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Abstract. We studied a non-autonomous model for the spread of disease within a bee colony under the influence of

seasonality where we consider time-dependent parameters to integrate the impact of the periodicity of weather on the

Honeybee population dynamics. We proved that the system admits a unique bounded positive solution, and also a

global attractor set. The basic reproduction number, R0, was defined as the spectral radius of a linear integral operator.

We proved that the global dynamics is determined by this threshold parameter: If R0 ≤ 1, then the disease-free periodic

solution is globally asymptotically stable, while if R0 > 1, then the disease persists. We confirmed the theoretical results

trough an extensive numerical simulations.

1. Introduction

The bee colony develops according to a seasonal cycle subject to climatic variations and the

influence of the environment in which the bees are located. In temperate zones, the activity of the

colony is subject to the effect of the four seasons which punctuate its development. The biological

cycle of the colony is regulated by the laying of the queen which starts more or less early at the end

of winter and the beginning of spring depending on several parameters including the ecotypes of

bees and the climate. . The peak population of bees in the colony is reached in May-June and their

number gradually declines from July. At the end of the season, egg-laying depends heavily on

late-season temperatures before arriving at overwintering where a cluster of winter bees protects

the queen. These winter bees are biologically different from summer bees with more developed

fat bodies, a higher level of proteins in the hemolymph and in the hypopharyngeal glands, a
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lower level of juvenile hormone. These differences are longevity traits. The colony builds up its

winter bee reserve as soon as the queen’s egg laying declines. This is a kind of internal hormonal

regulation. Less brood, for example, allows nurses to store vitellogenin (longevity protein based

on royal jelly) in their fatty bodies. Naturally, seasonal climatic variations have an impact on

the development of the colony. Cold waves in spring when the queen’s clutch is developing

or warmer late seasons which lead to continued egg laying have consequences on the general

development of the colony. Climatic peaks, characterized by brutal and extreme episodes (frost,

rain, drought), are not without consequences on the life of the colony in the sense that they

disrupt its development, influencing the entry of pollen and nectar, modifying the investment

of the energy spent and facilitating the development of certain pathogens. The dynamics of the

bee population in the colony is more or less directly subject to these climatic hazards. A honey

bee colony is a population of related, interacting individuals. We are faced with a very complex

society influenced by complex population dynamics. Individuals in the superorganism have roles

or assignments that evolve within the group throughout their lives. Their lifespan is strongly

influenced by their role. We know that the division of labor between the population of workers

depends on the age and needs of the colony. According to a general principle, young workers are

mainly used in the hive for colony maintenance and brood care tasks such as feeding. It is only the

older workers who are responsible for supplying the colony with food and who have contact with

the external environment via foraging. This principle responds to a development process based

on utilitarian social behavior. This explains why this great principle can be called into question

depending on the needs of the colony. If the foragers see their numbers drop drastically under

the effect of environmental stress for example, the other workers in the colony will accelerate

their behavioral development to enter into a dynamic of compensation: they will therefore forage

early and undoubtedly die early. Conversely, if there is an overabundance of foragers and a lack

of nurses, the mental behavioral development of some foragers may regress and they may re-

assume the role of nurses. We talk about social inhibition. All of these behavioral adaptations are

governed by a now well-identified pheromonal mechanism. A clear interaction exists between the

assignment of colony workers and their longevity. If workers start foraging early to compensate

for the lack of foragers, their lifespan may be reduced and the time spent on brooding is also

reduced, which can have a significant impact on the growth of the colony. Likewise, the various

well-known stresses (diseases, varroa, etc.) can impact the growth of colonies and lead to the

weakening of worker populations. The widespread collapse of honey bee colonies has been the

subject of much discussion and research in recent years. Aside from their ecological importance,

honey bee populations have a large economical impact on agriculture in North America, Europe,

the Middle East, and Japan. The focus of research has been largely on environmental factors

outside the hive, such as pesticides or insecticides, which may cause death or injury to foraging

bees and jeopardize their return to the hive. The reduced number of foraging bees then leads to

younger hive bees being recruited prematurely to perform foraging duties and this chain reaction



Int. J. Anal. Appl. (2024), 22:75 3

ultimately leads to a disruption in the dynamics of the colony as a whole. A key element in

this category of disruption to honey bee population dynamics is the untimely death of a certain

proportion of foraging bees outside the hive and the consequences of this on the colony as a whole.

An important question here concerns the threshold in the death rate of foraging bees that would

determine the survival or collapse of the bee colony.

In the present paper we consider a different category of disruption to the healthy dynamics

of a bee colony in a seasonal environment, namely one in which the key hazard is an infection

by a communicable disease acquired by foraging bees outside the hive. The key difference here

is that foraging bees that have been infected would then transport the disease into the hive and

go on to infect other members of the colony within the hive. Here too the affected bees will

ultimately suffer an untimely death, but the effects on the dynamics of the colony are clearly

more complex because the infection in this case may now involve all members of the colony.

Several sophisticated mathematical models predicting the Honeybee population dynamics have

been proposed [1–3]. Since the seasonality of infectious diseases is very repetitive [4], several

mathematical models of infectious diseases that take into account of the seasonality were proposed

[5–13]. When considering the seasonality in a mathematical model, the basic reproduction number

can be approximated either trough the time-averaged model as in [14,15] or other ways as in [16–19].

The goal of this paper is to consider the influence of the seasonality on the spread of disease within

a bee colony with the underlying demographic dynamics of the colony. The basic reproduction

number, R0, was defined by using an integral linear operator. We perform the global analysis of

the proposed system. It is deduced that the disease-free solution is globally asymptotically stable

if R0 < 1. However, for the case where R0 > 1, we proved that the disease is persistent. The

theoretical results were confirmed by several numerical tests.

The paper is organized as follows. In Section 2, we describe a generalised compartmental model

for Honeybee population dynamics when it is influenced by the seasonality. We prove that the

virus-free periodic solution is stable if R0 < 1 however the disease will persist if R0 > 1. We give

in Section 3 several numerical tests confirming the theoretical results. We finish by giving some

concluding remarks in section 4.

2. MathematicalModeling for Honeybee Population Dynamics

In what follows we present a mathematical model that combines the normal demographic

dynamics of a honey bee colony with the dynamics of an infection affecting foraging bees outside

the hive at first and then spreading to the rest of the colony. This mathematical model generalise

the one given in [20] to a seasonal environment. We assume that adult bee population is divided

into a number of hive bees H, and a number of foraging bees F. In the model to be described below,

we extend this division into four categories, namely susceptible hive bees Hs, infected hive bees

Hi, susceptible foraging bees Fs, and infected foraging bees Fi. The proposed model is governed
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by a system of four ordinary differential equations [20]:
Ḣi(t) = [βHH(t)Hi(t) + βHF(t)Fi(t)]Hs(t) − (mw(t) + dH(t) + R(t))Hi(t),
Ḟi(t) = R(t)Hi(t) + [βHF(t)Hi(t) + βFF(t)Fi(t)]Fs(t) − (mw(t) + dF(t))Fi(t),
Ḣs(t) = mw(t)Lin(t) − (mw(t) + R(t))Hs(t) − [βHH(t)Hi(t) + βHF(t)Fi(t)]Hs(t),
Ḟs(t) = R(t)Hs(t) −mw(t)Fs(t) − [βHF(t)Hi(t) + βFF(t)Fi(t)]Fs(t),

(2.1)

with positive initial condition (Hi(0), Fi(0), Hs(0), Fs(0)) ∈ R4
+ and the food equation

˙f (t) = c(t)[Fs(t) + Fi(t)] − γA(t)[Hs(t) + Hi(t) + Fs(t) + Fi(t)] − γL(t)mw(t)Lin(t), (2.2)

with the positive initial condition f (0) ∈ R+. Hs(t), Hi(t), Fs(t), Fi(t) and f (t) describe the

susceptible hive bees, infected hive bees, susceptible foraging bees, infected foraging bees, and the

amount of food available at time t, respectively. Lin(t), βHH(t), βHF(t), βFF(t), mw(t), dH(t), dF(t),
R(t), γA(t), γL(t), and c(t) are continuous, positive T-periodic functions reflecting the influence of

seasonality of the environment on the Honeybee population dynamics.

βHH Contact rate between hive bees

βHF Contact rate between hive bees and foraging bees.

βFF Contact rate between foraging bees

mw Natural death rate of bees during the winter season

dH Death rate of hive bees due to infection

dF Death rate of foraging bees due to infection

R Recruitment rate of maturing hive bees to foraging duties

c Foraging rate (gm/day)

γA Consumption rate of food by foragers and hive bees (gm/day)

γL Consumption rate of food by larvae (gm/day)

mwLin The queen’s egg laying rate per day

Let ρ(t) to be a continuous, positive T-periodic function. Let us denote by ρu = max
t∈[0,T)

ρ(t) and

ρl = min
t∈[0,T)

ρ(t).

2.1. Preliminary. Consider a T-periodic m ×m continuous matrix function denoted by A(t) that

it is irreducible and cooperative and consider the following equation

ẇ(t) = A(t)w(t). (2.3)

admitting a fundamental matrix with positive entries as a solution. Let r(βA(T)) to be the spectral

radius of the matrix βA(T). According to the Perron-Frobenius theorem, r(βA(T)) is the principal

eigenvalue of βA(T). By using [21], we obtain

Lemma 2.1. [21]. (2.3) admits a positive T-periodic function x(t) such that w(t) = x(t)eat with

a =
1
T

ln(r(βA(T))).
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Let us consider the two-dimensional system Ḣs(t) = mw(t)Lin(t) − (mw(t) + R(t))Hs(t),
Ḟs(t) = R(t)Hs(t) −mw(t)Fs(t),

(2.4)

with the initial condition (Hs(0), Fs(0)) ∈ R2
+. The dynamics (2.4) admits a unique T-periodic

trajectory (H̄s(t), F̄s(t)) such that H̄s(t) > 0 and F̄s(t) > 0. This solution is globally attractive

in R2
+; therefore, the main system (2.1) admits a unique disease-free periodic trajectory E0(t) =

(0, 0, H̄s(t), F̄s(t)).

Proposition 2.1. The compact set

Γu =
{
(Hi, Fi, Hs, Fs) ∈ R4

+ : Hs + Hi + Fs + Fi ≤ Lu
in

}
is a positively invariant and attractor of trajectories of dynamics (2.1) with

lim
t→∞

Hs(t) + Hi(t) − H̄s(t) = 0,

lim
t→∞

Fs(t) + Fi(t) − F̄s(t) = 0.
(2.5)

Proof. Using the dynamics (2.1), we obtain

Ḣs(t) + Ḣi(t) + Ḟs(t) + Ḟi(t) = mw(t)[Lin(t) − (Hs(t) + Hi(t) + Fs(t) + Fi(t))] ≤ 0, (2.6)

if Hs(t) + Hi(t) + Fs(t) + Fi(t) ≥ Lu
in.

Let Z1(t) = Hs(t) + Hi(t) and Z2(t) = Fs(t) + Fi(t). For x1(t) = Z1(t) − H̄s(t), t ≥ 0, it follows

that ẋ1(t) ≤ −mw(t)x1(t), and thus lim
t→∞

x1(t) = lim
t→∞

(Z1(t)− H̄s(t)) = 0. By the same way, let x2(t) =

Z2(t) − F̄s(t), t ≥ 0, then ẋ2(t) ≤ −mw(t)x2(t), and thus lim
t→∞

x2(t) = lim
t→∞

(Z2(t) − F̄s(t)) = 0. �

In section 2.2, we aim to define the basic reproduction number; R0, the disease-free and then its

global stability for R0 ≤ 1. Later, in section 2.3, we aim to prove that compartments Hi(t) and Fi(t)
persists if R0 > 1.

2.2. Disease-free trajectory. In this section, we shall define the expression of the basic reproduc-

tion number; R0, according to the definition given by the theory in [19]. For Y = (Hi, Fi, Hs, Fs), let

F (t, Y) =


[βHH(t)Hi(t) + βHF(t)Fi(t)]Hs(t)

R(t)Hi(t) + [βHF(t)Hi(t) + βFF(t)Fi(t)]Fs(t)
0

0

 ,

V
−(t, Y) =


(mw(t) + dH(t) + R(t))Hi(t)

(mw(t) + dF(t))Fi(t)
(mw(t) + R(t) + βHH(t)Hi(t) + βHF(t)Fi(t))Hs(t)

(mw(t) + βHF(t)Hi(t) + βFF(t)Fi(t))Fs(t)

 and V+(t, Y) =


0

0

mw(t)Lin(t)
R(t)Hs(t)

.
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Our aim is to satisfy conditions (A1)–(A7) in [19, Section 1]. The dynamics (2.1) can be written in

the following way :

Ẏ = F (t, Y) −V(t, Y) = F (t, Y) −V−(t, Y) +V+(t, Y). (2.7)

Thus, the first five conditions (A1)–(A5) given in [19, Section 1] are satisfied.

The dynamics (2.7) admits a disease-free periodic trajectory Ȳ(t) = (0, 0, H̄s(t), F̄s(t)). Let

f (t, Y(t)) = F (t, Y) − V−(t, Y) + V+(t, Y) and M(t) =

(
∂ fi(t, Ȳ(t))

∂Y j

)
3≤i, j≤4

where fi(t, Y(t))

and Yi are the i-th components of f (t, Y(t)) and Y, respectively. An easy calculus gives us

M(t) =

 −(mw(t) + R(t)) 0

R(t) −mw(t)

 and thus r(βM(T)) < 1. Therefore, the trajectory Ȳ(t) is

linearly asymptotically stable in

Ωs =
{
(0, 0, Hs, Fs) ∈ R4

+

}
.

Therefore, the condition (A6) in [19, Section 1] also holds.

Let us define A+(t) and A−(t) to be two matrices defined by A+(t) =
(
∂Fi(t, Ȳ(t))

∂Y j

)
1≤i, j≤2

and

A−(t) =

(
∂Vi(t, Ȳ(t))

∂Y j

)
1≤i, j≤2

where Fi(t, Y) and Vi(t, Y) are the i-th components of F (t, Y) and

V(t, Y), respectively. An easy calculus gives us the expressions of matrices A+(t) and A−(t) as the

following:

A+(t) =

 βHH(t)H̄s(t) βHF(t)H̄s(t)
R(t) + βHF(t)F̄s(t) βFF(t)F̄s(t)

 , A−(t) =

 βHH(t)H̄s(t) βHF(t)H̄s(t)
βHF(t)F̄s(t) βFF(t)F̄s(t)

 .

Consider Z(s1, s2) to be the two by two matrix solution of the system
d
dt

Z(s1, s2) = −A−(s1)Z(s1, s2)

for any s1 ≥ s2, with Z(s1, s1) = I2, i.e., the 2 × 2 identity matrix. Therefore, condition (A7) is also

fulfilled.

Denote by CT the ordered Banach space of T-periodic functions that are defined on R 7→ R2,

with the maximum norm ‖.‖∞ and the positive cone C+
T = {ϕ ∈ CT : ϕ(s) ≥ 0, for any s ∈ R}.

Consider the linear operator L : CT → CT given by

(Lϕ)(ξ) =
∫
∞

0
Z(ξ, ξ−w)A+(ξ−w)ϕ(ξ−w)dw, ∀ξ ∈ R,ϕ ∈ CT (2.8)

Therefore, the basic reproduction number, R0, of system (2.1) is given by R0 = r(L).
Thus, the local stability of the disease-free periodic trajectory, E0(t) = (0, 0, H̄s(t), F̄s(t)), of the

dynamics (2.1) with respect to R0 is given hereafter.

Theorem 2.1. [19, Theorem 2.2]

• R0 < 1 ⇔ r(βF−V(T)) < 1.
• R0 = 1 ⇔ r(βF−V(T)) = 1.
• R0 > 1 ⇔ r(βF−V(T)) > 1.
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We deduce that E0(t) is asymptotically stable if R0 < 1 and it is unstable if R0 > 1.

Now, we show that if R0 < 1 then the disease-free periodic solution E0(t) = (0, 0, H̄s(t), F̄s(t)) is

globally asymptotically stable and then the disease dies out.

Theorem 2.2. E0(t) is globally asymptotically stable if R0 < 1. It is unstable if R0 > 1.

Proof. By Theorem 2.1, one has E0(t) is locally stable if R0 < 1 however it is unstable if R0 > 1.

Therefore, it remains to satisfy the global attractivity ofE0(t) onceR0 < 1. Using (2.5) in Proposition

2.1, for any κ1 > 0, ∃ T1 > 0 such that Hs(t) + Hi(t) ≤ H̄s(t) + κ1 and Fs(t) + Fi(t) ≤ F̄s(t) + κ1 for

t > T1. Therefore, Hs(t) ≤ H̄s(t) + κ1 and Fs(t) ≤ F̄s(t) + κ1; and Ḣi(t) ≤ [βHH(t)Hi(t) + βHF(t)Fi(t)](H̄s(t) + κ1) − (mw(t) + dH(t) + R(t))Hi(t),
Ḟi(t) ≤ R(t)Hi(t) + [βHF(t)Hi(t) + βFF(t)Fi(t)](H̄s(t) + κ1) − (mw(t) + dF(t))Fi(t),

(2.9)

for t > T1. Let M2(t) be the two by two matrix function given hereafter

M2(t) =

 βHH(t) βHF(t)
βHF(t) βFF(t)

 . (2.10)

using the equivalences in Theorem 2.1, one has r(ϕF−V(T)) < 1.

By choosing κ1 > 0 satisfying r(ϕF−V+κ1M2(T)) < 1 and we consider the dynamics hereafter, ˙̄Hi(t) = [βHH(t)H̄i(t) + βHF(t)F̄i(t)](H̄s(t) + κ1) − (mw(t) + dH(t) + R(t))H̄i(t),
˙̄Fi(t) = R(t)H̄i(t) + [βHF(t)H̄i(t) + βFF(t)F̄i(t)](H̄s(t) + κ1) − (mw(t) + dF(t))F̄i(t).

(2.11)

Using Lemma 2.1, there exists a positive T-periodic function x1(t) such that w(t) ≤ x1(t)ea1t with

w(t) = (Hi(t), Fi(t))
T and a1 = 1

T ln (r(ϕF−V+κ1M2(T)) < 0. Thus, lim
t→∞

Hi(t) = 0 and lim
t→∞

Fi(t) = 0.

Furthermore, we have that lim
t→∞

Fs(t)− F̄s(t) = lim
t→∞

Z1(t)−Hs(t)− H̄i(t) = 0 and lim
t→∞

Fs(t)− F̄s(t) =

lim
t→∞

Z2(t) − Fi(t) − F̄s(t) = 0. Then, we deduce that the disease-free periodic trajectory E0(t) is

globally attractive. �

Now, we show that if R0 > 1 then Hi(t) and Fi(t) are uniform persistence and then the disease

persists.

2.3. Endemic trajectory . Note that the dynamics (2.1) admits Σu as an invariant compact set.

Let Y0 = (Hi(0), Fi(0), Hs(0), Fs(0)) and Y1 = (0, 0, H̄s(0), F̄s(0)). Define P : R4
+ → R4

+ to be

the Poincaré map related to the dynamics (2.1) with Y0 7→ u(T, Y0), where u(t, Y0) is the unique

solution of dynamics (2.1) and initial condition u(0, Y0) = Y0
∈ R4

+. Let us define

Ω =
{
(Hi, Fi, Hs, Fs) ∈ R4

+

}
, Ω0 = Int(R4

+) and ∂Ω0 = Ω \Ω0.

Ω and Ω0 are both positively invariant. P is point dissipative. Define

M∂ =
{
(Y0) ∈ ∂Ω0 : Pk(Y0) ∈ ∂Ω0, for any k ≥ 0

}
.



8 Int. J. Anal. Appl. (2024), 22:75

By using the persistence theory given in [22] (also in [21, Theorem 2.3]), we have

M∂ =
{
(0, 0, Hs, Fs), Hs ≥ 0, Fs ≥ 0

}
. (2.12)

It is easy to see that M∂ ⊇
{
(0, 0, Hs, Fs), Hs ≥ 0, Fs ≥ 0

}
. To prove that M∂ \{

(0, 0, Hs, Fs), Hs ≥ 0, Fs ≥ 0
}
= ∅, consider (Y0) ∈M∂ \

{
(0, 0, Hs, Fs), Hs ≥ 0, Fs ≥ 0

}
.

If Fi(0) = 0 and 0 < Hi(0), then Ḟi(t)|t=0 = R(0)Hi(0) + βHF(0)Hi(0)Fs(0) > 0. If Fi(0) > 0 and

Hi(0) = 0, then Fi(t) > 0 and Hs(t) > 0 for all t > 0. Thus, for all t > 0, we obtain

Hi(t) =
[
Hi(0) +

∫ t
0 βHF(ω)Fi(ω)Hs(ω))e

∫ ω

0
(mw(z) + dH(z) + R(z) − βHF(z)Hs(z))dz

dω
]
×

e
−

∫ t

0
(mw(z) + dH(z) + R(z) − βHH(z)Hs(z))dz

> 0

for all t > 0. This means that Y(t) < ∂Ω0 for 0 < t � 1. Therefore, Ω0 is positively invariant from

which we deduce (2.12). Using the previous discussion, we deduce that there exists one fixed

point Y1 of P in M∂. We deduce, therefore, the uniform persistence of the disease as follows.

Theorem 2.3. Assume that R0 > 1. The dynamics (2.1) admits at least one periodic solution such that
there exists ε > 0 that satisfies ∀ Y0 ∈ Int(R+)2

×R2
+ and

lim inf
t→∞

Hi(t) ≥ ε > 0, lim inf
t→∞

Fi(t) ≥ ε > 0.

Proof. We aim to prove that P is uniformly persistent with respect to (Ω0, ∂Ω0) which permits to

prove that the solution of the dynamics (2.1) is uniformly persistent with respect to (Ω0, ∂Ω0) by

using [22, Theorem 3.1.1]. From Theorem 2.1, we have r(ϕF−V(T)) > 1. Therefore, there exists

ξ > 0 such that r(ϕF−V−ξM2(T)) > 1. Define the system of equations: Ḣα
s (t) = mw(t)Lin(t) − (mw(t) + R(t))Hα

s (t) − [βHH(t)α+ βHF(t)α]Hα
s (t),

Ḟαs (t) = R(t)Hα
s (t) −mw(t)Fαs (t) − [βHF(t)α+ βFF(t)α]Fαs (t).

(2.13)

P associated with the dynamics (2.13) admits a unique fixed point (H̄α
s , F̄αs ) which is globally

attractive in R2
+. By using the implicit function theorem, α 7→ (H̄α

s , F̄αs ) is continuous. Thus, α > 0

can be chosen small enough such that H̄α
s (t) > H̄s(t) − ξ, and F̄αs (t) > F̄s(t) − ξ, ∀ t > 0. Using the

continuity property of the solution with respect to the initial condition, ∃α∗ such that Y0 ∈ Ω0 with

‖Y0 − u(t, Y1)‖ ≤ α∗; then

‖u(t, Y0) − u(t, Y1)‖ < α for 0 ≤ t ≤ T.

We prove by contradiction that

lim sup
k→∞

d(Pk(Y0), Y1) ≥ α
∗
∀ Y0 ∈ Ω0. (2.14)

Suppose that lim sup
k→∞

d(Pk(Y0), Y1) < α
∗ for some Y0 ∈ Ω0. We can assume that d(Pk(Y0), Y1) < α∗

for all k > 0. Therefore

‖u(t,Pk(Y0)) − u(t, Y1)‖ < α ∀ k > 0 and 0 ≤ t ≤ T.



Int. J. Anal. Appl. (2024), 22:75 9

For t ≥ 0, let t = kT + t1, where t1 ∈ [0, T) and k = b
t
T
c . Therefore

‖u(t, Y0) − u(t, Y1)‖ = ‖u(t1,Pk(Y0)) − u(t1, Y1)‖ < α for all t ≥ 0.

Set (Hi(t), Fi(t), Hs(t), Fs(t)) = u(t, Y0). Therefore 0 ≤ Hi(t), Fi(t) ≤ α, t ≥ 0 and Ḣs(t) ≥ mw(t)Lin(t) − (mw(t) + R(t))Hs(t) − [βHH(t)α+ βHF(t)α]Hs(t),
Ḟαs (t) ≥ R(t)Hα

s (t) −mw(t)Fs(t) − [βHF(t)α+ βFF(t)α]Fs(t).
(2.15)

P applied to the dynamics (2.13) admits a fixed point (H̄α
s , F̄αs ) that it is globally attractive with

H̄α
s (t) > H̄s−ξ, and F̄αs (t) > F̄s(t)−ξ; then,∃ T2 > 0 such that Hs(t) > H̄s(t)−ξ and Fs(t) > F̄s(t)−ξ

for t > T2. Then, for t > T2, we have Ḣi(t) ≥ [βHH(t)Hi(t) + βHF(t)Fi(t)](H̄s(t) − ξ) − (mw(t) + dH(t) + R(t))Hi(t),
Ḟi(t) ≥ R(t)Hi(t) + [βHF(t)Hi(t) + βFF(t)Fi(t)](F̄s(t) − ξ) − (mw(t) + dF(t))Fi(t).

(2.16)

Since r(ϕF−V−ξM2(T)) > 1, then by using Lemma 2.1, there exists a positive T-periodic function

x2(t) such that J(t) ≥ ea2tx2(t) where a2 =
1
T

ln r (ϕF−V−ξM2(T)) > 0, then lim
t→∞

Hi(t) = ∞ which

contradicts the boundedness of the solution. Therefore, (2.14) is satisfied andP is weakly uniformly

persistent with respect to (Ω0, ∂Ω0). By applying Proposition 2.1, P has a global attractor. We

deduce that Y1 is an isolated invariant set inside Ω and that Ws(Y1)∩Ω0 = ∅. All trajectories inside

M∂ converges to Y1 which is acyclic in M∂. Applying [22, Theorem 1.3.1 and Remark 1.3.1], we

deduce that P is uniformly persistent with respect to (Ω0, ∂Ω0). Moreover, by using [22, Theorem

1.3.6], P has a fixed point Ỹ0 = (H̃i, F̃i, H̃s, F̃s) ∈ Ω0 with Ỹ0 ∈ Int(R+)2
×R2

+.

Suppose that H̃s = 0. From the first equation of the dynamics (2.1), H̃s(t) satisfies

˙̃Hs(t) = mw(t)Lin(t) − (mw(t) + R(t))H̃s(t) − [βHH(t)H̃i(t) + βHF(t)F̃i(t)]H̃s(t), (2.17)

where H̃s = H̃s(nT) = 0, n = 1, 2, 3, · · · . By using Proposition 2.1, ∀ κ3 > 0, ∃ T3 > 0 such that

H̃i(t), F̃i(t) ≤ Lu
in + κ3 for t > T3. Then, we obtain

˙̃Hs(t) ≥ mw(t)Lin(t) − (mw(t) + R(t))H̃s(t) − [βHH(t) + βHF](Lu
in + κ3)H̃s(t), for t ≥ T3. (2.18)

∃ n̄ such that nT > T3 for all n > n̄. Therefore

H̃s(nT) ≥
[
H̃s(0) +

∫ nT

0
mw(z)Lin(z)e

∫ z

0

(
(mw(t) + R(t)) + βHH(t) + βHF](Lu

in + κ3)
)
dt

dz
]

e
−

∫ nT

0

(
(mw(t) + R(t)) + βHH(t) + βHF](Lu

in + κ3)
)
dt

for all n > n̄ which contradicts the fact that H̃s(nT) = 0. Then, H̃s(0) > 0 and Ỹ0 is a positive

T-periodic solution of the dynamics (2.1). �
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3. Numerical Examples

In this section, we adopted the numerical simulations validating analytical findings. For all

numerical simulations, the periodic functions are given by
βHH(t) = β0

HH(1 + β1
HH cos(2π(t + φ))), βFF(t) = β0

FF(1 + β1
FF cos(2π(t + φ))),

βHF(t) = β0
HF(1 + β1

HF cos(2π(t + φ))), Lin(t) = L0
in(1 + L1

in cos(2π(t + φ))),

R(t) = R0(1 + R1 cos(2π(t + φ))), dH(t) = d0
H(1 + d1

H cos(2π(t + φ))),

dF(t) = d0
F(1 + d1

F cos(2π(t + φ))), mw(t) = m0
w(1 + m1

w cos(2π(t + φ))),

(3.1)

with |β1
HH|, |β

1
HF|, |β

1
FF|, |L

1
in|, |R

1
|, |d1

H|, |d
1
F| and |m1

w| describe the seasonal cycles frequencies, however,

φ describes the phase shift. The numerical values of β0
HH, β0

HF, β0
FF, L0

in, R0, d0
H, d0

F and m0
w are

considered in Table 1. However, the values of β1
HH, β1

HF, β1
FF, L1

in, R1, d1
H, d1

F and m1
w are considered

in Table 2.

Table 1. Used values for φ, β0
HH, β0

HF, β0
FF, L0

in, R0, d0
H, d0

F and m0
w.

Parameter φ β0
HH β0

HF β0
FF R0 d0

H d0
F m0

w

Value 0 0.4 0.6 0.5 0.8 0.4 0.5 0.7

Table 2. Used values for β1
HH, β1

HF, β1
FF, L1

in, R1, d1
H, d1

F and m1
w.

Parameter β1
HH β1

HF β1
FF L1

in R1 d1
H d1

F m1
w

Value 0.1 −0.15 −0.1 0.07 0.05 0.6 0.5 0.02

Three scenarios were consider here. The first one was allocated to the case of fixed environment.

However, the second was allocated to the case where only the contact rates are seasonal. Finally,

the last case were allocated to the case where all parameters are periodic. The numerical resolution

was done using explicit Runge-Kutta formulas of orders 4 and 5 under Matlab.

3.1. Case of autonomous system. Let us start by the simple case where there is no influence of the

seasonality on the dynamics. Thus, we restrict our attention on the autonomous dynamics (3.2),

i.e., all parameters are positive constants.
Ḣi(t) = [β0

HHHi(t) + β0
HFFi(t)]Hs(t) − (m0

w + d0
H + R0)Hi(t),

Ḟi(t) = R0Hi(t) + [β0
HFHi(t) + β0

FFFi(t)]Fs(t) − (m0
w + d0

F)Fi(t),
Ḣs(t) = m0

wL0
in − (m

0
w + R0)Hs(t) − [β0

HHHi(t) + β0
HFFi(t)]Hs(t),

Ḟs(t) = R0Hs(t) −m0
wFs(t) − [β0

HFHi(t) + β0
FFFi(t)]Fs(t).

(3.2)

with an initial condition (Hi(0), Fi(0), Hs(0), Fs(0)) ∈ R4
+.

The trivial steady state is given by E0 =

0, 0,
m0

wL0
in

m0
w + R0

,
R0L0

in

m0
w + R0

. We apply the next-generation
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matrix method introduced by Diekmann [23, 24] to calculate the basic reproduction number for

our system (3.2). See [25–30] for other applications. Let us define the matrices F and V by

F =

 β0
HHHs(t) β0

HFHs(t)
R0 + β0

HFFs(t) β0
FFFs(t)

 = 1
m0

w + R0

 m0
wL0

inβ
0
HH m0

wL0
inβ

0
HF

R0(m0
w + R0 + L0

inβ
0
HF) R0L0

inβ
0
FF

 ,

and V =

 m0
w + d0

H + R0 0

0 m0
w + d0

F

 with the inverse matrix V−1 of V given by

V−1 =


1

m0
w + d0

H + R0
0

0
1

m0
w + d0

F

 ,

and the next generation matrix is defined by

FV−1 =
1

m0
w + R0


m0

wL0
inβ

0
HH

m0
w + d0

H + R0

m0
wL0

inβ
0
HF

m0
w + d0

F
R0(m0

w + R0 + L0
inβ

0
HF)

m0
w + d0

H + R0

R0L0
inβ

0
FF

m0
w + d0

F

 .

The characteristic polynomial is given by

m0
w + R0

L0
in

P(X) =

∣∣∣∣∣∣∣∣∣∣∣∣∣
m0

wL0
inβ

0
HH

m0
w + d0

H + R0
−X

m0
wL0

inβ
0
HF

m0
w + d0

F
R0(m0

w + R0 + L0
inβ

0
HF)

m0
w + d0

H + R0

R0L0
inβ

0
FF

m0
w + d0

F

−X

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

 m0
wL0

inβ
0
HH

m0
w + d0

H + R0
−X

 R0L0
inβ

0
FF

m0
w + d0

F

−X

− R0(m0
w + R0 + L0

inβ
0
HF)

m0
w + d0

H + R0

m0
wL0

inβ
0
HF

m0
w + d0

F

= X2
−

 m0
wL0

inβ
0
HH

m0
w + d0

H + R0
+

R0L0
inβ

0
FF

m0
w + d0

F

 X

+m0
wR0L0

in

β0
FFβ

0
HHL0

in − β
0
HF(m

0
w + R0 + L0

inβ
0
HF)

(m0
w + d0

F)(m
0
w + d0

H + R0)

= X2
− aX + b

with a =
m0

wL0
inβ

0
HH

m0
w + d0

H + R0
+

R0L0
inβ

0
FF

m0
w + d0

F

and b = m0
wR0L0

in

β0
FFβ

0
HHL0

in − β
0
HF(m

0
w + R0 + L0

inβ
0
HF)

(m0
w + d0

F)(m
0
w + d0

H + R0)
.

The discriminant of the previous quadratic equation is given by

∆ =

 m0
wL0

inβ
0
HH

m0
w + d0

H + R0
+

R0L0
inβ

0
FF

m0
w + d0

F

2

− 4m0
wR0L0

in

β0
FFβ

0
HHL0

in − β
0
HF(m

0
w + R0 + L0

inβ
0
HF)

(m0
w + d0

F)(m
0
w + d0

H + R0)

=

 m0
wL0

inβ
0
HH

m0
w + d0

H + R0
−

R0L0
inβ

0
FF

m0
w + d0

F

2

+ 4m0
wR0L0

in

β0
HF(m

0
w + R0 + L0

inβ
0
HF)

(m0
w + d0

F)(m
0
w + d0

H + R0)
> 0.

Therefore the characteristic polynomial admits two roots X1 =
a +
√

∆
2

and X2 =
a−
√

∆
2

thus

the basic reproduction number for model (3.2) that it is defined as the spectral radius of the
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next-generation matrix, FV−1 is then given by.

R0 =

m0
wL0

inβ
0
HH

m0
w + d0

H + R0
+

R0L0
inβ

0
FF

m0
w + d0

F

+

√√ m0
wL0

inβ
0
HH

m0
w + d0

H + R0
−

R0L0
inβ

0
FF

m0
w + d0

F

2

+ 4m0
wR0L0

in

β0
HF(m

0
w + R0 + L0

inβ
0
HF)

(m0
w + d0

F)(m
0
w + d0

H + R0)

2
.

• If R0 ≤ 1, then model (3.2) has a trivial steady state E0 =

0, 0,
m0

wL0
in

m0
w + R0

,
R0L0

in

m0
w + R0

.

• If R0 > 1, then model (3.2) has two steady states E0 and an infected steady state Ē =

(H̄i, F̄i, H̄s, F̄s).

In Figure 1, the calculated trajectories of dynamics (3.2) converge asymptotically to Ē if R0 > 1.

However, in Figure 2, the calculated trajectories of the dynamics (3.2) converge to the disease-free

steady state E0, then confirming the global asymptotic stability of E0 if R0 ≤ 1.

In Figure 1, the calculated trajectories of the dynamics (3.2) converge asymptotically to the periodic

solution corresponding to the disease persistence if R0 > 1. In Figure 2, different initial conditions

were considered and for each one of them, the solution converge to the same periodic solution. In

Figures 3 and 4, the calculated trajectories of the dynamics (3.2) converge to the disease-free steady

state E0 =

0, 0,
m0

wL0
in

m0
w + R0

,
R0L0

in

m0
w + R0

 for the case where R0 ≤ 1.

Figure 1. Behavior of the dynamics (2.1) for L0
in = 10 then R0 ≈ 6.5059 > 1.
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Figure 2. Behavior of the dynamics (2.1) for L0
in = 10 then R0 ≈ 6.5059 > 1.

Figure 3. Behavior of the dynamics (2.1) for L0
in = 1 then R0 ≈ 0.8464 < 1.
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Figure 4. Behavior of the dynamics (2.1) for L0
in = 1 then R0 ≈ 0.8464 < 1.

3.2. Case of periodic contact between bees. The second case was allocated to the case where only

the contact rates, βHH, βHF and βFF are seasonal functions reflecting periodic contact between bees.

All the rest of parameters are fixed. We obtain the following system.
Ḣi(t) = [βHH(t)Hi(t) + βHF(t)Fi(t)]Hs(t) − (m0

w + d0
H + R0)Hi(t),

Ḟi(t) = R0Hi(t) + [βHF(t)Hi(t) + βFF(t)Fi(t)]Fs(t) − (m0
w + d0

F)Fi(t),
Ḣs(t) = m0

wL0
in − (m

0
w + R0)Hs(t) − [βHH(t)Hi(t) + βHF(t)Fi(t)]Hs(t),

Ḟs(t) = R0Hs(t) −m0
wFs(t) − [βHF(t)Hi(t) + βFF(t)Fi(t)]Fs(t).

(3.3)

with the positive initial condition (Hi(0), Fi(0), Hs(0), Fs(0)) ∈ R4
+.

We give the results of some numerical simulations confirming the stability of the steady states of

system (3.3). The approximation of the basic reproduction number R0 was performed using the

time-averaged system as in [14, 15]. Other definitions of R0 can be found in [17, 18].

In Figure 5, the calculated trajectories of the dynamics (3.3) converge asymptotically to the periodic

solution corresponding to the disease persistence if R0 > 1. In Figure 6, different initial conditions

were considered and for each one of them, the solution converge to the same periodic solution.

In Figures 7 and 8, the calculated trajectories of the dynamics (3.3) converge to the disease-free

periodic solution E0(t) = (0, 0, H̄s(t), F̄s(t)) for the case where R0 ≤ 1.
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Figure 5. Behavior of the dynamics (2.1) for L0
in = 10 then R0 ≈ 6.5059 > 1.

Figure 6. Behavior of the dynamics (2.1) for L0
in = 10 then R0 ≈ 6.5059 > 1.
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Figure 7. Behavior of the dynamics (2.1) for L0
in = 1 then R0 ≈ 0.8464 < 1.

Figure 8. Behavior of the dynamics (2.1) for L0
in = 1 then R0 ≈ 0.8464 < 1.



Int. J. Anal. Appl. (2024), 22:75 17

3.3. Case of full periodic system. In the third step, we performed numerical simulations for the

system (2.1) where all parameters were set as T-periodic functions. Thus the model is given by


Ḣi(t) = [βHH(t)Hi(t) + βHF(t)Fi(t)]Hs(t) − (mw(t) + dH(t) + R(t))Hi(t),
Ḟi(t) = R(t)Hi(t) + [βHF(t)Hi(t) + βFF(t)Fi(t)]Fs(t) − (mw(t) + dF(t))Fi(t),
Ḣs(t) = mw(t)Lin(t) − (mw(t) + R(t))Hs(t) − [βHH(t)Hi(t) + βHF(t)Fi(t)]Hs(t),
Ḟs(t) = R(t)Hs(t) −mw(t)Fs(t) − [βHF(t)Hi(t) + βFF(t)Fi(t)]Fs(t).

(3.4)

with the positive initial condition (Hi(0), Fi(0), Hs(0), Fs(0)) ∈ R4
+.

We give the results of some numerical simulations confirming the stability of the steady states

of system (3.4). The basic reproduction number R0 was approximated by using the time-averaged

system as in [14, 15]. Other definitions of R0 can be found in [17, 18].

In Figure 9, the calculated trajectories of the dynamics (3.4) converge asymptotically to the periodic

solution corresponding to the disease persistence ifR0 > 1. In Figure 10, different initial conditions

were considered and for each one of them, the solution converge to the same periodic solution.

In Figures 11 and 12, the calculated trajectories of the dynamics (3.4) converge to the disease-free

periodic solution E0(t) = (0, 0, H̄s(t), F̄s(t)) for the case where R0 ≤ 1.

Figure 9. Behavior of the dynamics (2.1) for L0
in = 10 then R0 ≈ 6.5059 > 1.
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Figure 10. Behavior of the dynamics (2.1) for L0
in = 10 then R0 ≈ 6.5059 > 1.

Figure 11. Behavior of the dynamics (2.1) for L0
in = 1 then R0 ≈ 0.8464 < 1.
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Figure 12. Behavior of the dynamics (2.1) for L0
in = 1 then R0 ≈ 0.8464 < 1.

4. Conclusions

In this paper, we consider the Honeybee population dynamics in a seasonal environment ob-

served in real life. We defined the basic reproduction number, R0 by using an integral operator.

It is proved that once R0 ≤ 1, all solution of the dynamics converge to the disease-free periodic

trajectory and that the disease persists if R0 > 1.

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the

publication of this paper.
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