1− δ)

(δ+ 2)(δ+ 4)
+

p1p3(1− δ)
(δ+ 1)(δ+ 4)

+
p4

δ+ 4
,

a6 =
p5

1(1− δ)
4

(δ+ 1)(δ+ 2)(δ+ 3)(δ+ 4)(δ+ 5)
+

p3
1p2(1− δ)3(10 + 4δ)

(δ+ 1)(δ+ 2)(δ+ 3)(δ+ 4)(δ+ 5)
(3.6)

+
p2

1p3(1− δ)2(3δ2 + 15δ+ 20)

(δ+ 1)(δ+ 2)(δ+ 3)(δ+ 4)(δ+ 5)
+

p1p2
2(1− δ)

2(3δ2 + 15δ+ 15)

(δ+ 1)(δ+ 2)(δ+ 3)(δ+ 4)(δ+ 5)

+
p1p4(1− δ)(5 + 2δ)
(δ+ 1)(δ+ 4)(δ+ 5)

+
p2p3(1− δ)(5 + 2δ)
(δ+ 2)(δ+ 3)(δ+ 5)

+
p5

(δ+ 5)
.

By making use of (3.2)-(3.6) in (1.16)-(1.19), we get

s1 =
p1

2(δ+ 1)
, (3.7)

s2 =
1

2(δ+ 2)

[
p2 −

[
2δ2
− δ

2(1 + δ)2

]
p2

1

]
, (3.8)

s3 =
1

2(δ+ 3)

[[
3δ4 + 3δ3 + 4δ2 + 2δ

3(δ+ 1)3(δ+ 2)

]
p3

1 −

[
2δ2 + 2δ

(1 + δ)(δ+ 2)

]
p1p2 + p3

]
, (3.9)
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s4 =

[
−4δ7

− 14δ6
− 30δ5

− 57δ4
− 47δ3

− 22δ2
− 6δ

8(1 + δ)4(2 + δ)2(3 + δ)(δ+ 4)

]
p4

1 −

[
3δ+ 2δ2

4(2 + δ)2(4 + δ)

]
p2

2 (3.10)

−

[
2δ2 + 3δ

2(δ+ 1)(3 + δ)(4 + δ)

]
p1p3 +

[
3δ5 + 12δ4 + 18δ3 + 18δ2 + 9δ

2(1 + δ)2(2 + δ)2(3 + δ)(4 + δ)

]
p2

1p2

+

[
1

2(δ+ 4)

]
p4 ,

s5 =

[
5δ9 + 20δ8 + 70δ7 + 200δ6 + 266δ5 + 276δ4 + 179δ3 + 56δ2 + 8δ

10(1 + δ)5(2 + δ)2(3 + δ)(4 + δ)(5 + δ)

]
p5

1 (3.11)

−

[
4δ7 + 20δ6 + 50δ5 + 104δ4 + 110δ3 + 56δ2 + 16δ

2(1 + δ)3(2 + δ)2(3 + δ)(4 + δ)(5 + δ)

]
p3

1p2

+

[
3δ5 + 15δ4 + 28δ3 + 28δ2 + 16δ

2(1 + δ)2(2 + δ)(3 + δ)(4 + δ)(5 + δ)

]
p2

1p3

+

[
3δ5 + 18δ4 + 35δ3 + 40δ2 + 24δ

2(1 + δ)(2 + δ)2(3 + δ)(4 + δ)(5 + δ)

]
p1p2

2

−

[
2δ2 + 4δ

2(1 + δ)(4 + δ)(5 + δ)

]
p1p4 −

[
2δ2 + 2δ

2(2 + δ)(3 + δ)(5 + δ)

]
p3p2 +

[
1

2(5 + δ)

]
p5.

For s1, using lemma (2.1) in (3.7), we get

|s1| ≤
1

1 + δ
. (3.12)

Since 0 ≤
[

2δ2
− δ

2(1 + δ)2

]
≤ 1, by application of lemma (2.3) and lemma (2.1) in (3.8), we obtain

|s2| ≤
1

(2 + δ)
(3.13)

For s3, relation (3.9) can be written as

s3 =
1

2(δ+ 3)

[
p3 − 2

[
δ

(δ+ 2)

]
p1p2 +

[
3δ4 + 3δ3 + 4δ2 + 2δ

3(δ+ 1)2(δ+ 2)

]
p3

1

]
. (3.14)

Comparing the equation (3.14) with lemma (2.3), we obtain

k1 =
δ

(δ+ 2)
(3.15)

and

k2 =
3δ4 + 3δ3 + 4δ2 + 2δ

3(δ+ 1)2(δ+ 2)
. (3.16)

Clearly 0 ≤ k1 ≤ 1 and k1 ≥ k2. Moreover,

k1 (2k1 − 1) =
δ(δ− 2)
(δ+ 2)2 ≤ k2 . (3.17)

Given that all conditions outlined in lemma (2.2) are met, applying (2.6) yields the following

conclusion

|s3| =
1

(3 + δ)
. (3.18)
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To obtain the bound of s4, we use lemma (2.4) in (3.10), so that

s4 =
1

2(δ+ 4)

[
λ1p4

1 + λ2p2
2 + 2λ3p1p3 −

3
2
λ4p1p2 + p4

]
(3.19)

where,

λ1 =

[
−2δ8

− 14δ7
− 6δ6 + 38δ5

− 67δ4
− 153δ3

− 18δ2 + 42δ
4(1 + δ)4(2 + δ)2(3 + δ)

]
,

λ2 =

[
−3δ− 2δ2

2(2 + δ)2

]
,

λ3 =

[
−2δ2

− 3δ
2(δ+ 1)(3 + δ)

]
,

λ4 =

2
(
−δ5
− 4δ4

− 6δ3
− 6δ2

− 3δ
)

(1 + δ)2(2 + δ)2(3 + δ)

 .

Consequently, all the conditions outlined in lemma (2.2) and (2.4) are fulfilled and utilizing equation

(2.9), we get

|s4| ≤
1

4 + δ
. (3.20)

To calculate the bound of s5, compare the relation (3.11) with (2.10)

1
2(δ+ 5)

∣∣∣ξ1p5
1 + 3ξ2p1p2

2 + 3ξ3p2
1p3 − 4ξ4p3

1p2 − 2ξ5p1p4 − 2ξ6p2p3 + p5
∣∣∣ ≤ 2 . (3.21)

where,

ξ1 =
5δ9 + 20δ8 + 70δ7 + 200δ6 + 266δ5 + 276δ4 + 179δ3 + 56δ2 + 8δ

5(1 + δ)5(2 + δ)2(3 + δ)(4 + δ)
,

ξ2 =
3δ5 + 18δ4 + 35δ3 + 40δ2 + 24δ
3(1 + δ)(2 + δ)2(3 + δ)(4 + δ)

,

ξ3 =
3δ5 + 15δ4 + 28δ3 + 28δ2 + 16δ
(1 + δ)2(2 + δ)(3 + δ)(4 + δ)

,

ξ4 =
−

(
4δ7 + 20δ6 + 50δ5 + 104δ4 + 110δ3 + 56δ2 + 16δ

)
4(1 + δ)3(2 + δ)2(3 + δ)(4 + δ)

,

ξ5 =
δ(δ+ 2)

(1 + δ)(4 + δ)
,

ξ6 =
δ(δ+ 1)

(2 + δ)(3 + δ)
.

Thus, all the conditions of lemma (2.5) are satisfied and applications of (2.10) gives

|s5| ≤
1

(5 + δ)
(3.22)

which completes the proof of theorem (3.1). �
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Remark 3.1. Taking δ = 0 in theorem (3.1), we get the following results

|s1| ≤ 1,

|s2| ≤
1
2

,

|s3| ≤
1
3

,

|s4| ≤
1
4

,

|s5| ≤
1
5

.

Theorem 3.2. For any α ∈ C, where C is the set of complex numbers, if we consider the function f defined
by (1.4) to belong to the classA(δ); (0 ≤ δ ≤ 1), then∣∣∣s1 − αs2

2

∣∣∣ ≤ 1
2 + δ

max
{

1,

∣∣∣∣∣∣δ2
− δ+ α(2 + δ) − 1

(1 + δ)2

∣∣∣∣∣∣
}

. (3.23)

Proof. Making use of (3.7) and (3.8), we get∣∣∣s1 − αs2
2

∣∣∣ =

∣∣∣∣∣∣
 p2

1(1− δ)

(δ+ 1)(δ+ 2)
+

p2

2(δ)
−

p2
1

4(δ+ 1)2

− α  p2
1

4(1 + δ)2

∣∣∣∣∣∣
=

1
2(δ+ 2)

∣∣∣∣∣∣p2 −

[
2 + δ

2(δ+ 1)2 +
α(2 + δ)

2(δ+ 1)2 −
1− δ

2(δ+ 1)(δ+ 2)

]
p2

1

∣∣∣∣∣∣
=

1
2(δ+ 2)

∣∣∣∣∣∣p2 −

[
2δ2 + δ+ α(δ+ 2)

2(δ+ 1)2

]
p2

1

∣∣∣∣∣∣
=

1
2(δ+ 2)

∣∣∣p2 − κp2
1

∣∣∣
where,

κ =
2δ2 + δ+ α(δ+ 2)

2(δ+ 1)2 .

An application of lemma (2.2), we get∣∣∣s1 − αs2
2

∣∣∣ ≤ 1
2 + δ

max
{

1,

∣∣∣∣∣∣δ2
− δ+ α(2 + δ) − 1

(1 + δ)2

∣∣∣∣∣∣
}

which completes the proof of theorem (3.2). �

Putting δ = 0 in theorem (3.2), we get the following result.

Corollary 3.1. Let f given by (1.1), be in the classA(δ); (0 ≤ δ ≤ 1). Then for any α ∈ C, we have∣∣∣s1 − αs2
2

∣∣∣ ≤ 1
2

max {1, |2α− 1|} .

α = 1, we get the following result in form of corollary

Corollary 3.2. Let f given by (1.1), be in the classA(δ); (0 ≤ δ ≤ 1). Then for any α ∈ C, we have∣∣∣s1 − s2
2

∣∣∣ ≤ 1
2 + δ

max
{

1,

∣∣∣∣∣∣ δ2 + 1
(δ+ 1)2

∣∣∣∣∣∣
}

.
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Conclusion

In this paper, the authors present a new category of Sokol-Stankiewicz starlike functions, specif-

ically tailored for the open unit disk D and subordinate to a family, based on the coefficients of

caratheodory functions within this class, we examine the limits of certain initial coefficients and

provide an estimation for the Fekete-Szego functional. Utilizing quantum or q-calculus, researchers

can define this class and subsequently derive the corresponding results.

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the

publication of this paper.
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