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Typical Sequence of Real Numbers From the Unit Interval Has All Distribution
Functions
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Abstract. This note is devoted to the study of typical properties (in Baire category sense) of sequences of real numbers

in [0, 1]. We prove that the subset of sequences that have all distribution functions forms a residual set.

1. Introduction

The concept of Baire categories is one of the possibilities to compare sets. Let S be a metric

space. A subset A ⊆ S is called meager (or of first category) if A can be written as a countable

union of nowhere dense sets. Any set that is not meager is said to be of second category. The

complement of a meager set is called residual. We say that a typical element x has property P if the

set A = {x ∈ S|x has property P} is residual. For more details we refer the reader to Oxtoby [6].

There are analogous results in Baire category sense for the digit sequences of numbers z ∈ [0, 1]

and the sequences of real numbers. We mention some results. For a fixed positive integer s the

unique, non-terminating, base s expansion of a number z ∈ [0, 1] is

z =
d1(z)

s
+

d2(z)
s2 + · · ·+

dn(z)
sn + · · · with di(z) ∈ {0, 1, . . . , s− 1}.

For each digit i ∈ {0, 1, . . . , s − 1} let Πi(z; n) denote the frequency of the digit i among the first

n digit of z. It was proved by Šalát [7] that for a typical z, we have lim sup
n→∞

Πi(z; n) = 1 and

lim inf
n→∞

Πi(z; n) = 1. Define the frequency of the digits i ≤ x among the first n digits of z as

Fz,n(x) =
∑
i≤x

Πi(z; n).
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Let F denote the set of all distribution functions of discrete random variables that takes on one of

the possible values 0, 1, . . . , s− 1. Using this notation, we mention Olsen’s [4] fundamental result.

For a typical number z we have that for any f ∈ F there exists an increasing sequence n1, n2, . . .

for that lim
k→∞

Fz,nk(x) = f . Roughly speaking, the digit expansion of a typical number z has all

distribution functions from F .

We will consider the metric space S of all sequences of real numbers in [0, 1] with the Fréchet

metric

ρ(x, y) =
∞∑

k=1

1
2k

|xk − yk|

1 + |xk − yk|
,

where x = (xk), y = (yk). It is known that (S,ρ) is a complete metric space.

In [3] it was proved that the set of all uniformly distributed sequences is a dense subset of the

first Baire category in S. The same is true for the set of all statistically convergent sequences of

real numbers (cf. [8]). The sequence (xn) is maldistributed if for any non-empty interval I the set

{n ∈N : xn ∈ I} has upper asymptotic density 1.

Examples of maldistributed sequences are given in [9] and [2]. In [1] the authors proved that

a typical real sequence is maildistributed. The maildistribution property can be characterized

by one-jump distribution functions [9], so a typical real sequence has all one-jump distribution

functions.

The aim of this not to show that a typical real sequence has all distribution function.

1.1. Basic notations and properties of distribution functions. We recall some basic notations and

results concerning distribution functions of sequences (e.g., see [11] and [10]).

• Let x = (xn) be a sequence from unit interval [0, 1].

• Let χA(x) denote the characteristic function of the set A.

• Denote by

FN(x) =
#{n ≤ N; xn ∈ [0, x)}

N
=

1
N

N∑
n=1

χ[0,x)(xn)

the step distribution function for x ∈ [0, 1), and for x = 1 we define FN(1) = 1.

• A non-decreasing function g : [0, 1] → [0, 1], g(0) = 0, g(1) = 1 is called a distribution
function (abbreviated d.f.). We shall identify any two d.f.s coinciding at common points of

continuity. Denote by G the set of all distribution functions.

• A d.f. g(x) is a d.f. of the sequence x, if there exists an increasing sequence n1 < n2 < · · · of

positive integers such that

lim
k→∞

Fnk(x) = g(x)

almost everywhere on [0, 1]. This is equivalent to the weak convergence, i.e., the preceding

limit holds for every point x ∈ [0, 1] of continuity of g(x). Let G(x) denote the set of all d.f.s

of x.

• cγ(x) is one-step d.f. for which cγ(x) = 0 for x ∈ [0,γ] and cγ(x) = 1 for x ∈ (γ, 1].
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• For every sequence x there hold that G(x) is closed and G(x) is connected in the weak

topology defined by the metric

d(g1, g2) =

(∫ 1

0
(g1(x) − g2(x))2dx

) 1
2

. (1.1)

• For given a non–empty set H of d.f.s there exists a sequence x in [0, 1) such that G(x) = H
if and only if H is closed and connected.

• First Helly theorem. Every sequence gn(x) of d.f.s contains a subsequence gkn(x) such that

lim
n→∞

gkn(x) = g(x) for every x ∈ [0, 1]. Furthermore, the point limit g(x) is d.f. again.

2. Results

First, we show that a typical sequence has distribution function, which in given point has the

function value "near" to the prescribed value.

Lemma 2.1. Let a, b ∈ (0, 1). For a positive number γ < min{b, a
4 , 1−a

4 } denote byA(a, b,γ) the set of all
x = (xk) ∈ S for which there is an n0 such that for any n ≥ n0 we have

n∑
i=1

χ[0,a−γ)(xi) < (b− γ)n or
n∑

i=1

χ[0,a+γ)(xi) > (b + γ)n. (2.1)

ThenA(a, b,γ) is a set of the first Baire category in S.

Proof. We define continuous functions ha,γ : [0, 1]→ [0, 1] and ta,γ : [0, 1]→ [0, 1] by

ha,γ(x) =


1 for x ∈

[
0, a− 2γ]

a−γ−x
γ for x ∈ [a− 2γ, a− γ]

0 for x ∈ [a− γ, 1]

, ta,γ(x) =


1 for x ∈ [0, a + γ]

a+2γ−x
γ for x ∈ [a + γ, a + 2γ]

0 for x ∈ [a + 2γ, 1]

,

see Figure 1.

0
a

1

1
ha,γ(x)

a−γa−2γ
0

a

1
ta,γ(x)

a+γ a+2γ

Figure 1. Functions ha,γ(x) and ta,γ(x)

For these functions, we have ha,γ(x) ≤ χ[0,a)(x) ≤ ta,γ(x), where x ∈ [0, 1]. Using the functions

ha,γ, ta,γ we define for x ∈ S and fixed n the function fn : S→ [0, 1] in the following way:
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fn(x) = min

1,


n∑

i=1
ha,γ(xi)

(b− γ
2 )n


n . min

1,


(b + γ

2 )n

1 +
n∑

i=1
ta,γ(xi)


n .

DenoteA∗(a, b,γ) the set of all x ∈ S for which there exists the limit lim
n→∞

fn(x).

One can easily check that if (2.1) holds for all sufficiently large n, then fn(x) → 0 for n → ∞.

ThereforeA(a, b,γ) ⊂ A∗(a, b,γ).

Put f (x) = lim
n→∞

fn(x) for x ∈ A∗(a, b,γ). We shall prove that

(a) the function fn (n = 1, 2, . . . ) is a continuous function on S,

(b) f is discontinuous at each point ofA∗(a, b,γ).

(a) the continuity of the functions fn follows from the facts that the functions ha,γ, ta,γ are

continuous and the convergence in the space S is the coordinate convergence.

(b) Let y = (yk) ∈ A
∗(a, b,γ). We have the following two possibilities.

(1) f (y) < 1,

(2) f (y) = 1.

In case (1) we choose a positive ε such that ε < 1 − f (y). It is suffice to prove that in each ball

K(y, δ) = {x ∈ A∗(a, b,γ), ρ(x, y) < δ} (δ > 0) of the subspace A∗(a, b,γ) of S there exists an

element x ∈ S with | f (x) − f (y)| > ε.

Let δ > 0 is given. Choose a positive integer m such that
∞∑

k=m+1
2−k < δ. Choose a d.f. g(x) ∈ G

which is continuous in x = a and g(a) = b. Then there exists a sequence z ∈ S for that G(z) = {g(x)}.
Define the sequence x in the following way:

xk =


yk, if k ≤ m,
a
2 , if k > m and zk ∈ [0, a),
a+1

2 , if k > m and zk ∈ [a, 1]

Hence ρ(x, y) < δ. Furthermore, 1
n

n∑
i=1
χ[0,a)(xi), 1

n

n∑
i=1

ha,γ(xi) and 1
n

n∑
i=1

ta,γ(xi) tend to b as n → ∞.

Then fn(x) = 1 for all sufficiently large n and therefore f (x) = lim
n→∞

fn(x) = 1. Then immediately

follows

f (x) − f (y) = 1− f (y) > ε.

In case (2) we have g(y) = 1. Let δ, m, x have the previous meaning. Put

xk =


yk, if k ≤ m,

a+1
2 , if k > m and b ≥ 1

2
a
2 , if k > m and b < 1

2 .
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Then, clearly ρ(x, y) < δ, and for sufficiently large n one of the inequalities (2.1) must be true. So,

we have f (x) = lim
n→∞

fn(x) = 0, and therefore f (y) − f (x) = 1− 0 > 0. Hence the discontinuity of

f at y ∈ A∗(I,γ) has been proved.

The function f is a limit function (onA∗(a, b,γ) ) of the sequence of continuous functions ( fn)∞n=1

onA∗(a, b,γ). Then the function f is a function in the first Baire class onA∗(a, b,γ). According to

the well-known fact that the set of discontinuity points of an arbitrary function of the first Baire

class is a set of the first Baire category (cf. [6], p. 32), we see that the set A∗(a, b,γ) is of the first

Baire category inA∗(a, b,γ). ThusA∗(a, b,γ) is in S, too. SinceA(a, b,γ) ⊂ A∗(a, b,γ), the assertion

follows. �

Consequence 2.1. For any a, b ∈ (0, 1) the set

P = {x ∈ S| there is a g(x) ∈ G(x) for that g(a) = b}

is residual in S.

Proof. By Lemma 2.1 we have that the infinite union
⋃
∞

n=n0
A(a, b, 1

n ) (where 1
n0
< min{b, a

4 , 1−a
4 }) is

a meager set in S. Let x be a sequence from the complementary set to the mentioned infinite union.

For the step d.f. of x we have

b− γ ≤ FN(a− γ) ≤ FN(a) ≤ FN(a + γ) ≤ b + γ

for any γ = 1
n (n ≥ n0) and infinitely many N. In this case, First Helly theorem implies that there

exists a pointwise convergent subsequence with limit g(x) ∈ G(x) for that g(a) = b. So, x ∈ P and

it means that the set P is residual in S. �

Remark. The assertion of Lemma 2.1 holds for the case b = 1, too. For the case b = 0 we only

need to consider right-hand side inequality of (2.1).

In what follows, for simplicity, we will use the notation al for a finite sequence (ak)
l
k=1 and

the notation bl for a finite sequence (bk)
l
k=1. We extend the assertion of Lemma 2.1 for arbitrary

number of finite points.

Lemma 2.2. Let a positive integer l and finite sequences al and bl are given, where 0 < a1 < a2 · · · < al < 1

and 0 < b1 ≤ b2 · · · ≤ bl ≤ 1. For a positive number

γ < min
{
b1,

a1

4
,

a2 − a1

4
,

a3 − a2

4
, . . . ,

al − al−1

4
,

1− al

4

}
denote byA(al, bl,γ) the set of all x = (xk) ∈ S for which there is an n0 such that for any n ≥ n0 we have
that at least one of the inequalities

n∑
i=1

χ[0,a j−γ)(xi) < (b j − γ)n,
n∑

i=1

χ[0,a j+γ)(xi) > (b j + γ)n (2.2)

hold ( j = 1, 2, . . . , n). ThenA(al, bl,γ) is a set of the first Baire category in S.
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Proof. The proof is analogous to the proof of Lemma 2.1. We mention only the differences. The

crucial role is played by the function fn : S→ [0, 1] given by

fn(x) =
l∏

j=1

min

1,


n∑

i=1
ha j,γ(xi)

(b j −
γ
2 )n


n . min

1,


(b j +

γ
2 )n

1 +
n∑

i=1
ta j,γ(xi)


n

 .

DenoteA∗(al, bl,γ) the set of all x ∈ S for which there exists the limit lim
n→∞

fn(x). Similarly as before,

A(al, bl,γ) ⊂ A∗(al, bl,γ) and put f (x) = lim
n→∞

fn(x) for x ∈ A∗(al, bl,γ).

In case (b) (1) we prove that f is discontinuous in any y ∈ A∗(al, bl,γ), where f (y) < 1. Let a

positive ε < 1 − f (y) be given. For given δ > 0 we choose m by the same way. Choose a d.f.

g(x) ∈ G which is continuous in points x = a j and g(a j) = b j (for j = 1, 2, . . . , l. Then there exists

a sequence z ∈ S for that G(z) = {g(x)}. For simplicity, denote by a0 = 0 and al+1 = 1. Define the

sequence x in the following way:

xk =


yk, if k ≤ m,

a j−1+a j

2 if k > m and zk ∈ [a j−1, a j), j = 1, 2, . . . , l + 1

1, if k > m, and zk = 1.

Then 1
n

n∑
i=1
χ[0,a j)(xi), 1

n

n∑
i=1

ha j,γ(xi) and 1
n

n∑
i=1

ta j,γ(xi) tend to b j as n→∞ ( j = 1, 2, . . . , l). So, fn(x) = 1

for all sufficiently large n. Therefore f (x) = lim
n→∞

fn(x) = 1.

In case (b) (2) we have g(y) = 1. Let δ, m, x have the previous meaning. Put

xk =


yk, if k ≤ m,

al+1
2 , if k > m and b1 ≥

1
2

a1
2 , if k > m and b1 <

1
2 .

Then, clearly ρ(x, y) < δ, and for sufficiently large n at least one of the inequalities (2.2) have to

be true. So, we have f (x) = lim
n→∞

fn(x) = 0, and therefore f (y) − f (x) = 1− 0 > 0. The rest of the

proof follows by the same way as the proof of Lemma 2.1. �

Theorem 2.2. LetH be a subset of S with the property: if x ∈ H than for any positive integer l and arbitrary
finite rational sequences al and bl with the properties 0 < a1 < a2 · · · < al < 1 and 0 < b1 ≤ b2 · · · ≤ bl ≤ 1,
there is a d.f. g(x) ∈ G(x) for that g(a j) = b j ( j = 1, 2, . . . , l). ThenH is residual in S.

Proof. If we take unions of the sets A(al, bl,γ) for all positive integers l = 1, 2, . . . , for all rational

numbers a1, . . . , al, b1, . . . , bl, γ = 1
n (n = 1, 2 . . . ) satisfying the necessary conditions, we get

countable union of meager sets, which is still set of first Baire category in S. The complement of

this set is residual in S. �

Theorem 2.3. LetM = {x ∈ S |G(x) = G}. Then the set of sequencesM is residual in S.



Int. J. Anal. Appl. (2024), 22:72 7

Proof. Let us consider a sequence x ∈ H and a d.f. g(x) ∈ G. As g(x) is monotone on [0, 1], then it

is Riemann integrable. Thus, in the sense of (1.1) we can approximate g(x) with arbitrary precision

with d.f.s from G(x) which have positive rational function values in points of equidistant partition

of the unit interval. It means, that x ∈ M and the assertion follows. �

Problem 2.1. In [5] it was proved that a typical (in the sense of Baire) point x has the following property:
the all higher order Cesàro averages of digits of x have all distribution functions for discrete random variables
that takes possible values of the digits. Let us denote by C(x) the Cesàro average of the sequence x. It seems
to be interesting to ask whether the Cesàro average of a typical sequence has all distribution function? More
precisely, is the set of sequences

{x ∈ S |G(C(x)) = G}

also residual in S?
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