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Abstract. This paper is concerned with the concept of weakly (τ1, τ2)-continuous multifunctions. Moreover, several

characterizations of weakly (τ1, τ2)-continuous multifunctions are investigated.

1. Introduction

The concept of weakly continuous functions was introduced by Levine [12]. Furthermore,

Levine [11] introduced the notion of semi-continuous functions. Neubrunnová [14] showed that

semi-continuity is equivalent to quasi-continuity due to Marcus [13]. Popa and Stan [19] introduced

and studied the concept of weakly quasi-continuous functions. Weak quasi-continuity is implied

by both quasi-continuity and weak continuity which are independent of each other. Rose [20]

introduced the notion of subweakly continuous functions and investigated the relationships be-

tween subweak continuity and weak continuity. Noiri [15] studied properties of some weak forms

of continuity. In 2002, Popa and Noiri [16] introduced the concept of weakly (τ, m)-continuous

functions as functions from a topological space into a set satisfying some minimal conditions and

investigated several characterizations of weakly (τ, m)-continuous functions. Popa and Noiri [17]

introduced and investigated the notion of weakly M-continuous functions as functions from a set

satisfying some minimal conditions into a set satisfying some minimal conditions. In particular,

several characterizations of pairwise weakly M-continuous functions were presented in [8]. Ekici

et al. [9] introduced a new class of functions called weakly λ-continuous functions which is weaker

than λ-continuous functions and studied some fundamental properties of weakly λ-continuous
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functions. In [3], the present author introduced the concept of weakly ?-continuous functions and

investigated the relationships between weak ?-continuity and θ(?)-continuity. Moreover, some

characterizations of β(?)-continuous multifunctions were studied in [5]. Popa and Noiri [18]

introduced the concept of weakly m-continuous multifunctions and discussed the relationships

between almost m-continuity and weak m-continuity. Laprom et al. [10] introduced and inves-

tigated the notion of almost β(τ1, τ2)-continuous multifunctions. Viriyapong and Boonpok [21]

introduced and studied the concept of weakly (τ1, τ2)α-continuous multifunctions. Furthermore,

several characterizations of weakly (τ1, τ2)δ-semicontinuous multifunctions and almost weakly

(τ1, τ2)-continuous multifunctions were established in [6] and [4], respectively. In this paper, we

introduce the concept of weakly (τ1, τ2)-continuous multifunctions. We also investigate several

characterizations of weakly (τ1, τ2)-continuous multifunctions.

2. Preliminaries

Throughout the present paper, spaces (X, τ1, τ2) and (Y, σ1, σ2) (or simply X and Y) always mean

bitopological spaces on which no separation axioms are assumed unless explicitly stated. Let A
be a subset of a bitopological space (X, τ1, τ2). The closure of A and the interior of A with respect

to τi are denoted by τi-Cl(A) and τi-Int(A), respectively, for i = 1, 2. A subset A of a bitopological

space (X, τ1, τ2) is called τ1τ2-closed [7] if A = τ1-Cl(τ2-Cl(A)). The complement of a τ1τ2-closed

set is called τ1τ2-open. Let A be a subset of a bitopological space (X, τ1, τ2). The intersection of all

τ1τ2-closed sets of X containing A is called the τ1τ2-closure [7] of A and is denoted by τ1τ2-Cl(A).

The union of all τ1τ2-open sets of X contained in A is called the τ1τ2-interior [7] of A and is denoted

by τ1τ2-Int(A).

Lemma 2.1. [7] Let A and B be subsets of a bitopological space (X, τ1, τ2). For the τ1τ2-closure, the
following properties hold:

(1) A ⊆ τ1τ2-Cl(A) and τ1τ2-Cl(τ1τ2-Cl(A)) = τ1τ2-Cl(A).
(2) If A ⊆ B, then τ1τ2-Cl(A) ⊆ τ1τ2-Cl(B).
(3) τ1τ2-Cl(A) is τ1τ2-closed.
(4) A is τ1τ2-closed if and only if A = τ1τ2-Cl(A).
(5) τ1τ2-Cl(X −A) = X − τ1τ2-Int(A).

A subset A of a bitopological space (X, τ1, τ2) is said to be (τ1, τ2)r-open [21] (resp.

(τ1, τ2)s-open [6], (τ1, τ2)p-open [6], (τ1, τ2)β-open [6]) if A = τ1τ2-Int(τ1τ2-Cl(A)) (resp. A ⊆
τ1τ2-Cl(τ1τ2-Int(A)), A ⊆ τ1τ2-Int(τ1τ2-Cl(A)), A ⊆ τ1τ2-Cl(τ1τ2-Int(τ1τ2-Cl(A)))). The comple-

ment of a (τ1, τ2)r-open (resp. (τ1, τ2)s-open, (τ1, τ2)p-open, (τ1, τ2)β-open) set is called (τ1, τ2)r-
closed, (τ1, τ2)s-closed, (τ1, τ2)p-closed, (τ1, τ2)β-closed. Let A be a subset of a bitopological space

(X, τ1, τ2). A point x ∈ X is called a (τ1, τ2)θ-cluster point [21] of A if τ1τ2-Cl(U) ∩A , ∅ for every

τ1τ2-open set U of X containing x. The set of all (τ1, τ2)θ-cluster points of A is called the (τ1, τ2)θ-
closure [21] of A and is denoted by (τ1, τ2)θ-Cl(A). A subset A of a bitopological space (X, τ1, τ2)

is said to be (τ1, τ2)θ-closed [21] if (τ1, τ2)θ-Cl(A) = A. The complement of a (τ1, τ2)θ-closed set
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is said to be (τ1, τ2)θ-open. The union of all (τ1, τ2)θ-open sets of X contained in A is called the

(τ1, τ2)θ-interior [21] of A and is denoted by (τ1, τ2)θ-Int(A).

Lemma 2.2. [21] For a subset A of a bitopological space (X, τ1, τ2), the following properties hold:

(1) If A is τ1τ2-open in X, then τ1τ2-Cl(A) = (τ1, τ2)θ-Cl(A).
(2) (τ1, τ2)θ-Cl(A) is τ1τ2-closed in X.

By a multifunction F : X → Y, we mean a point-to-set correspondence from X into Y, and we

always assume that F(x) , ∅ for all x ∈ X. For a multifunction F : X → Y, following [1] we

shall denote the upper and lower inverse of a set B of Y by F+(B) and F−(B), respectively, that is,

F+(B) = {x ∈ X | F(x) ⊆ B} and F−(B) = {x ∈ X | F(x)∩ B , ∅}. In particular,

F−(y) = {x ∈ X | y ∈ F(x)} for each point y ∈ Y. For each A ⊆ X, F(A) = ∪x∈AF(x).

3. Weakly (τ1, τ2)-continuous multifunctions

In this section, we introduce the notion of weakly (τ1, τ2)-continuous multifunctions. Moreover,

some characterizations of weakly (τ1, τ2)-continuous multifunctions are discussed.

Definition 3.1. A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is said to be weakly (τ1, τ2)-continuous if
for each x ∈ X and each σ1σ2-open sets V1, V2 of Y such that F(x) ⊆ V1 and F(x) ∩V2 , ∅, there exists a
τ1τ2-open set U of X containing x such that F(U) ⊆ σ1σ2-Cl(V1) and σ1σ2-Cl(V2) ∩ F(z) , ∅ for every
z ∈ U.

Theorem 3.1. For a multifunction F : (X, τ1, τ2)→ (Y, σ1, σ2), the following properties are equivalent:

(1) F is weakly (τ1, τ2)-continuous;
(2) F+(V1) ∩ F−(V2) ⊆ τ1τ2-Int(F+(σ1σ2-Cl(V1)) ∩ F−(σ1σ2-Cl(V2))) for every σ1σ2-open sets

V1, V2 of Y;
(3) τ1τ2-Cl(F−(σ1σ2-Int(K1)) ∪ F+(σ1σ2-Int(K2))) ⊆ F−(K1) ∪ F+(K2) for every σ1σ2-closed sets

K1, K2 of Y;
(4)

τ1τ2-Cl(F−(σ1σ2-Int(σ1σ2-Cl(B1)))∪ F+(σ1σ2-Int(σ1σ2-Cl(B2))))

⊆ F−(σ1σ2-Cl(B1))∪ F+(σ1σ2-Cl(B2))

for every subsets B1, B2 of Y;
(5) F+(σ1σ2-Int(B1)) ∩ F−(σ1σ2-Int(B2)) ⊆ τ1τ2-Int(F+(σ1σ2-Cl(B1)) ∩ F−(σ1σ2-Cl(B2))) for ev-

ery subsets B1, B2 of Y;
(6) τ1τ2-Cl(F−(V1) ∪ F+(V2)) ⊆ F−(σ1σ2-Cl(V1)) ∪ F+(σ1σ2-Cl(V2)) for every σ1σ2-open sets

V1, V2 of Y.

Proof. (1)⇒ (2): Let V1, V2 be any σ1σ2-open sets of Y and x ∈ F+(V1) ∩ F−(V2). Then, F(x) ⊆ V1

and F(x) ∩ V2 , ∅. By (1), there exists a σ1σ2-open set U of X containing x such that F(U) ⊆

σ1σ2-Cl(V1) and σ1σ2-Cl(V2)∩ F(z) , ∅ for each z ∈ U. Thus,
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x ∈ U ⊆ F+(σ1σ2-Cl(V1))∩ F−(σ1σ2-Cl(V2)) and hence

x ∈ τ1τ2-Int(F+(σ1σ2-Cl(V1))∩ F−(σ1σ2-Cl(V2))). Therefore,

F+(V1)∩ F−(V2) ⊆ τ1τ2-Int(F+(σ1σ2-Cl(V1))∩ F−(σ1σ2-Cl(V2))).

(2)⇒ (3): Let K1, K2 be any σ1σ2-closed sets of Y. Then Y −K1 and Y −K2 are σ1σ2-open sets in

Y. By (2), we have

X − (F−(K1)∪ F+(K2)) = (X − F−(K1))∩ (X − F+(K2))

= F+(Y −K1)∩ F−(Y −K2)

⊆ τ1τ2-Int(F+(σ1σ2-Cl(Y −K1))∩ F−(σ1σ2-Cl(Y −K2)))

= τ1τ2-Int((X − F−(σ1σ2-Int(K1)))∩ (X − F+(σ1σ2-Int(K2))))

= τ1τ2-Int(X − (F−(σ1σ2-Int(K1))∪ F+(σ1σ2-Int(K2))))

= X − τ1τ2-Cl(F−(σ1σ2-Int(K1))∪ F+(σ1σ2-Int(K2)))

and hence τ1τ2-Cl(F−(σ1σ2-Int(K1))∪ F+(σ1σ2-Int(K2))) ⊆ F−(K1)∪ F+(K2).
(3) ⇒ (4): Let B1, B2 be any subsets of Y. Then σ1σ2-Cl(B1) and σ1σ2-Cl(B2) are σ1σ2-closed in

Y and by (3),

τ1τ2-Cl(F−(σ1σ2-Int(σ1σ2-Cl(B1)))∪ F+(σ1σ2-Int(σ1σ2-Cl(B2)))) ⊆ F−(σ1σ2-Cl(B1))∪ F+(σ1σ2-Cl(B2)).

(4)⇒ (5): Let B1, B2 be any subsets of Y. By (4), we have

F−(σ1σ2-Int(B1))∩ F+(σ1σ2-Int(B2))

= X − (F+(σ1σ2-Cl(Y − B1))∪ F−(σ1σ2-Cl(Y − B2)))

⊆ X − τ1τ2-Cl(F+(σ1σ2-Int(σ1σ2-Cl(Y − B1)))∪ F−(σ1σ2-Int(σ1σ2-Cl(Y − B2))))

= X − τ1τ2-Cl(F+(Y − σ1σ2-Cl(σ1σ2-Int(B1)))∪ F−(Y − σ1σ2-Cl(σ1σ2-Int(B2))))

= X − τ1τ2-Cl((X − F−(σ1σ2-Cl(σ1σ2-Int(B1))))∪ (X − F+(σ1σ2-Cl(σ1σ2-Int(B2)))))

= X − τ1τ2-Cl(X − (F−(σ1σ2-Int(σ1σ2-Cl(B1)))∩ F+(σ1σ2-Cl(σ1σ2-Int(B2)))))

= τ1τ2-Int(F−(σ1σ2-Cl(σ1σ2-Int(B1)))∩ F+(σ1σ2-Cl(σ1σ2-Int(B2)))).

Thus, F−(σ1σ2-Int(B1))∩ F+(σ1σ2-Int(B2)) ⊆ τ1τ2-Int(F−(σ1σ2-Cl(B1))∩ F+(σ1σ2-Cl(B2))).

(5)⇒ (2): This is obvious.

(2)⇒ (1): Let V1, V2 be any σ1σ2-open sets of Y such that F(x) ⊆ V1 and F(x)∩V2 , ∅.

Then, x ∈ F+(V1)∩ F−(V2). By (2), we have

F+(V1) ∩ F−(V2) ⊆ τ1τ2-Int(F+(σ1σ2-Cl(V1)) ∩ F−(σ1σ2-Cl(V2))). Then, there exists a τ1τ2-open

set U of X such that x ∈ U ⊆ F+(σ1σ2-Cl(V1)) ∩ F−(σ1σ2-Cl(V2)). Therefore, F(U) ⊆ σ1σ2-Cl(V1)

and σ1σ2-Cl(V2)∩ F(z) , ∅ for every z ∈ U. This shows that F is weakly (τ1, τ2)-continuous.
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(4)⇒ (6): Let V1, V2 be any σ1σ2-open sets of Y. By (4), we have

τ1τ2-Cl(F−(V1)∪ F+(V2)) ⊆ τ1τ2-Cl(F−(σ1σ2-Int(σ1σ2-Cl(V1)))∪ F+(σ1σ2-Int(σ1σ2-Cl(V2))))

⊆ F−(σ1σ2-Cl(V1))∪ F+(σ1σ2-Cl(V2)).

(6)⇒ (2): Let V1, V2 be any σ1σ2-open sets of Y. By (6), we have

F+(V1)∩ F−(V2) ⊆ F+(σ1σ2-Int(σ1σ2-Cl(V1)))∩ F−(σ1σ2-Int(σ1σ2-Cl(V2)))

= X − (F−(σ1σ2-Cl(Y − σ1σ2-Cl(V1)))∪ F+(σ1σ2-Cl(Y − σ1σ2-Cl(V2))))

⊆ X − τ1τ2-Cl(F−(Y − σ1σ2-Cl(V1))∪ F+(Y − σ1σ2-Cl(V2)))

= τ1τ2-Int(F+(σ1σ2-Cl(V1))∩ F−(σ1σ2-Cl(V2))).

�

Definition 3.2. [2] A function f : (X, τ1, τ2) → (Y, σ1, σ2) is said to be weakly (τ1, τ2)-continuous
at a point x ∈ X if for each τ1τ2-open set V of Y containing f (x), there exists a τ1τ2-open set U of X
containing x such that f (U) ⊆ σ1σ1-Cl(V). A function f : (X, τ1, τ2) → (Y, σ1, σ2) is said to be weakly
(τ1, τ2)-continuous if f has this property at each point of X.

Corollary 3.1. [2] For a function f : (X, τ1, τ2)→ (Y, σ1, σ2), the following properties are equivalent:

(1) f is weakly (τ1, τ2)-continuous;
(2) f−1(V) ⊆ τ1τ2-Int( f−1(σ1σ2-Cl(V))) for every σ1σ2-open set V of Y;
(3) τ1τ2-Cl( f−1(σ1σ2-Int(K))) ⊆ f−1(K) for every σ1σ2-closed set K of Y;
(4) τ1τ2-Cl( f−1(σ1σ2-Int(σ1σ2-Cl(B)))) ⊆ f−1(σ1σ2-Cl(B)) for every subset B of Y;
(5) f−1(σ1σ2-Int(B)) ⊆ τ1τ2-Int( f−1(σ1σ2-Cl(B))) for every subset B of Y;
(6) τ1τ2-Cl( f−1(V)) ⊆ f−1(σ1σ2-Cl(V)) for every σ1σ2-open set V of Y.

Theorem 3.2. For a multifunction F : (X, τ1, τ2)→ (Y, σ1, σ2), the following properties are equivalent:

(1) F is weakly (τ1, τ2)-continuous;
(2)

τ1τ2-Cl(F−(σ1σ2-Int((σ1, σ2)θ-Cl(B1)))∩ F+(σ1σ2-Int((σ1, σ2)θ-Cl(B2))))

⊆ F−((σ1, σ2)θ-Cl(B1))∪ F+((σ1, σ2)θ-Cl(B2))

for every subsets B1, B2 of Y;
(3)

τ1τ2-Cl(F−(σ1σ2-Int(σ1σ2-Cl(B1)))∪ F+(σ1σ2-Int(σ1σ2-Cl(B2))))

⊆ F−((σ1, σ2)θ-Cl(B1))∪ F+((σ1, σ2)θ-Cl(B2))

for every subsets B1, B2 of Y;
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(4)

τ1τ2-Cl(F−(σ1σ2-Int(σ1σ2-Cl(V1)))∪ F+(σ1σ2-Int(σ1σ2-Cl(V2))))

⊆ F−(σ1σ2-Cl(V1))∪ F+(σ1σ2-Cl(V2))

for every σ1σ2-open sets V1, V2 of Y;
(5)

τ1τ2-Cl(F−(σ1σ2-Int(σ1σ2-Cl(V1)))∪ F+(σ1σ2-Int(σ1σ2-Cl(V2))))

⊆ F−(σ1σ2-Cl(V1))∪ F+(σ1σ2-Cl(V2))

for every (σ1, σ2)p-open sets V1, V2 of Y;
(6) τ1τ2-Cl(F−(σ1σ2-Int(K1)) ∪ F+(σ1σ2-Int(K2))) ⊆ F−(K1) ∪ F+(K2) for every (σ1, σ2)r-closed

sets K1, K2 of Y.

Proof. (1) ⇒ (2): Let B1, B2 be any subset of Y. Then (σ1, σ2)θ-Cl(B1) and (σ1, σ2)θ-Cl(B2) are

σ1σ2-closed in Y. By Theorem 3.1, we have

τ1τ2-Cl(F−(σ1σ2-Int((σ1, σ2)θ-Cl(B1)))∪ F+(σ1σ2-Int((σ1, σ2)θ-Cl(B2))))

⊆ F−((σ1, σ2)θ-Cl(B1))∪ F+((σ1, σ2)θ-Cl(B2)).

(2)⇒ (3): This is obvious since σ1σ2-Cl(B) ⊆ (σ1, σ2)θ-Cl(B) for every subset B of Y.

(3)⇒ (4): This is obvious since σ1σ2-Cl(V) = (σ1, σ2)θ-Cl(V) for every σ1σ2-open set V of Y.
(4)⇒ (5): Let V1, V2 be any (σ1, σ2)p-open sets of Y. Since Vi ⊆ σ1σ2-Int(σ1σ2-Cl(Vi)), we have

σ1σ2-Cl(Vi) = σ1σ2-Cl(σ1σ2-Int(σ1σ2-Cl(Vi))) for i = 1, 2. Now, put Ui = σ1σ2-Int(σ1σ2-Cl(Vi)),
then Ui is σ1σ2-open in Y and σ1σ2-Cl(Ui) = σ1σ2-Cl(Vi). Then by (4), we have

τ1τ2-Cl(F−(σ1σ2-Int(σ1σ2-Cl(V1)))∪ F+(σ1σ2-Int(σ1σ2-Cl(V2)))) ⊆ F−(σ1σ2-Cl(V1))∪ F+(σ1σ2-Cl(V2)).

(5) ⇒ (6): Let K1, K2 be any (σ1, σ2)r-closed sets of Y. Then σ1σ2-Int(K1) and σ1σ2-Int(K2) are

(σ1, σ2)p-open in Y and by (5),

τ1τ2-Cl(F−(σ1σ2-Int(K1))∪ F+(σ1σ2-Int(K2)))

= τ1τ2-Cl(F−(σ1σ2-Int(σ1σ2-Cl(σ1σ2-Int(K1))))∪ F+(σ1σ2-Int(σ1σ2-Cl(σ1σ2-Int(K2)))))

⊆ F−(K1)∪ F+(K2).

(6) ⇒ (1): Let V1, V2 be any σ1σ2-open sets of Y. Then σ1σ2-Cl(V1) and σ1σ2-Cl(V1) are

(σ1, σ2)r-closed in Y and by (6), we have

τ1τ2-Cl(F−(V1)∪ F+(V2)) ⊆ τ1τ2-Cl(F−(σ1σ2-Int(σ1σ2-Cl(V1)))∪ F+(σ1σ2-Int(σ1σ2-Cl(V2))))

⊆ F−(σ1σ2-Cl(V1))∪ F+(σ1σ2-Cl(V2)).

It follows from Theorem 3.1 that F is weakly (τ1, τ2)-continuous. �

Corollary 3.2. For a function f : (X, τ1, τ2)→ (Y, σ1, σ2), the following properties are equivalent:
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(1) f is weakly (τ1, τ2)-continuous;
(2) τ1τ2-Cl( f−1(σ1σ2-Int((σ1, σ2)θ-Cl(B)))) ⊆ f−1((σ1, σ2)θ-Cl(B)) for every subset B of Y;
(3) τ1τ2-Cl( f−1(σ1σ2-Int(σ1σ2-Cl(B)))) ⊆ f−1((σ1, σ2)θ-Cl(B)) for every subset B of Y;
(4) τ1τ2-Cl( f−1(σ1σ2-Int(σ1σ2-Cl(V)))) ⊆ f−1(σ1σ2-Cl(V)) for every σ1σ2-open set V of Y;
(5) τ1τ2-Cl( f−1(σ1σ2-Int(σ1σ2-Cl(V)))) ⊆ f−1(σ1σ2-Cl(V)) for every (σ1, σ2)p-open set V of Y;
(6) τ1τ2-Cl( f−1(σ1σ2-Int(K))) ⊆ f−1(K) for every (σ1, σ2)r-closed set K of Y.

Theorem 3.3. For a multifunction F : (X, τ1, τ2)→ (Y, σ1, σ2), the following properties are equivalent:

(1) F is weakly (τ1, τ2)-continuous;
(2)

τ1τ2-Cl(F−(σ1σ2-Int(σ1σ2-Cl(V1)))∪ F+(σ1σ2-Int(σ1σ2-Cl(V2))))

⊆ F−(σ1σ2-Cl(V1))∪ F+(σ1σ2-Cl(V2))

for every (σ1, σ2)β-open sets V1, V2 of Y;
(3)

τ1τ2-Cl(F−(σ1σ2-Int(σ1σ2-Cl(V1)))∪ F+(σ1σ2-Int(σ1σ2-Cl(V2))))

⊆ F−(σ1σ2-Cl(V1))∪ F+(σ1σ2-Cl(V2))

for every (σ1, σ2)s-open sets V1, V2 of Y.

Proof. (1)⇒ (2): Let V1, V2 be any (σ1, σ2)β-open sets of Y. Then,
Vi ⊆ σ1σ2-Cl(σ1σ2-Int(σ1σ2-Cl(Vi))) and σ1σ2-Cl(Vi) = σ1σ2-Cl(σ1σ2-Int(σ1σ2-Cl(Vi))) for i = 1, 2.
Since σ1σ2-Cl(V1) and σ1σ2-Cl(V2) are (σ1, σ2)r-closed in Y and by Theorem 3.2,

τ1τ2-Cl(F−(σ1σ2-Int(σ1σ2-Cl(V1)))∪ F+(σ1σ2-Int(σ1σ2-Cl(V2)))) ⊆ F−(σ1σ2-Cl(V1))∪ F+(σ1σ2-Cl(V2)).

(2)⇒ (3): This is obvious since every (σ1, σ2)s-open set is (σ1, σ2)β-open.
(3) ⇒ (1): Let V1, V2 be any (σ1, σ2)p-open sets of Y. Then σ1σ2-Cl(V1) and σ1σ2-Cl(V2) are

(σ1, σ2)r-closed sets of Y and hence σ1σ2-Cl(V1) and σ1σ2-Cl(V2) are (σ1, σ2)s-open in Y. By (3),
we have

τ1τ2-Cl(F−(σ1σ2-Int(σ1σ2-Cl(V1)))∪ F+(σ1σ2-Int(σ1σ2-Cl(V2)))) ⊆ F−(σ1σ2-Cl(V1))∪ F+(σ1σ2-Cl(V2))

and by Theorem 3.2, F is weakly (τ1, τ2)-continuous. �

Corollary 3.3. For a function f : (X, τ1, τ2)→ (Y, σ1, σ2), the following properties are equivalent:

(1) f is weakly (τ1, τ2)-continuous;
(2) τ1τ2-Cl( f−1(σ1σ2-Int(σ1σ2-Cl(V)))) ⊆ f−1(σ1σ2-Cl(V)) for every (σ1, σ2)β-open set V of Y;
(3) τ1τ2-Cl( f−1(σ1σ2-Int(σ1σ2-Cl(V)))) ⊆ f−1(σ1σ2-Cl(V)) for every (σ1, σ2)s-open set V of Y.
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