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ABSTRACT. The mathematical investigation of a multiphase flow transport model intended to clarify the interaction 

mechanism between reactions and diffusion processes in the gel granules containing the entrapped-cell 

photobioreactor Rhodopseudomonas palustris CQK 01 is presented in this research. The model uses two pertinent 

non-linear reaction-diffusion equations for biochemical interactions in the photobioreactor under steady-state 

circumstances to reflect the substrate and product concentration within the gel granules. The solid phase and liquid 

phase fluxes within the gel granules and their concentrations are analytically calculated using the asymptotic methods 

of the Akbari-Ganji method and the homotopy perturbation approach. Our analytical results and the numerical data 

obtained by MATLAB software are compared to determine accuracy. The analytical results agreed with the simulated 

results for all possible reaction-diffusion and saturation parameter values. In addition, the impacts of applying two 

limiting cases—saturated and unsaturated enzyme kinetics—were examined. The close correspondence between the 

simulated and analytical data demonstrates that the parameters in our suggested solution can be used to simulate the 

dynamic performance of a system. 

 

1. Introduction 

Sustainable energy is produced from resources that can support present activities without 

endangering the climate or the energy demands of future generations. Wind, solar, and 
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hydropower are some of the most widely used renewable energy sources. The need for 

sustainable energy is rising due to the depletion of fossil fuels. Humans and the environment 

have suffered dramatically due to an over-reliance on fossil fuels. Hydrogen is frequently seen as 

an appealing replacement for fossil fuels because of its efficient conversion and clean burning, 

which produces no CO2. Biological hydrogen generation is a secure, affordable, and sustainable 

method of producing hydrogen owing to its environmental dependability, capability to prevent 

ecological damage, and inexpensive equipment investment costs [1,2]. Photosynthetic bacteria 

(PSB), one of the microorganisms used to produce biological hydrogen, is a feasible option due 

to its high theoretical considerations, changing yield, and ability to prevent the oxygen 

suppression of biological systems brought on by oxygen-evolving activity [3]. In addition, PSB 

can treat waste by biodegrading a wide range of organic substrates and a broad spectrum of solar 

radiation [4]. As a result, this topic has attracted the attention of numerous researchers 

worldwide.  

Many experiments on PSB photohydrogen generation are currently being conducted in 

the suspended-cell photobioreactor because of the excellent mass transfer. The potential to repair 

and reuse cell mass and advances in cell concentration and operational stability make techniques 

for immobilizing cells, including biofilm, cell entrapment, and self-flocculation, promising [5]. 

Particularly, cell entrapment is a more rational approach because it can offer a steady and 

beneficial environment for the growth of PSB trapped by gel granules. In the entrapped-cell 

photobioreactor, it is essential to note that multiphase flow, mass transfer, and biochemical 

reactions all coincide. This has an impact on the features of the substrate concentration 

distribution and the efficiency of photo-hydrogen production. Therefore, it is advantageous to 

encourage the scale-up use of photo-hydrogen generation systems by providing complete 

analyses of the intricate biochemical responses and transport processes. However, it is 

exceedingly challenging to experimentally assess the multiphase flow and mass transfer 

concerning the biochemical activities in the entrapped-cell photobioreactor. 

The mathematical model is a potent tool that can explain how biochemical reactions and 

transfer mechanisms interact. Numerous mathematics models have been developed recently to 

forecast the creation of photohydrogen. The characteristics of Rhodopseudomonas palustris CQK 

01's substrate consumption and hydrogen production in an immobilized-cell photobioreactor 

were examined by Wang et al. [6,7]. An innovative annular fiber-illuminating biological 
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hydrogen reactor was investigated as part of a two-dimensional steady-state model developed 

by Zhang et al. to simulate substrate degradation and diffusion in the biofilm zone and substrate 

convection and distribution in the bulk fluid zone [8,9]. Yang et al. [10] used the lattice Boltzmann 

method to model a biological reaction in a substrate solution passing around a circular cylinder. 

Liao et al. [11] developed a two-phase flow and mass transfer model to forecast the production 

of photohydrogen and substrate biodegradation. Guo et al. [12] conducted a simulation study to 

examine the features of photo-hydrogen generation and substrate deterioration across different 

stacking configurations. 

Even if we have numerical solutions for every type of model, a thorough analysis of the 

system requires identifying the analytical solution. Recently, there has been a lot of focus on 

determining the reaction-diffusion equations' straightforward approximation analytical 

expression. Ganji et al. [13] used He's Energy Balance Method to derive approximations of 

solutions. Two methods are employed in the mathematical model of two-phase flow transfer in 

an immobilized-cell photobioreactor: the homotopy perturbation approach by Shirejini et al. [14] 

and the Adomian decomposition method by Praveen et al. [15]. Using Bernoulli Wavelets and a 

spectral method, Venkata Subrahmanyam Sajja et al. [16] solved reaction-diffusion equations in 

gel-granules. The problem based on electroactive polymer film placed on an inlaid micro disc 

electrode was solved analytically by Meena and Rajendran using HPM [17]. Jeyabharathi et al. 

used Akbari-Ganji and Taylor's series methodology to develop a packed bed immobilized-cell 

electrochemical photobioreactor [18]. 

Guo et al. outlined a multiphase mixture model for the entrapped-cell photobioreactor's 

photo-hydrogen generation performance and substrate concentration distribution features [19]. 

An analytical solution for the multiphase mixture model has yet to be published. In the current 

work, the homotopy perturbation approach and the Akbari-Ganji method are used to derive the 

analytical solution for a multiphase mixture model for the concentrations of substrate, hydrogen 

production, solid and liquid phase flows in the entrapped-cell photobioreactor. Furthermore, the 

effects of reaction-diffusion and saturation parameters on substrate (glucose) and product 

(hydrogen) concentrations are also investigated. 

 
2. Model construction and analysis 

Guo et al. [19] designed a cell-photobioreactor that is entrapped and filled with gel granules 

carrying PSB (Rhodopseudomonas palustris CQK 01), as shown in Fig. 1. The h-direction refers 
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to the substrate flow direction in the primary channel, and the r-direction relates to the product 

transport direction inside the gel granule. The entrapped-cell photobioreactor's peristaltic pump 

provides the substrate medium, and the only carbon source used is glucose. Once the glucose has 

diffused into gel granules from the primary channel, the entrapped cells biodegrade it. The 

produced gases and metabolites eventually diffuse out of the gel granules under the flow of the 

substrate medium in the entrapped-cell photobioreactor. Evidently, in the entrapped-cell 

photobioreactor, multiphase flow, biochemical reactions and mass transfer all coincide. 

 

FIGURE 1.  Schematic representation of the entrapped-cell photobioreactor. 

The model's development takes into account the following presumptions. Operating 

conditions for the entrapped-cell photobioreactor are steady-state. The substrate and product 

transfer processes are viewed as a one-dimensional flow along the h-direction in the significant 

channel. Darcy's law can be used to describe substrate and product transfer processes because it 

assumes that fluids' physical and thermal properties stay constant. The biochemical processes are 

limited to gel granules. The PSB's consistent distribution and activity within the gel granules are 

considered. The mole ratio of carbon dioxide to hydrogen, the sole gaseous product produced by 

substrate biodegradation, is 2:1 [20]. 

In the entrapped-cell photobioreactor, it is anticipated that the multiphase mixture model 

can adequately represent the processes of mass transfer and multiphase flow in the gel granules. 

Diffusion is crucial in the reactant and the product's mass movement. Applying Fick's law, the 

mass transfer equation for the substrate and hydrogen inside the gel granules is as follows [19]: 

                            𝐷𝐺𝑟
�̃� 𝑑2𝐶𝐺𝑟

�̃�

𝑑�̃�2 +
2𝐷𝐺𝑟

�̃�

�̃�

𝑑𝐶𝐺𝑟
�̃�

𝑑�̃�
=

𝜑𝐺𝑟
�̃�

𝐾1
                                                                                           (2.1)                                                              

                            𝐷𝐺𝑟
𝐻2̃ 𝑑2𝐶𝐺𝑟

𝐻2̃

𝑑�̃�2 +
2𝐷𝐺𝑟

𝐻2̃

�̃�

𝑑𝐶𝐺𝑟
𝐻2̃

𝑑�̃�
=

𝜑𝐺𝑟
𝐻2̃

𝐾2
                                                                                        (2.2) 
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Here, 

                            𝜑𝐺𝑟
�̃� = (

1

�̃�𝑋
𝑆

�̃� + �̃�) ᴪ̃𝐶 �̃� , 𝜑𝐺𝑟
𝐻2̃ = (

𝛼∗̃

�̃�𝑋
𝑆

�̃� + �̃�) ᴪ̃𝐶 �̃�, 

                     �̃� = 0.562137 exp (−5.1 (
𝑝�̃�

7−1
)2) exp (−4.5 (

�̃�

30−1
)2), 𝜇 ̃ = �̃�𝑚𝑎𝑥

𝐶𝐺𝑟
�̃�

𝐾�̃�+𝐶𝐺𝑟
�̃�

 , 

�̃�𝑚𝑎𝑥 = 0.25986 exp (−10.8 (
𝑝�̃�

7−1
)2) − 10.5 (−4.5 (

�̃�

30−1
)2), 

                            𝛿 = 0.0192exp (−21.2 (
𝑝�̃�

7−1
)2) − 8.1 (−4.5 (

�̃�

30−1
)2)                                               (2.3) 

The concentrations of substrate and hydrogen in the gel granules are represented by 𝐶𝐺𝑟
�̃�  

and 𝐶𝐺𝑟
𝐻2̃. For substrate and hydrogen in the gel granules; their corresponding effective diffusion 

coefficients are 𝐷𝐺𝑟
�̃�  and 𝐷𝐺𝑟

𝐻2̃. The substrate biodegradation rate for PSB trapped in the gel granules 

is indicated by 𝜑𝐺𝑟
�̃� , whereas the hydrogen production rate is represented by 𝜑𝐺𝑟

𝐻2̃. The specific 

growth rate of PSB and the maintenance coefficient are denoted by the symbols �̃� and �̃� , 

respectively; ᴪ̃ is the cell density increasing coefficient, and 𝐶 �̃� is the cell density. �̃�𝑋

𝑆

 represents 

the cell yield, The monod constant is 𝐾�̃�, the operation temperature is �̃�, and 𝑝�̃� stands for the 

medium pH values. �̃�𝑚𝑎𝑥 is the highest possible specific growth rate. For hydrogen production, 

�̃� is the non-growth-associated kinetic constant, and 𝛿 is the growth-associated kinetic constant. 

𝐾1and 𝐾2 represents the molecular weight of glucose and hydrogen respectively. The value of 𝑝�̃� 

and �̃� are considered to be 7 and 30℃ according to the experimental data. 

The corresponding boundary conditions for the dimensional Eqs. (2.1) and (2.2) are listed 

below: 

                         �̃� = 0,
𝑑𝐶𝐺𝑟

�̃�

𝑑�̃�
= 0;

𝑑𝐶𝐺𝑟
𝐻2̃

𝑑�̃�
= 0                                                                                                  (2.4)                            

                        �̃� =  �̃�, 𝐶𝐺𝑟
�̃� = 𝐶𝑙

�̃� ; 𝐶𝐺𝑟
𝐻2̃ = 𝐶𝑔

𝐻2̃                                                                                             (2.5)     

The bulk solutions are 𝐶𝑙
�̃�  and 𝐶𝑔

𝐻2̃, whereas �̃� represents the catalyst's radius. 

The system of equations (2.1) and (2.2) can be simplified by defining the following variables to 

transform it into a dimensionless form: 

𝜑1 =
�̃�2�̃�𝑚𝑎𝑥ᴪ̃𝐶 �̃�

�̃�𝑋

𝑆

𝐷𝐺𝑟
�̃� 𝐾�̃�

, 𝜑2 =
𝛿�̃�2�̃�𝑚𝑎𝑥ᴪ̃𝐶 �̃�𝐶𝑙

�̃�

�̃�𝑋

𝑆

𝐷𝐺𝑟
𝐻2̃𝐾�̃�𝐶𝑔

𝐻2̃
, 𝛼1 =

�̃�2�̃�ᴪ̃𝐶�̃�

𝐷𝐺𝑟
�̃� 𝐶𝑙

�̃�
, 𝛼2 =

�̃�2�̃�ᴪ̃𝐶 �̃�

𝐷𝐺𝑟
𝐻2̃𝐶𝑔

𝐻2̃
, 𝛾 =

𝐶𝑙
�̃�

𝐾�̃�
, 𝑈 =

𝐶𝐺𝑟
�̃�

𝐶𝑙
�̃�

, 

            𝑉 =
𝐶𝐺𝑟

𝐻2̃

𝐶𝑔
𝐻2̃

, 𝜀 =
�̃�

�̃�
                                                                                                                                         (2.6)                                                                                                                                                                                    
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By applying Eq. (2.6) in (2.1) and (2.2), the equations' dimensionless form becomes: 

                               
𝑑2𝑈(𝜀)

𝑑𝜀2 +
2

𝜀

𝑑𝑈(𝜀)

𝑑𝜀
=

1

𝐾1
[

(𝜑1)𝑈(𝜀)

(1+𝛾𝑈(𝜀))
+ 𝛼1]                                                                         (2.7) 

                              
𝑑2𝑉(𝜀)

𝑑𝜀2 +
2

𝜀

𝑑𝑉(𝜀)

𝑑𝜀
=

1

𝐾2
[

(𝜑2)𝑈(𝜀)

(1+𝛾𝑈(𝜀))
+ 𝛼2]                                                                           (2.8) 

The associated boundary conditions would change to: 

                              
𝑑𝑈

𝑑𝜀
=

𝑑𝑉

𝑑𝜀
= 0 when 𝜀 = 0                                                                                             (2.9) 

                              𝑈 = 𝑉 = 1 when 𝜀 = 1                                                                                             (2.10) 

Thus, in the entrapped-cell photobioreactor, the substrate biodegradation rate ∅�̃� can be 

determined by: 

                                ∅�̃� = �̃�𝐾1𝐷𝐺𝑟
�̃� 𝑑𝐶𝐺𝑟

�̃�

𝑑�̃�
│�̃�= �̃�                                                                                          (2.11) 

Where α is the elemental volume's specific gel granule area. 

Furthermore, the gas and liquid phase interfacial mass transfer rate can be written as follows: 

                                �̃�𝑙 = −∅�̃�                                                                                                                (2.12) 

                               �̃�𝑔 = ∅𝐻2̃ + ∅𝐶𝑂2̃                                                                                                                (2.13) 

Where the rates of generation of hydrogen and carbon dioxide, respectively, are denoted by ∅𝐻2̃ 

and ∅𝐶𝑂2̃, which can be defined as: 

                              ∅𝐻2̃ = �̃�𝐾2𝐷𝐺𝑟
𝐻2̃ 𝑑𝐶𝐺𝑟

𝐻2̃

𝑑�̃�
│�̃�= �̃�                                                                                                  (2.14) 

                              
2∅𝐶𝑂2̃

𝐾3
=

∅𝐻2̃

𝐾2
                                                                                                                          (2.15) 

Here,  𝐾3  denotes the molecular weight of carbon dioxide.  

The following gives the expressions for the liquid and gas phases under steady-state conditions:                  

                          𝜎𝑙 =
�̃�𝑙�̃�

𝛼𝐷𝐺𝑟
�̃� 𝐶𝑙

�̃�
= −

𝑑𝑈

𝑑𝜀
│𝜀= 1                                                                                                    (2.16) 

                          𝜎𝑔 =
�̃�𝑔�̃�

𝛼𝐷𝐺𝑟
𝐻2̃𝐶𝑔

𝐻2̃
=

𝑑𝑉

𝑑𝜀
│𝜀= 1(1 +

1

2
𝜂)                                                                                      (2.17) 

Where 𝜂 =
𝐾3

𝐾2
. 

3. Analytical expressions for concentrations and two phases using asymptotic methods 

3.1 An approximative analytical expression for the concentration of the 

substrate and product using HPM 

Recent techniques for solving non-linear differential equations include using hyperbolic 

functions [21-22], Taylor's series approach [23-24], Adomian decomposition method [25], the 
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homotopy analysis method [26], and variational iteration method [27]. Among these techniques, 

Ji-Huan's homotopy perturbation method (HPM) uses the linearization process to solve non-

linear equations [28-30]. This method would find and add a small parameter to the equation, 

utilizing the traditional perturbation method while eliminating its limitations. Numerous studies 

have used HPM to formulate an analytical solution for non-linear equations in various 

engineering and physical problems [31-32]. This approach combines traditional perturbation 

techniques with the topological concept of homotopy. The current study uses the HPM and 

Akbari-Ganji approach to analytically approximate equations (2.7) and (2.8). 

 By utilizing the HPM on Eqs. (2.7) and (2.8), analytical computations were generated for 

the concentrations, liquid, and gas phases for every parameter value (Appendix-A).  

                                 𝑈(𝜀) = 1 +
(𝛾𝛼1+𝛼1+𝜑1)(𝜀2−1)

6𝐾1(1+𝛾)
                                                                                                     (3.1) 

                                 𝑉(𝜀) = 1 +
(𝛾𝛼2+𝛼2+𝜑2)(𝜀2−1)

6𝐾2(1+𝛾)
                                                                                                     (3.2) 

                                 𝜎𝑙 =
(−𝛾−1)𝛼1−𝜑1

3𝐾1(1+𝛾)
                                                                                                                   (3.3) 

                                 𝜎𝑔 =
(𝛼2(1+𝛾)+𝜑2)(1+

𝜂

2
)

3𝐾2(1+𝛾)
                                                                                                         (3.4) 

 

3.2 Analytical solutions for the substrate and product concentrations utilizing 

the Akbari-Ganji method 

M. Akbari and D. Ganji proposed the Akbari-Ganji method (AGM) which has been effectively 

employed for determining analytical solutions for non-linear equations. The Akbari-Ganji 

Method is the new name for this method, formerly known as the Algebraic Method. Recently, 

this technique was applied to solve a non-linear problem in the chemical sciences [33-35]. 

Using the AGM to solve equations (2.7) and (2.8), analytical computations were generated for 

the concentrations and source terms of the liquid and gas phases (Appendix-B). 

                                     𝑈(𝜀) =
cosh (𝑙𝜀)

cosh (𝑙)
                                                                                                                      (3.5) 

                                     𝑉(𝜀) =
cosh (𝑚𝜀)

cosh (𝑚)
                                                                                                                    (3.6) 

                                    𝜎𝑙 = −
𝑑𝑈

𝑑𝜀
│𝜀= 1 = −

𝑙 𝑠𝑖𝑛ℎ (𝑙)

𝑐𝑜𝑠ℎ (𝑙)
                                                                                                (3.7) 

                                    𝜎𝑔 =
𝑑𝑉

𝑑𝜀
│𝜀= 1 (1 +

1

2
𝜂) =

𝑚 𝑠𝑖𝑛ℎ (𝑚)

𝑐𝑜𝑠ℎ (𝑚)
(1 +

1

2
𝜂)                                                                    (3.8) 
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4.  Limiting cases 

4.1 Analytical solutions for unsaturated enzyme kinetics 

In this case, the gel-granule's substrate concentration, 𝐶𝑙
�̃�, was lower than the Monod 

constant, 𝐾�̃�. This circumstance happened when 𝛾𝑈 ≪ 1. As a result, Eqs. (2.7) and (2.8) can be 

reduced to the following equations: 

                                  
𝑑2𝑈(𝜀)

𝑑𝜀2 +
2

𝜀

𝑑𝑈(𝜀)

𝑑𝜀
−

1

𝐾1
[(𝜑1)𝑈(𝜀) + 𝛼1] = 0                                                                          (4.1) 

                                  
𝑑2𝑉(𝜀)

𝑑𝜀2 +
2

𝜀

𝑑𝑉(𝜀)

𝑑𝜀
−

1

𝐾2
[(𝜑2)𝑈(𝜀) + 𝛼2] = 0                                                                           (4.2) 

The coupled Eqs. (4.1) and (4.2) approximate analytical results for concentrations, liquid and gas 

phases are expressed as follows by applying the HPM and the AGM: 

                                   𝑈(𝜀) = 1 +
((𝜑1+𝛼1)(𝜀2−1)

6𝐾1
                                                                                                     (4.3) 

                                   𝑉(𝜀) = 1 +
((𝜑2+𝛼2)(𝜀2−1)

6𝐾2
                                                                                                     (4.4) 

                                   𝜎𝑙 =
−((𝜑1+𝛼1)

3𝐾1
                                                                                                                   (4.5) 

                                   𝜎𝑔 =
𝜑2+𝛼2(2+𝜂)

6𝐾2
                                                                                                       (4.6) 

Eqs. (4.3) – (4.6) represents the analytical expressions obtained using the homotopy perturbation 

method. 

The analytical expressions are derived as follows after using the AGM to solve the coupled 

equations of (4.1) and (4.2): 

                                     𝑈(𝜀) =
cosh (𝑛𝜀)

cosh (𝑛)
                                                                                                                      (4.7) 

                                     𝑉(𝜀) =
cosh (𝑘𝜀)

cosh (𝑘)
                                                                                                                      (4.8) 

                                     𝜎𝑙 = −
𝑛 𝑠𝑖𝑛ℎ (𝑛)

𝑐𝑜𝑠ℎ (𝑛)
                                                                                                                       (4.9) 

                                     𝜎𝑔 =
𝑘 𝑠𝑖𝑛ℎ (𝑘)

𝑐𝑜𝑠ℎ (𝑘)
(1 +

1

2
𝜂)                                                                                                         (4.10) 

Where the constant coefficients n and k are obtained by solving these equations: 

                                     𝑛2 + 2 𝑛 tanh (𝑛) −
1

𝐾1
[(𝜑1)𝑈(𝜀) + 𝛼1] = 0                                                  (4.11)                       

                                     𝑘2 + 2 𝑘 tanh (𝑘) −
1

𝐾2
[(𝜑2)𝑈(𝜀) + 𝛼2] = 0                                                   (4.12) 
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4.2 Analytical expressions with saturated kinetics 

The limiting condition, where 𝛾𝑈 ≫ 1, occurs when the substrate utilization rate remains 

constant concerning the substrate concentration. The simplified equations of (2.7) and (2.8) can 

be defined below: 

                                       
𝑑2𝑈(𝜀)

𝑑𝜀2 +
2

𝜀

𝑑𝑈(𝜀)

𝑑𝜀
−

1

𝐾1
[

𝜑1

𝛾
+ 𝛼1] = 0                                                                 (4.13)                                  

                                        
𝑑2𝑉(𝜀)

𝑑𝜀2 +
2

𝜀

𝑑𝑉(𝜀)

𝑑𝜀
−

1

𝐾2
[

𝜑2

𝛾
+ 𝛼2] = 0                                                                 (4.14)                     

Analytical solutions by homotopy perturbation method: 

                                         𝑈(𝜀) = 1 +
((𝜑1+𝛾𝛼1)(𝜀2−1)

6𝛾𝐾1
                                                                             (4.15)                           

                                         𝑉(𝜀) = 1 +
((𝜑2+𝛾𝛼2)(𝜀2−1)

6𝛾𝐾2
                                                                            (4.16)                          

                                          𝜎𝑙 =
−((𝜑1+𝛾𝛼1)

3𝛾𝐾1
                                                                                             (4.17)                       

                                          𝜎𝑔 =
𝜑2+𝛾𝛼2(2+𝜂)

6𝛾𝐾2
                                                                                           (4.18)     

Analytical expressions by Akbari-Ganji method: 

                                          𝑈(𝜀) =
cosh (𝑝𝜀)

cosh (𝑝)
                                                                                             (4.19)                       

                                          𝑉(𝜀) =
cosh (𝑞𝜀)

cosh (𝑞)
                                                                                             (4.20)                           

                                          𝜎𝑙 = −
𝑝 𝑠𝑖𝑛ℎ (𝑝)

𝑐𝑜𝑠ℎ (𝑝)
                                                                                             (4.21)                          

                                          𝜎𝑔 =
𝑞 𝑠𝑖𝑛ℎ (𝑞)

𝑐𝑜𝑠ℎ (𝑞)
(1 +

1

2
𝜂)                                                                                (4.22)                           

After resolving these equations, the constant coefficients p and q can be determined: 

                                       𝑝2 + 2 𝑝 tanh (𝑝) −
1

𝐾1
[

𝜑1

𝛾
+ 𝛼1] = 0                                                             (4.23)                         

                                       𝑞2 + 2 𝑞 tanh (𝑞) −
1

𝐾2
[

𝜑2

𝛾
+ 𝛼2] = 0                                                             (4.24) 

 

5. Analytical results validation 

Numerical techniques were utilized to solve the non-linear reaction-diffusion equations (2.7) 

and (2.8), along with the appropriate boundary conditions (2.9) and (2.10). The MATLAB 

software's pdex4 function, a tool for resolving boundary value issues for partial differential 

equations, was utilized to solve these equations numerically. There was a satisfactory level of 

agreement when comparing the numerical solutions with the HPM and AGM. Two iterations of 

the HPM and simple algebraic calculations of AGM were used to calculate the approximate 
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concentrations. The reader might initially conclude that the AGM yields more accurate results 

than the HPM. As we only used the zeroth and first-order iterations in the latter technique, 

remember that the accuracy can be significantly boosted if additional iterations are encountered. 

The overall relative error for the HPM is 0.42 %, and AGM is 0.25 % for the various reaction-

diffusion parameter values (𝜑1, 𝜑2) displayed in Tables 1 and 2. 

 

Table 1. Comparison of the numerical simulation for the substrate concentration (𝑈) with the 

analytical results of Eqs. (3.1) and (3.5) for various values of parameter 𝜑1. 

 

𝜺 𝝋𝟏 = 0.1 𝝋𝟏= 3 𝝋𝟏 = 7 

Num HPM 

Eq. 

(3.1) 

HPM 

Error 

% 

AGM 

Eq. 

(3.5) 

AGM 

Error 

% 

Num HPM 

Eq. 

(3.1) 

HPM 

Error 

% 

AGM 

Eq. 

(3.5) 

AGM 

Error 

% 

Num HPM 

Eq. 

(3.1) 

HPM 

Error 

% 

AGM 

Eq. 

(3.5) 

AGM 

Error 

% 

0 0.9754 0.9753 0.01 0.9755 0.01 0.18 0.1754 2.56 0.18 0.00 0.5295 0.5278 0.32 0.5295 0.00 

0.2 0.9764 0.9763 0.01 0.9765 0.01 0.2052 0.2022 1.46 0.2015 1.80 0.5465 0.5471 0.11 0.5465 0.00 

0.4 0.9795 0.9793 0.02 0.9794 0.01 0.2872 0.2908 1.25 0.285 0.77 0.5985 0.6049 1.07 0.5984 0.02 

0.6 0.9846 0.9844 0.02 0.9845 0.01 0.4412 0.4423 0.25 0.439 0.50 0.6868 0.7012 2.10 0.6889 0.31 

0.8 0.9917 0.9914 0.03 0.9914 0.03 0.6845 0.686 0.22 0.6825 0.29 0.8127 0.8361 2.88 0.8235 1.33 

1 1 1 0.00 1 0.00 1 1 0.00 1 0.00 1 1 0.00 1 0.00 

Average error % 0.02 
 

0.01 
  

0.96 
 

0.56 
  

1.08 
 

0.28 

 

Table 2. Examine the numerical simulation for various reaction-diffusion parameter values 𝜑2 for 

product concentration (V) using eqns. (3.2) and (3.6). 

 

𝜺 𝝋𝟐 = 1 𝝋𝟐 = 3 𝝋𝟐 = 7 

Num HPM 

Eq. 

(3.2) 

HPM 

Error 

% 

AGM 

Eq. 

(3.6) 

AGM 

Error 

% 

Num HPM 

Eq. 

(3.2) 

HPM 

Error 

% 

AGM 

Eq. 

(3.6) 

AGM 

Error 

% 

Num HPM 

Eq. 

(3.2) 

HPM 

Error 

% 

AGM 

Eq. 

(3.6) 

AGM 

Error 

% 

0 0.8895 0.8889 0.07 0.8868 0.30 0.8351 0.8333 0.22 0.835 0.01 0.7807 0.7778 0.37 0.787 0.81 

0.2 0.894 0.8934 0.07 0.8913 0.30 0.8416 0.8401 0.18 0.8414 0.02 0.7897 0.7868 0.37 0.7964 0.85 

0.4 0.9075 0.907 0.06 0.905 0.28 0.8612 0.8605 0.08 0.861 0.02 0.8167 0.8141 0.32 0.8206 0.48 

0.6 0.9297 0.9296 0.01 0.9278 0.20 0.894 0.894 0.00 0.894 0.00 0.8632 0.8594 0.44 0.8633 0.01 

0.8 0.9614 0.9613 0.01 0.9602 0.12 0.9399 0.9414 0.16 0.9413 0.15 0.925 0.9229 0.23 0.923 0.22 

1 1 1 0.00 1 0.00 1 1 0.00 1 0.00 1 1 0.00 1 0.00 

Average error % 0.04 
 

0.2 
  

0.11 
 

0.03 
  

0.29 
 

0.4 
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6.  Results and discussion 

 

 

 FIGURE 2. Concentration of the substrate (𝑈) against non-dimensional distance (𝜀)  for different 

parameter values  𝜑1 and 𝛾 using Eqs. (3.1) and (3.5).                                             

  

 

FIGURE 3. Concentration of product (V) against distance (𝜀)   for different values of parameter 

𝜑2 and 𝛾 using Eqs. (3.2) and (3.6).  

 

Figures. 2 and 3 display the substrate concentration (𝑈) and product concentration (V) against 

the non-dimensional distance (𝜀) for a range of reaction-diffusion (𝜑1, 𝜑2)  and saturation 

parameter 𝛾 values using Eqs. (3.1) - (3.2) and Eqs. (3.5) - (3.6). From Figure. 2(a), it is observed 

that the values of the reaction-diffusion parameter increase 𝜑1 (=
�̃�2�̃�𝑚𝑎𝑥ᴪ̃𝐶 �̃�

�̃�𝑋
𝑆

𝐷𝐺𝑟
�̃� 𝐾�̃�

), and the 
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concentration of substrate decreases. An increase in the reaction-diffusion parameter increases 

the diffusion rate of substrate concentration in the gel-granule 𝐷𝐺𝑟
�̃� , cell yield �̃�𝑋

𝑆

 and monod 

constant of substrate 𝐾�̃�. It reduces the catalyst radius �̃�2, maximum growth rate of substrate 

�̃�𝑚𝑎𝑥 and cell density ᴪ̃𝐶 �̃�. In contrast, the hydrogen production rate increases as 𝜑1 grows 

because the biological reaction proceeds more quickly than the substrate diffusion. This leads to 

better substrate consumption and decreased substrate concentration at the gel-granule centre. 

The substrate concentration does not vary substantially with dimensionless distance and becomes 

constant when 𝜑1 is less than or equal to 0.1. It is evident from Figure. 2(b) that an increase in the 

saturation parameter 𝛾 increases the substrate concentration 𝑈 and decreases the mass transfer in 

the gel granules and substrate consumption rate. However, a low saturation degree is necessary 

for the gel granule to attain high mass transfer and substrate consumption. Therefore, the 𝜑1 and 

𝛾 should be kept at their maximum and lowest values to achieve greater substrate consumption 

and, as a result, greater hydrogen production. 

According to Figure. 3(a)-3(b), it can be inferred that increasing the value of the reaction-

diffusion parameter 𝜑2leads to a decrease in product concentration V, and an increase in the 

values of the saturation parameter 𝛾 increases the product concentration V. When 𝜑2 possesses a 

small value, the curve becomes a straight line, and the product concentration becomes stable. 

 

                                           

FIGURE 4. The liquid phase's source term 𝜎𝑙 is determined by using Eq. (3.3) and considering 

reaction-diffusion parameters 𝜑1 and the saturation value 𝛾. 
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FIGURE 5. Change of the source term gas phase 𝜎𝑔 for various values of parameter a) 𝜑2, b) 𝛾 

obtained by Eq. (3.5). 

 

The source term of the liquid 𝜎𝑙  and gas phases 𝜎𝑔  for various parameter values of (𝜑1, 𝜑2) 

and  𝛾 is depicted in Figure. 4(a-b) and Figure. 5(a-b) by applying Eqs. (3.4) and (3.5). It can be 

noticed from Fig. 4(a-b) that the liquid phase 𝜎𝑙  increases when the values of 𝛾 and 𝜑1 decrease 

and increase, respectively. As the values of 𝜑2 decrease and 𝛾 increase, the gas phase 𝜎𝑔 decreases. 

Figure. 5(a-b) supports this inference. Figures. 4 and 5 show that increasing 𝜑1 and 𝜑2 values and 

decreasing 𝛾 are necessary to achieve a high mass transfer rate between the gas and liquid phases. 

 

 

FIGURE 6. Effects of reaction-diffusion parameters (𝜑1, 𝜑2 ) on a) substrate (𝑈) and b) product 

concentration (V) for unsaturated enzyme kinetics obtained by Eqs. (4.3) -(4.4) and (4.7) -(4.8). 
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The dimensionless concentrations 𝑈 and V for the unsaturated enzyme kinetics limiting 

case are shown in Figure. 6 for various values of 𝜑1 and 𝜑2. From Figure. 6(a-b), it is inferred that 

the concentration of substrate and product increases when the values of parameters 𝜑1 and 𝜑2 

decrease, respectively. 

7. Conclusion 

This work presents a thorough theoretical analysis of multiphase flow transport in the 

entrapped-cell photobioreactor within the gel granules. The concentration expressions of the 

substrate, product, and liquid and gas phases were determined analytically using asymptotic 

methods of homotopy perturbation and the Akbari-Ganji method to solve the non-linear 

reaction-diffusion equations. The effects of several parameters, including the saturation and 

reaction-diffusion parameters, were discussed. Furthermore, two limiting situations with 

saturated and unsaturated enzyme kinetics were given closed-form analytical calculations. The 

resulting approximation expressions of the concentrations were proved to be highly accurate by 

direct comparison with dependable numerical data obtained by the MATLAB programme. The 

proposed solutions can accurately replicate the system's dynamic performance with the 

parameters, as demonstrated by the close correspondence between the simulated and analytical 

data. It is helpful to comprehend and forecast the system's behaviour with the expressions 

provided in this work. It is also a valuable tool for catalyst particle optimization. 

 

8. Appendix A (Homotopy perturbation method) 

 The homotopy was constructed for the Eqs. (2.7) - (2.8) as follows: 

 (1 − 𝑃) (
𝑑2𝑈(𝜀)

𝑑𝜀2 +
2

𝜀

𝑑𝑈(𝜀)

𝑑𝜀
) + 𝑃 (

𝑑2𝑈(𝜀)

𝑑𝜀
+

2

𝜀

𝑑𝑈(𝜀)

𝑑𝜀
−

1

𝐾1
[

(𝜑1)𝑈(𝜀)

(1+𝛾𝑈(𝜀))
+ 𝛼1]) = 0                                         (8.1) 

 (1 − 𝑃) (
𝑑2𝑉(𝜀)

𝑑𝜀2 +
2

𝜀

𝑑𝑉(𝜀)

𝑑𝜀
) + 𝑃 (

𝑑2𝑉(𝜀)

𝑑𝜀
+

2

𝜀

𝑑𝑉(𝜀)

𝑑𝜀
−

1

𝐾2
[

(𝜑2)𝑈(𝜀)

(1+𝛾𝑈(𝜀))
+ 𝛼2]) = 0                                            (8.2) 

The following are the analytical solutions to equations (8.1) and (8.2): 

 𝑈 = 𝑈0 + 𝑃𝑈1 + 𝑃2𝑈2 + ⋯                                                                                                                     (8.3) 

 𝑉 = 𝑉0 + 𝑃𝑉1 + 𝑃2𝑉2 + ⋯                                                                                                                         (8.4) 

Using the same powers of p-terms to rearrange the results of substituting Eqs. (8.3) and (8.4) into 

Eqs. (8.1) and (8.2) can be expressed as: 

 𝑃0:
𝑑2𝑈0

𝑑𝜀2 +
2

𝜀

𝑑𝑈0

𝑑𝜀
= 0,

𝑑𝑈0

𝑑𝜀
(0) = 0, 𝑈0(1) = 1                                                                                          (8.5) 

 𝑃0:
𝑑2𝑉0

𝑑𝜀2 +
2

𝜀

𝑑𝑉0

𝑑𝜀
= 0,

𝑑𝑉0

𝑑𝜀
(0) = 0, 𝑉0(1) = 1                                                                                             (8.6) 
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 𝑃1:
𝑑2𝑈1

𝑑𝜀2 +
2

𝜀

𝑑𝑈1

𝑑𝜀
−

1

𝐾1
[

(𝜑1)𝑈0

(1+𝛾𝑈0)
+ 𝛼1] = 0,

𝑑𝑈1

𝑑𝜀
(0) = 0, 𝑈1(1) = 0                                                               (8.7) 

 𝑃1:
𝑑2𝑉1

𝑑𝜀2 +
2

𝜀

𝑑𝑉1

𝑑𝜀
−

1

𝐾2
[

(𝜑2)𝑈0

(1+𝛾𝑈0)
+ 𝛼2] = 0,

𝑑𝑉1

𝑑𝜀
(0) = 0, 𝑉1(1) = 0                                                                 (8.8) 

The following outcomes can be attained by solving equations (8.5) - (8.8): 

 𝑈0 = 1; 𝑉0 = 1                                                                                                                                          (8.9) 

 𝑈1 =
(𝛾𝛼1+𝛼1+𝜑1)(𝜀2−1)

6𝐾1(1+𝛾)
; 𝑉1 =

(𝛾𝛼2+𝛼2+𝜑2)(𝜀2−1)

6𝐾2(1+𝛾)
                                                                                       (8.10) 

Therefore, the solution can be represented as follows by HPM: 

 𝑈 = lim
𝑃→1

𝑈 = 𝑈0 + 𝑈1 = 1 +
(𝛾𝛼1+𝛼1+𝜑1)(𝜀2−1)

6𝐾1(1+𝛾)
                                                                                            (8.11) 

 𝑉 = lim
𝑃→1

𝑉 = 𝑉0 + 𝑉1 = 1 +
(𝛾𝛼2+𝛼2+𝜑2)(𝜀2−1)

6𝐾2(1+𝛾)
                                                                                         (8.12) 

 

9. Appendix B (Akbari-Ganji method) 

It is assumed that the approximate trial solution for equations (2.7) and (2.8) is: 

 𝑈(𝜀) = 𝐸 cosh(𝑙𝜀) + 𝐹 sinh (𝑙𝜀)                                                                                                             (9.1) 

 𝑉(𝜀) = 𝐺 cosh(𝑚𝜀) + 𝐻 sinh (𝑚𝜀)                                                                                                            (9.2) 

Here, E, F, G and H are constants. By applying the boundary conditions Eqs. (2.9) – (2.10) in Eqs. 

(9.1) – (9.2), the values of constants are obtained as: 

 𝐸 =
1

cosh (𝑙)
, 𝐹 = 0, 𝐺 =

1

cosh (𝑚)
, 𝐻 = 0                                                                                                          (9.3) 

Equation (9.3) is substituted in Eqs. (9.1) – (9.2) to get 

 𝑈(𝜀) =
cosh (𝑙𝜀)

cosh (𝑙)
                                                                                                                                              (9.4) 

 𝑉(𝜀) =
cosh (𝑚𝜀)

cosh (𝑚)
                                                                                                                                              (9.5) 

Where 𝑙 and 𝑚 are the constant coefficients. 

The equations (2.7) – (2.8) can be rearranged in the following manner to get the values of l and m: 

 𝑓(𝜀) =
𝑑2𝑈(𝜀)

𝑑𝜀2 +
2

𝜀

𝑑𝑈(𝜀)

𝑑𝜀
−

1

𝐾1
[

(𝜑1)𝑈(𝜀)

(1+𝛾𝑈(𝜀))
+ 𝛼1] = 0                                                                                       (9.6) 

 𝑔(𝜀) =
𝑑2𝑉(𝜀)

𝑑𝜀2 +
2

𝜀

𝑑𝑉(𝜀)

𝑑𝜀
−

1

𝐾2
[

(𝜑2)𝑈(𝜀)

(1+𝛾𝑈(𝜀))
+ 𝛼2] = 0                                                                                    (9.7) 

Equations (9.6) - (9.7) can be expressed as follows when the equations (9.4) and (9.5) have been 

substituted in equations (9.6) -(9.7) and at 𝜀 = 1. 

 𝑓(1) = 𝑙2 + 2 𝑙 tanh (𝑙) −
1

𝐾1
[

𝜑1

(1+𝛾)
+ 𝛼1] = 0                                                                                             (9.8) 

  𝑔(1) = 𝑚2 + 2 𝑚 tanh (𝑚) −
1

𝐾2
[

(𝜑2)

(1+𝛾)
+ 𝛼2] = 0                                                                                     (9.9) 
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By solving the above two equations, we can obtain the values of the constant coefficients l and m. 

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the 

publication of this paper. 
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