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ABSTRACT. In this paper, we introduce a regression model using dummy variables within the framework of 

neutrosophic statistics. This model is designed for regression analysis under conditions of uncertainty, extending the 

classical regression model with dummy variables. We also present regression and analysis of variance under 

neutrosophic statistics. The application of our model is demonstrated through simulation and comparative studies, 

showing that the results differ from those obtained using classical regression. Our findings indicate that the degree of 

uncertainty significantly impacts the predicted and residual values. 

 

1. Introduction 

In general, regression analysis does not account for categorical variables in modeling and 

prediction. To address this, regression with dummy variables is employed. In this method, 

specific categories are assigned to variables, and regression models are created for these 

categories to facilitate prediction. The primary advantage of using dummy variables is that they 

enable the inclusion of categorical data in the analysis. The application of regression with 

dummy variables for analyzing structural change is demonstrated by [1]. [2] provides a detailed 

overview of dummy variables in regression analysis. [3] applied this technique for rainfall 

forecasting. [4] used it for insurance data analysis. [5] explored its use in a probabilistic 

environment with applications in quality control. [6] evaluated and applied the regression with 
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dummy variables. [7] presented its application in analyzing students' learning data. Further 

applications can be found in [8], [9], [10] and [11]. 

Neutrosophic statistics, a branch of mathematical science, is essential for managing, analyzing, 

presenting, and interpreting uncertain data. This field extends classical statistics by integrating 

degrees of uncertainty often neglected in traditional methods. Introduced by [12], neutrosophic 

statistics has shown increased flexibility for dealing with imprecise data, as evidenced by 

numerous subsequent studies. Recent research highlights the effectiveness of neutrosophic 

statistical analysis, especially with complex or e-commerce data. Significant contributions 

include studies by [13], [14], and [15], and [16]. [17] explored neutrosophic multiple regression 

analysis, while [18] examined split-plot design for neutrosophic data analysis. Additionally, [19] 

looked into the analysis of covariance for imprecise data, and [20] studied neutrosophic 

statistical analysis in the context of temperature variations across cities. [21] introduced 

neutrosophic kernel regression for mean estimation, further broadening the applications of 

neutrosophic statistical methods. 

Upon reviewing the literature, we discovered a substantial body of work on dummy regression 

within classical statistics. However, existing dummy regression methods are applicable only 

when all data observations are precise. In practice, statistical data often contains imprecision or 

intervals, rendering classical dummy regression methods unsuitable under these conditions of 

uncertainty. To the best of the author's knowledge, there has been no research on dummy 

regression using neutrosophic statistics. This paper aims to address this gap by proposing a 

dummy regression model under neutrosophic statistics. We will introduce a dummy regression 

framework that accommodates uncertainty and present an analysis of variance within this 

context. Additionally, we will conduct extensive simulation studies and apply the proposed 

regression model to real-world data. Our findings will demonstrate the significant impact of 

varying degrees of uncertainty on the predicted and residual values from the model. 

 

2. Neutrosophic Random Variables  

Consider two neutrosophic random variables, 𝑋𝑁 = 𝑋𝐿 + 𝑋𝐿𝐼𝑁 and 𝑌𝑁 = 𝑌𝐿 + 𝑌𝐿𝐼𝑁, each made up 

of two components. The terms 𝑋𝐿 and  𝑌𝐿 represent the determinate parts, akin to those in 

classical statistics. The terms 𝑋𝐿𝐼𝑁 and 𝑌𝐿𝐼𝑁 represent the indeterminate parts, with (𝐼𝑁𝜖[𝐼𝐿 , 𝐼𝑈]) 

denoting the degree of indeterminacy or uncertainty. When 𝐼𝑁𝜖[𝐼𝐿, 𝐼𝑈], these neutrosophic 
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random variables reduce to classical statistical variables. Assume 𝑋𝐿 and 𝑌𝐿 follow normal 

distributions with means 𝜇𝑥 and  𝜇𝑦, and variances 𝜎𝑥
2 and  𝜎𝑦

2, respectively, as stated by [22]. 

Neutrosophic logic extends fuzzy logic, with 𝐼𝑁
2 = 𝐼𝑁 and 𝐼𝑁

𝑛 = 𝐼𝑁 for 𝑛 ∈ 𝑁. Given this context, 

we outline some properties of these proposed neutrosophic random variables. 

𝐸( 𝑋𝑁) = 𝐸(𝑋𝐿 + 𝑋𝐿𝐼𝑁) = (1 + 𝐼𝑁)𝜇𝑥  and 𝐸( 𝑌𝑁) = 𝐸(𝑌𝐿 + 𝑌𝐿𝐼𝑁) = (1 + 𝐼𝑁)𝜇𝑦  

𝑉𝑎𝑟( 𝑋𝑁) = 𝑉𝑎𝑟(𝑋𝐿 + 𝑋𝐿𝐼𝑁) = (1 + 𝐼𝑁)2𝜎𝑥
2 and 𝑉𝑎𝑟( 𝑌𝑁) = 𝑉𝑎𝑟(𝑌𝐿 + 𝑌𝐿𝐼𝑁) = (1 + 𝐼𝑁)2𝜎𝑦

2 

𝑉𝑎𝑟( 𝑋𝑁 +  𝑌𝑁) = (1 + 𝐼𝑁)2𝜎𝑥
2 + (1 + 𝐼𝑁)2𝜎𝑦

2  

 

3. Methodology  

As previously discussed, regression with dummy variables is used for categorical variables. 

Under classical statistics, this type of regression can only be applied when data are precise. It is 

not suitable for use in situations involving uncertainty or imprecise data. In this section, we will 

modify the traditional regression with dummy variables by incorporating neutrosophic 

statistics. Our goal is to develop a regression model with dummy variables that remains 

effective even when observations are imprecise or uncertain. Assume the dependent variable 

𝑌𝑁 = 𝑌𝐿 + 𝑌𝑈𝐼𝑁 is a neutrosophic random variable, composed of a determinate part 𝑌𝐿 and an 

indeterminate part 𝑌𝑈𝐼𝑁, with 𝐼𝑁 representing the degree of indeterminacy. The neutrosophic 

regression with two dummy variables is then defined as follows: 

𝑌𝐿 + 𝑌𝑈𝐼𝑁 = 𝛽0 + 𝛽1𝑋 + 𝛽2𝐷𝑖 + 𝜖𝑖;𝐼𝑁𝜖[𝐼𝐿 , 𝐼𝑈],𝑖 = 1,2           (1) 

Note that 𝐷𝑖 represents the category, 𝑋 is the independent variable, and 𝛽0, 𝛽1, and 𝛽2,  are the 

intercept and coefficients of the model, respectively. 𝜖𝑖 is the random error. Let 𝐷 = 1  indicate 

defective items and 𝐷 = 0  indicate non-defective items, with 𝐼𝐿=0. The proposed regression 

model for defective items can be written as follows: 

𝑌𝐿 = 𝛽0 + 𝛽1𝑋 + 𝛽2 + 𝜖𝑖            (2) 

The proposed regression model for non-defective items can be expressed as follows: 

𝑌𝐿 = 𝛽0 + 𝛽1𝑋 + 𝜖𝑖             (3) 

Let 𝐼𝑁 = 𝐼𝑈. The proposed regression model for defective items can be expressed as follows: 

𝑌𝐿 + 𝑌𝑈𝐼𝑈 = 𝛽0 + 𝛽1𝑋 + 𝛽2 + 𝜖𝑖           (4) 

The proposed regression model for non-defective items can be formulated as follows: 

𝑌𝐿 + 𝑌𝑈𝐼𝑈 = 𝛽0 + 𝛽1𝑋 + 𝜖𝑖            (5) 
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Note that the proposed regression with dummy variables simplifies to the classical regression 

with dummy variables when 𝐼𝐿=0. 

3.1  Neutrosophic Analysis of Variance (NANOVA) 

In this section, we will extend the existing analysis of variance (ANOVA) under classical 

statistics by incorporating neutrosophic statistics. The neutrosophic analysis of variance 

(NANOVA) for regression with a dummy variable is given in Table 1.  

Table 1: NANOVA table  

 df Sum of square Mean square error 𝐹𝑁 test 

Regression 𝑘 𝑅𝑆𝑆𝑁 𝑅𝑆𝑆𝑁

𝑘
 

𝑅𝑆𝑆𝑁

𝑘

𝐸𝑆𝑆𝑁

𝑛 − 𝑘 − 1
⁄  

Residual  𝑛 − 𝑘 − 1 𝐸𝑆𝑆𝑁 𝐸𝑆𝑆𝑁

𝑛 − 𝑘 − 1
 

 

Total 𝑁 − 1 𝑅𝑆𝑆𝑁   

 

Note here that error/residual sum of square, say 𝐸𝑆𝑆𝑁 is given by 

𝐸𝑆𝑆𝑁 = ∑(𝑦𝑁 − 𝑌̂𝑁)
2
           (6) 

where 𝑌̂𝑁 denotes the predicted values.  

The regression of sum square, say 𝑅𝑆𝑆𝑁 is given by 

𝑅𝑆𝑆𝑁 = ∑(𝑌̂𝑁 − 𝑦̅𝑁)
2
           (7) 

The neutrosophic F-test is given by 

𝐹𝑁 =
𝑅𝑆𝑆𝐿

𝑘

𝐸𝑆𝑆𝐿

𝑛−𝑘−1
⁄ +

𝑅𝑆𝑆𝐿

𝑘

𝐸𝑆𝑆𝐿

𝑛−𝑘−1
⁄ 𝐼𝑁; 𝐼𝑁𝜖[𝐼𝐿, 𝐼𝑈]        (8) 

The proposed F-test simplifies to the classical F-test when 𝐼𝐿=0. 

 

4. Application 

In this section, we demonstrate the application of the proposed regression with dummy 

variables using neutrosophic data on expected defective item counts from three different 

machines, alongside the hours of operation for each machine. Notably, the anticipated defective 

counts from these machines yield intervals rather than exact figures. These data are detailed in 

Table 2. Notably, the imprecision in the defective item counts renders classical statistical 

regression with dummy variables infeasible. Hence, employing the proposed regression 

method within neutrosophic statistics becomes imperative. Table 3 presents a summary of our 

applied regression with dummy variables, revealing multiple R values ranging from 0.7110 to 

0.7229, and standard error between 4.3262 to 4.2286. Table 4 depicts the analysis of variance 
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(ANOVA), showing F-test values ranging from 2.38 to 2.55, all below the significance level of 

0.05, indicating insignificance in the results. The neutrosophic predicted and residual values are 

delineated in Table 5, illustrating a notable disparity between regression methodologies. Figures 

2-3 further elucidate the discrepancies in predicted and residual values between the proposed 

and existing methods. This study underscores the differential performance of regression with 

dummy variables under conditions of indeterminacy, advocating for the adoption of the 

proposed method in data scenarios fraught with uncertainty. The neutrosophic F-test is given 

by 

𝐹𝑁 = 2.38 + 2.55𝐼𝑁; 𝐼𝑁𝜖[0,0.06667]  

 

Table 2: The data of number of defectives 

Number of defectives Number of hour Machines 

[6,7] 3 A 

[8,12] 4 A 

[5,8] 3 A 

[9,11] 6 A 

[7,10] 9 B 

[3,6] 2 A 

[12,15] 8 B 

[2,3] 1 C 

[14,16] 7 C 

[19,20] 8 B 

[13,16] 3 B 

 

 

Table 3: SUMMARY OUTPUT 
    

      
Regression Statistics 

    
Multiple R [0.7110,0.7229] 

    
R Square [0.5055,0.5226] 

    
Adjusted R Square [0.2935,0.3180] 

    
Standard Error [4.3262,4.2286] 

    
Observations 11 
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Table 4: ANOVA table 
 
  df SS MS F Significance F 

  
Regression 3 [134,137] [44.63,45.67] [2.38,2.55] [0.1549,0.1385] 

  
Residual 7 [131,125] [18.72,17.88] 

    
Total 10 [265,262]       

  

        
  Coefficients Standard Error t Stat P-value    

Intercept [3.0976,5.6829] [2.9450,2.8786] [1.05,1.97] [0.3278,0.0889]    

Hours [0.8618,0.8659] [0.6168,0.6028 [1.40,1.44] [0.2050,0.1941]    

Machine B [3.6199,3.5061] [3.5804,3.4996] [1.01,1.00 [0.3457,0.3498    

Machine C [1.4553,0.3537] [3.6279,3.5461] [0.40,0.10] [0.7003,0.9234]    

      
Table 5: RESIDUAL OUTPUT 

    
Observation Predicted Defectives Residuals 

   
1 [5.6829,8.2805] [0.3171,-1.2805] 

   
2 [6.5447,9.1463] [1.4553,2.8537] 

   
3 [5.6829,8.2805] [-0.6829,-0.2805] 

   
4 [8.2683,10.8780] [0.7317,0.1220] 

   
5 [14.4736,16.9817] [-7.4736,-6.9817] 

   
6 [4.8211,7.4146] [-1.8211,-1.4146] 

   
7 [13.6118,16.1159] [-1.6118,-1.1159] 

   
8 [5.4146,6.9024] [-3.4146,-3.9024] 

   
9 [10.5854,12.0976] [3.4146,3.9024] 

   
10 [13.6118,16.1159] [5.3882,3.8841] 

   
11 [9.3028,11.7866] [3.6972,4.2134] 

   
 

 

Figure 1: The neutrosophic predicted values for the data 
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 Figure 2: The neutrosophic residuals values for the data 

 

5. Simulation 

This section presents a simulation study examining how the degree of indeterminacy (𝐼𝑁) affects 

key statistics, such as predicted values, residual values, percentiles, and the number of 

defectives. Utilizing data from Table 1 on the number of defectives, we explore various values 

of 𝐼𝑁  to observe their impact on these statistics. Predicted values derived from the model are 

reported in Table 6, while Table 7 displays residual values. Percentile values are detailed in 

Table 8, and the number of defectives is outlined in Table 9. An analysis of Table 6 reveals that 

as the degree of indeterminacy increases, predicted values exhibit an upward trend. For 

instance, with 𝐼𝑁=0.1, the predicted value is 9.1085, whereas with 𝐼𝑁=1, it rises to 16.5610. This 

behavior is further illustrated in Figure 3, where the predicted value curves for 𝐼𝑁=0.1 is notably 

lower than for other 𝐼𝑁values. Similarly, Table 7 demonstrates that increasing 𝐼𝑁 correlates with 

rising residual values. For instance, with 𝐼𝑁=0.1, the residual value is 4.2134, while with 𝐼𝑁=1, it 

increases to 8.4268. Figure 4 visually represents this trend, with the residual value curve for 

𝐼𝑁=0.1 notably lower compared to other 𝐼𝑁 values. Examining Table 8, we observe minimal 

fluctuation in percentile values with varying degrees of indeterminacy. For instance, when 

𝐼𝑁=0.1, the percentile value is 4.5455, consistent with the value when 𝐼𝑁=1. Figure 5 further 

confirms this stability, with the percentile value curve for 𝐼𝑁=0.1 mirroring that of other 𝐼𝑁 

values. In contrast, Table 9 shows a clear increase in the number of defectives as the degree of 

indeterminacy rises. For instance, with 𝐼𝑁=0.1, there are 3 defectives, whereas with 𝐼𝑁=1, this 
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figure grows to 6. Figure 6 illustrates this trend graphically, with the defective value curve for 

𝐼𝑁=0.1 notably lower than for other 𝐼𝑁 values. In conclusion, this study highlights the impact of 

uncertainty on predicted and residual values within the model. Therefore, decision-makers 

should exercise caution when employing regression with dummy variables in uncertain 

conditions. 

 

Table 6: Effect on Predicted values when 𝑛=11 

𝐼𝑁 = 0 𝐼𝑁 = 0.1 𝐼𝑁 = 0.2 𝐼𝑁 = 0.3 𝐼𝑁 = 0.4 𝐼𝑁 = 0.5 𝐼𝑁 = 0.6 𝐼𝑁 = 0.7 𝐼𝑁 = 0.8 𝐼𝑁 = 0.9 𝐼𝑁 = 1 

8.2805 9.1085 9.9366 10.7646 11.5927 12.4207 13.2488 14.0768 14.9049 15.7329 16.5610 

9.1463 10.0610 10.9756 11.8902 12.8049 13.7195 14.6341 15.5488 16.4634 17.3780 18.2927 

8.2805 9.1085 9.9366 10.7646 11.5927 12.4207 13.2488 14.0768 14.9049 15.7329 16.5610 

10.8780 11.9659 13.0537 14.1415 15.2293 16.3171 17.4049 18.4927 19.5805 20.6683 21.7561 

16.9817 18.6799 20.3780 22.0762 23.7744 25.4726 27.1707 28.8689 30.5671 32.2652 33.9634 

7.4146 8.1561 8.8976 9.6390 10.3805 11.1220 11.8634 12.6049 13.3463 14.0878 14.8293 

16.1159 17.7274 19.3390 20.9506 22.5622 24.1738 25.7854 27.3970 29.0085 30.6201 32.2317 

6.9024 7.5927 8.2829 8.9732 9.6634 10.3537 11.0439 11.7341 12.4244 13.1146 13.8049 

12.0976 13.3073 14.5171 15.7268 16.9366 18.1463 19.3561 20.5659 21.7756 22.9854 24.1951 

16.1159 17.7274 19.3390 20.9506 22.5622 24.1738 25.7854 27.3970 29.0085 30.6201 32.2317 

11.7866 12.9652 14.1439 15.3226 16.5012 17.6799 18.8585 20.0372 21.2159 22.3945 23.5732 

 

Table 7: Effect on Residual values when 𝑛=11 

𝐼𝑁 = 0 𝐼𝑁 = 0.1 𝐼𝑁 = 0.2 𝐼𝑁 = 0.3 𝐼𝑁 = 0.4 𝐼𝑁 = 0.5 𝐼𝑁 = 0.6 𝐼𝑁 = 0.7 𝐼𝑁 = 0.8 𝐼𝑁 = 0.9 𝐼𝑁 = 1 

-1.2805 -1.4085 -1.5366 -1.6646 -1.7927 -1.9207 -2.0488 -2.1768 -2.3049 -2.4329 -2.5610 

2.8537 3.1390 3.4244 3.7098 3.9951 4.2805 4.5659 4.8512 5.1366 5.4220 5.7073 

-0.2805 -0.3085 -0.3366 -0.3646 -0.3927 -0.4207 -0.4488 -0.4768 -0.5049 -0.5329 -0.5610 

0.1220 0.1341 0.1463 0.1585 0.1707 0.1829 0.1951 0.2073 0.2195 0.2317 0.2439 

-6.9817 -7.6799 -8.3780 -9.0762 -9.7744 -10.4726 -11.1707 -11.8689 -12.5671 -13.2652 -13.963 

-1.4146 -1.5561 -1.6976 -1.8390 -1.9805 -2.1220 -2.2634 -2.4049 -2.5463 -2.6878 -2.8293 

-1.1159 -1.2274 -1.3390 -1.4506 -1.5622 -1.6738 -1.7854 -1.8970 -2.0085 -2.1201 -2.2317 

-3.9024 -4.2927 -4.6829 -5.0732 -5.4634 -5.8537 -6.2439 -6.6341 -7.0244 -7.4146 -7.8049 

3.9024 4.2927 4.6829 5.0732 5.4634 5.8537 6.2439 6.6341 7.0244 7.4146 7.8049 

3.8841 4.2726 4.6610 5.0494 5.4378 5.8262 6.2146 6.6030 6.9915 7.3799 7.7683 

4.2134 4.6348 5.0561 5.4774 5.8988 6.3201 6.7415 7.1628 7.5841 8.0055 8.4268 
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Table 8: Effect on Percentiles values when 𝑛=11 

𝐼𝑁 = 0 𝐼𝑁 = 0.1 𝐼𝑁 = 0.2 𝐼𝑁 = 0.3 𝐼𝑁 = 0.4 𝐼𝑁 = 0.5 𝐼𝑁 = 0.6 𝐼𝑁 = 0.7 𝐼𝑁 = 0.8 𝐼𝑁 = 0.9 𝐼𝑁 = 1 

4.545455 4.5455 4.545455 4.5455 4.5455 4.5455 4.545455 4.5455 4.5455 4.5455 4.5455 

13.63636 13.6364 13.63636 13.6364 13.6364 13.6364 13.63636 13.6364 13.6364 13.6364 13.6364 

22.72727 22.7273 22.72727 22.7273 22.7273 22.7273 22.72727 22.7273 22.7273 22.7273 22.7273 

31.81818 31.8182 31.81818 31.8182 31.8182 31.8182 31.81818 31.8182 31.8182 31.8182 31.8182 

40.90909 40.9091 40.90909 40.9091 40.9091 40.9091 40.90909 40.9091 40.9091 40.9091 40.9091 

50 50 50 50 50 50 50 50 50 50 50 

59.09091 59.0909 59.09091 59.0909 59.0909 59.0909 59.09091 59.0909 59.0909 59.0909 59.0909 

68.18182 68.1818 68.18182 68.1818 68.1818 68.1818 68.18182 68.1818 68.1818 68.1818 68.1818 

77.27273 77.2727 77.27273 77.2727 77.2727 77.2727 77.27273 77.2727 77.2727 77.2727 77.2727 

86.36364 86.3636 86.36364 86.3636 86.3636 86.3636 86.36364 86.3636 86.3636 86.3636 86.3636 

95.45455 95.4545 95.45455 95.4545 95.4545 95.4545 95.45455 95.4545 95.4545 95.4545 95.4545 

 

 

Table 9: Effect on Number of defectives when 𝑛=11 

𝐼𝑁 = 0 𝐼𝑁 = 0.1 𝐼𝑁 = 0.2 𝐼𝑁 = 0.3 𝐼𝑁 = 0.4 𝐼𝑁 = 0.5 𝐼𝑁 = 0.6 𝐼𝑁 = 0.7 𝐼𝑁 = 0.8 𝐼𝑁 = 0.9 𝐼𝑁 = 1 

3 3 4 4 4 5 5 5 5 6 6 

6 7 7 8 8 9 10 10 11 11 12 

7 8 8 9 10 11 11 12 13 13 14 

8 9 10 10 11 12 13 14 14 15 16 

10 11 12 13 14 15 16 17 18 19 20 

11 12 13 14 15 17 18 19 20 21 22 

12 13 14 16 17 18 19 20 22 23 24 

15 17 18 20 21 23 24 26 27 29 30 

16 18 19 21 22 24 26 27 29 30 32 

16 18 19 21 22 24 26 27 29 30 32 

20 22 24 26 28 30 32 34 36 38 40 
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Figure 3: The neutrosophic predicted values for the simulated data 

 

 

 

Figure 4: The neutrosophic residual values for the simulated data 
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Figure 5: The neutrosophic Percentiles values for the simulated data 

 

 

Figure 6: The neutrosophic number of defectives for the simulated data 

 

6. Comparative Study 

In this section, we present the results obtained using the proposed regression model with 

dummy variables and compare them with the regression model with dummy variables under 

classical statistics. As previously mentioned, the proposed regression model reduces to the 

classical regression model with dummy variables when there is no uncertainty, i.e., 𝐼𝐿=0. The 
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results for the existing regression with dummy variables are reported in Tables 6-9. These tables 

show an increasing trend in the predicted values, residual values, and the number of defectives 

as 𝐼𝑁 increases from 0 to other values. For instance, when 𝐼𝐿=0, the predicted value from Table 6 

is 11.7866, and when 𝐼𝑁=0.20, the predicted value is 14.1439. Similarly, the residual value from 

Table 7 is 4.2134 when 𝐼𝐿=0, and 5.0561 when 𝐼𝑁=0.20. Additionally, the number of defectives 

from Table 9 is 20 when 𝐼𝐿=0, and 24 when 𝐼𝑁=0.20. These trends in predicted values, residuals, 

and the number of defectives are illustrated in Figures 7-9, which show that the curves for 𝐼𝐿=0 

are consistently lower than those for 𝐼𝑁=0.20. 

 

Figure 7: The predicted values from the proposed and predicted values 

 

Figure 8: The residual values from the proposed and predicted values 
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Figure 9: The number of defectives from the proposed and predicted values 

 

7. Concluding Remarks 

In this paper, we introduced a regression model using dummy variables within the framework 

of neutrosophic statistics. This proposed model is designed for regression analysis under 

conditions of uncertainty, extending the classical regression model with dummy variables. We 

demonstrated the application of our model through simulation and comparative studies, 

showing that the results differ from those obtained using classical regression. Our findings 

indicate that the degree of uncertainty significantly impacts the predicted and residual values. 

We recommend that decision-makers in fields such as metrology, business, industry, medicine, 

and education apply this regression model cautiously when dealing with uncertainty. The 

proposed regression model with dummy variables is suitable for uncertain environments, and 

future research could explore other regression models using this method.  
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