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Abstract. In this paper, the idea of picture fuzzy Baire space is explored and its properties are examined. The features of

picture fuzzy semi-closed and semi-open sets, picture fuzzy nowhere dense sets, picture fuzzy first and second category

sets, picture fuzzy residual sets, picture fuzzy submaximal spaces, picture fuzzy strongly irresolvable spaces, picture

fuzzy Gδ set, picture fuzzy Fσ set, and picture fuzzy regular closed sets are analyzed. To understand the concepts, some

examples are provided. An algorithm using picture fuzzy Baire space is developed to address real-world scenarios.

This method is more effective in assessing criminal activity as it identifies an individual who has committed a more

serious offense. This algorithmic approach proves its effectiveness in navigating the complexities of practical examples,

showcasing its potential for real-world applications.

1. Introduction

L. A. Zadeh introduced a novel category of fuzzy sets by utilizing the principles of vagueness and

uncertainty. His contributions to understanding ambiguity significantly aid in solving problems

associated with imprecision [17]. The applications of fuzzy sets have been widely expanded and

integrated into diverse domains such as information and control [16], as well as robotics [10].

Notably, Chang’s significant contribution [6] has demonstrated the applicability of fuzzy sets to

topological structures. The evolution of fuzzy set theory took a noteworthy turn with Atanassov’s

work [2] and [3], where the concept of intuitionistic fuzzy sets is generalized, giving rise to

intuitionistic fuzzy set theory. Later, Coker [7] extended the notion of an intuitionistic fuzzy set.

While conventional fuzzy set theory focuses on quantifying membership degrees, the intuitionistic

fuzzy set introduces the novel idea of aggregating non-membership degrees. Expanding on these

Received: Feb. 27, 2024.

2020 Mathematics Subject Classification. 54A40, 03E72.
Key words and phrases. picture fuzzy Baire space; picture fuzzy first and second category set; picture fuzzy residual

set; picture fuzzy submaximal space; picture fuzzy strongly irresolvable space; picture fuzzy Gδ set; picture fuzzy Fσ
set; picture fuzzy regular closed set.

https://doi.org/10.28924/2291-8639-22-2024-67
ISSN: 2291-8639

© 2024 the author(s).

https://doi.org/10.28924/2291-8639-22-2024-67


2 Int. J. Anal. Appl. (2024), 22:67

principles, B. Cong and V. Kerinovich [8] introduced the concept of PFS, derived from both fuzzy

and intuitionistic fuzzy sets. This innovative approach expands the theoretical framework and

opens up new avenues for addressing complex problems involving ambiguity and uncertainty.

Several mathematicians have attempted to apply all the essential principles of general topology to

the fuzzy environment.

Abdul Razaaq et al. [1] described the rank of PFTS and properties related to continuous functions.

K. Tamilselvan, V. Visalakshi, and Prasanalakshmi Balaji [13] introduced the notions of picture

fuzzy filter, grill, picture fuzzy ultrafilter, and discussed their properties, interrelations, etc. René

Louis Baire [12] pioneered the concepts of first and second category sets in his doctoral dissertation

in 1899. In 1913, Denjoy introduced residual sets as complements of first-category sets. The

concept of the Baire space, which pays tribute to René Louis Baire through its name, was initially

presented in Bourbaki’s work, "Topologies Generale" [9], within classical topology. The notions of

Baire spaces have undergone thorough investigation within the field of classical topology [5]. G.

Thangaraj [15] and S. Anjalmose [14] introduced and explored Baire spaces in fuzzy environments.

K. K. Azad [4] made significant contributions to the field by introducing fuzzy semi-open and semi-

closed sets within the context of fuzzy topological spaces. This study focuses on exploring various

characterizations of fuzzy Baire space through the lens of fuzzy semi-closed and fuzzy semi-open

sets. It aims to establish the conditions under which fuzzy first-category sets can be classified

as fuzzy semi-closed sets within a fuzzy topological space. Nguy’n Xuan [11] presented the

fundamental concepts of PFTSs and the rough PFS on the crisp approximation space.

The primary aim of this research is to investigate the different classifications of PFBS using

picture fuzzy semi-closed and semi-open sets. Section 2 discusses the basics of PFS’s and their

topological structures. Section 3 delves into the characteristics of systems such as picture fuzzy

dense, picture fuzzy nowhere dense, semi-closed and semi-open sets, picture fuzzy first and

second category sets, PFRS’s, picture fuzzy submaximal spaces, and strongly irresolvable spaces.

Section 4 picture fuzzy Gδ set, picture fuzzy Fσ set, picture fuzzy regular closed set established their

characteristics using picture fuzzy Baire space. Section 5 demonstrates the practical application

of the proposed algorithm for using PFBS’s of PFSs. The identification of the severity of criminal

activity in society by the accused as having committed a higher crime is central to this analysis.

To identify the accused, three primary types of offenses violent crimes (k), property crimes (l), and

drug offenses (m)are taken into account, denoted by X = {k, l, m}. This set of offenses is assumed

to be the attributes under consideration. The analysis indicates that the defendant belongs to

distinct categories of criminal activity levels, known as picture fuzzy sets (PFS’s). These PFS’s are

determined based on the degree of severity of the criminal activity of the accused person and are

categorized as highly dangerous to society, false accusation and less dangerous to society, each

playing a distinct role within the context of PFS’s. An algorithm designed for PFS’s is subsequently

applied using PFBS. This application aims to identify the criminal activity of the accused who
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committed a higher crime, asserting its superiority among other methods for determining the

severity of criminal activities in society.

Table 1. The paper employs the following abbreviations and acronyms:

Acronyms Definitions
PFS Picture Fuzzy Set
PFS(X) Collection of all Picture Fuzzy Sets on X
PFTS Picture Fuzzy Topological Space
PFOS Picture Fuzzy Open Set
PFCS Picture Fuzzy Closed Set
int(D) Interior of D
cl(D) Closure of D
PFfcs Picture Fuzzy First Category Set
PFRS Picture Fuzzy Residual Set
PFBS Picture Fuzzy Baire Space
PFNDS Picture Fuzzy Nowhere Dense Set
PFDS Picture Fuzzy Dense Set
PFSOS Picture Fuzzy Semi-Open Set
PFSCS Picture Fuzzy Semi-Closed Set
PFscs Picture Fuzzy Second Category Set
PFGδS Picture Fuzzy Gδ Set
PFFσS Picture Fuzzy Fσ Set
PFRCS Picture Fuzzy Regular Closed Set

2. Preliminaries

In this section, basic concepts are discussed on the picture fuzzy sets.

Definition 2.1. [11] A PFS A on a universe of discourse X is of the form

A = {(x,$A(x),ωA(x),ψA(x)) : x ∈ X}, where

$A(x) ∈ [0, 1] is called the “degree of positive membership of x in A",

ωA(x) ∈ [0, 1] is called the “degree of neutral membership of x in A",

ψA(x) ∈ [0, 1] is called the “degree of negative membership of x in A",

$A(x),ωA(x),ψA(x) satisfy the following condition:

0 ≤ $A(x) +ωA(x) +ψA(x) ≤ 1∀x ∈ X.

Then ∀x ∈ X, 1− ($A(x) +ωA(x) +ψA(x)) is called the degree of refusal members of x in A.

Definition 2.2. [4] LetD and E any two PFS’s, then

(1) D ⊆ E iff (∀y ∈ X, $D(y) ≤ $E(y) and ωD(y) ≤ ωE(y) and ψD(y) ≥ ψE(y))
(2) D = E iff (D ⊆ E and E ⊆ D)

(3) D∪E={(x,∨($D(x),$E(x)),∧(ωD(x),ωE(x)),∧(ψD(x),ψE(x)))|∀x ∈ X}
(4) D∩E={(x,∧($D(x),$E(x)),∧(ωD(x),ωE(x)),∨(ψD(x),ψE(x)))|∀x ∈ X}
(5) CO(D) = D̄ = {(ωD(x),$D(x),ψD(x))|x ∈ X}

Definition 2.3. [11] Some Special PFSs are as follows:

(1) A constant PFS is the PFS ($,ω,ψ) = {(x,$,ω,ψ)|x ∈ X}.
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(2) Picture fuzzy universe set is 1X defined as 1X = (1, 0, 0) = {(x, 1, 0, 0)|x ∈ X}.
(3) Picture fuzzy empty set is φ defined as φ = 0X = (0, 0, 1) = {(x, 0, 0, 1)|x ∈ X}.

Definition 2.4. [11] An picture fuzzy topology (PFT) on a non empty set U is a family = of PFS’s

in U satisfing the following axioms:

(C1)
︷ ︸︸ ︷
$,ω,ψ ∈ =, for all

︷ ︸︸ ︷
$,ω,ψ ∈ PFS(U)

(C2)Z1 ∩Z2 ∈ = for any Z1, Z2 ∈ =,

(C3)∪Zi ∈ = for any aribitary family {Zi : i ∈ I} ⊆ =.

In this case the pair (U,=) is called a PFTS and each PFS A in= is a PFOS in (U,=). The complement

of a PFS in PFTS (U,=) is called a PFCS in (U,=).

Definition 2.5. [11] Let (U,=) be a PFTS and W ∈ PFS(U).

Then the picture fuzzy interior and picture fuzzy closure of W are int(W), cl(W) : PFS(U)

→ PFS(U) respectively, where int(W) = ∪{L : L is a PFOS and L ⊆ W}, cl(W) = ∩{K :

K is a PFCS and W ⊆ K}.

Definition 2.6. [11]

(1) W is a PFOS in (U,=) iff int(W) = W.

(2) int(
︷ ︸︸ ︷
$,ω,ψ) =

︷ ︸︸ ︷
$,ω,ψ, for all

︷ ︸︸ ︷
$,ω,ψ ∈ PFS(U),

(3) int(W ∩ Y) = int(W) ∩ int(Y), for all W, Y ∈ PFS(U),

(4) int(int(W)) = int(W), for all W ∈ PFS(U),

(5) int(W) ⊆W, for all W ∈ PFS (U).

Definition 2.7. [11]

(1) W is a PFCS in (U,=) iff cl(W) = W.

(2) cl(
︷ ︸︸ ︷
$,ω,ψ) =

︷ ︸︸ ︷
$,ω,ψ, for all

︷ ︸︸ ︷
$,ω,ψ ∈ PFS(U),

(3) cl(W ∪ Y) = cl(W) ∪ cl(Y), for all W, Y ∈ PFS(U),

(4) cl(cl(W)) = cl(W), for all W ∈ PFS(U),

(5) W ⊆ cl(W), for all W ∈ PFS (U).

3. Picture Fuzzy Baire Spaces

This section discusses the properties of PFBS based on the PFS’s and few concrete examples are

given.

Definition 3.1. A PFSD in a PFTS is called

(1) picture fuzzy semi-closed iff int[cl(D)] ⊆ D

(2) picture fuzzy semi-open iffD ⊆ cl[int(D)]

Example 3.1. Let X={k} and =={1X, 0X, G, H, I = G ∪H, J = G ∩H}, the membership values of

{G, H, I, J} are provided in the Table 2. Then the PFS D = (k, 0.1, 0.1, 0.6) is PFSOS cl[int(D)] =

(k, 0.3, 0.2, 0.3) but it is not PFOS. (k, 0.1, 0.1, 0.6) ⊆ (k, 0.3, 0.2, 0.3).
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Table 2. Membership values of =

G H I J 1X 0X
γ 0.3 0.3 0.3 0.3 1 0

k η 0.2 0.2 0.2 0.2 0 0

ν 0.3 0.4 0.3 0.3 0 1

Example 3.2. Let X={k} and =={1X, 0X, G, H, I = G ∪H, J = G ∩H}, the membership values of

{G, H, I, J} are provided in the Table 3. Then the PFS D = (m, 0.4, 0.0, 0.5) is PFSCS int[cl(D)] =

(m, 0.4, 0.0, 0.5) but it is not PFCS. (m, 0.4, 0.0, 0.5) ⊆ (m, 0.4, 0.0, 0.5).

Table 3. Membership values of =

G H I J 1X 0X
γ 0.3 0.6 0.4 0.5 1 0

m η 0.2 0.0 0.0 0.0 0 0

ν 0.4 0.3 0.5 0.4 0 1

Theorem 3.1. For a familyA = Dα of PFS’s of PFTS X.

(1) ∪α(cl(Dα)) ⊆ cl(∪α(Dα)) in case α is finite set ∪αcl(Dα) = cl(∪α(Dα)) also

(2) ∪α(int(Dα)) ⊆ int(∪α(Dα))

Proof. Let D1 and D2 are two PFS’s. To prove that D1 ∪D2 ⊂ D1 ∪D2, D1 ⊂ D1 and D2 ⊂ D2,

D1 ⊂ D1 ∪D2 and D2 ⊂ D1 ∪D2. Therefore, D1 ∪D2 ⊂ D1 ∪D2. To prove D1 ∪D2 ⊂ D1 ∪D2.

Given x ∈ D1 ∪D2, we claim x ∈ D1 ∪D2. If x ∈ D then there is nothing to prove so assume that

x < D. There exists an open set V such that x ∈ V and V ∩D = φ. Now let U be any open set such

that x ∈ U put W = U ∩V then W is open and x ∈W. D1 ∪D2 ∩W , φ. ButD∩W ⊂ D∩V = φ.

Therefore, if follow that φ , D1 ∩W ⊂ D2 ∩U. Since this is true for all open sets U such that x ∈ U
x ∈ D1, x ∈ D2. HenceD1 ∪D2 ⊂ D1 ∪D2. In general, in case α is finite setDn ∪Dm ⊆ Dn ∪Dm

therefore n , m. Similarly, ∪α(int(Dα)) ⊆ int(∪α(Dα)) �

Definition 3.2. A PFSD in PFTS (X,=) is called PFDS if there exists no PFCS E in (X,=) such that

D ⊂ E that is cl(D) = 1X.

Example 3.3. Let X = {l, m} and PFS in = = {1X, 0X, G, H, I, J} where I = G ∩H and J = G ∪H,

the membership value of G, H, I, J, 1X, 0X are provided in the Table 4 and 5. Thus (X,=) is a PFTS.

Here, H is a PFDS.

Definition 3.3. A PFS D in PFTS (X,=) is called PFNDS if there exists no non-zero PFOS E in

(X,=) such that E ⊂ cl(D) that is int[cl(D)] = 0X.

Example 3.4. Let X = {l, m} and = = {1X, 0X, G, H, I, J} where I = G ∩ H and J = G ∪ H, the

membership value of G, H, I, J, 1X, 0X are provided in the Table 6 and 7. Thus (X,=) is a PFTS. H

is a PFNDS.
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Table 4. Membership values of =

G H I J 1X 0X
γ 0.9 0.8 0.8 0.9 1 0

l η 0.1 0.0 0.0 0.0 0 0

ν 0.0 0.2 0.2 0.0 0 1

γ 0.8 0.6 0.6 0.8 1 0

m η 0.2 0.0 0.0 0.0 0 0

ν 0.0 0.4 0.4 0.0 0 1

Table 5. Membership values of =c

G H I J 1X 0X
γ 0.0 0.2 0.2 0.0 0 1

l η 0.1 0.0 0.0 0.0 0 0

ν 0.9 0.8 0.8 0.9 1 0

γ 0.0 0.4 0.4 0.0 0 1

m η 0.2 0.0 0.0 0.0 0 0

ν 0.8 0.6 0.6 0.8 1 0

Table 6. Membership values of =

G H I J 1X 0X
γ 0.2 0.7 0.2 0.7 1 0

l η 0.1 0.0 0.0 0.0 0 0

ν 0.3 0.2 0.3 0.2 0 1

γ 0.3 0.6 0.3 0.6 1 0

m η 0.2 0.0 0.0 0.0 0 0

ν 0.4 0.3 0.4 0.3 0 1

Table 7. Membership values of =c

G H I J 1X 0X
γ 0.3 0.2 0.3 0.2 0 1

l η 0.1 0.0 0.0 0.0 0 0

ν 0.2 0.7 0.2 0.7 1 0

γ 0.4 0.3 0.4 0.3 0 1

m η 0.2 0.0 0.0 0.0 0 0

ν 0.3 0.6 0.3 0.6 1 0
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Definition 3.4. A PFSD in PFTS (X,=) is called PFfcs ifD =
∞⋃

i=1
Di where (Di)’s are PFNDS’s in

(X,=). Any other PFS in (X,=) is said to be PFscs.

Theorem 3.2. If a non-zero PFSD in a PFTS (X,=) is PFNDS. ThenD is PFSCS in (X,=).

Proof. Let D be a PFNDS in PFTS (X,=), then int[cl(D)] = 0X and int[cl(D)] ⊆ D. Hence D is

PFSCS in (X,=). �

Theorem 3.3. IfD is a PFfcs in a PFTS (X,=). ThenD =
∞⋃

i=1
Di where (Di)’s are PFSCS’s in (X,=).

Proof. Let D is a PFfcs in a PFTS (X,=). Then D =
∞⋃

i=1
Di, where Di are PFNDS’s in (X,=). By

Theorem 3.2, the PFNDS (Di)’s are PFSCS’s in (X,=) and hence D =
∞⋃

i=1
Di, where (Di)’s are

PFSCS’s in (X,=). �

Theorem 3.4. LetD be a PFSCS in PFTS (X,=). IfD is not a PFNDS in (X,=), then int(D) , 0X.

Proof. SinceD be a PFSCS in (X,=), we have int[cl(D)] ⊆ D. IfD is not a PFNDS in (X,=), then

int[cl(D)] , 0X. Let int[cl(D)] = E and hence E is a PFOS in (X,=). E ⊆ cl(D), int(E) ⊆ int[cl(D)],

E ⊆ int[cl(D)] ⊆ D, E ⊆ D, int(D) , 0X. �

Definition 3.5. Let D is a PFfcs in a PFTS (X,=). Then Dc is called a PFRS in (X,=). The

complement of PFfcs is called a PFRS in (X,=).

Theorem 3.5. IfD is a PFRS in a PFTS (X,=), thenD =
∞⋂

i=1
Ei where (Ei)’s are PFSOS’s in (X,=).

Proof. Let D is a PFRS in (X,=). Then 1X −D is a PFfcs in (X,=) and hence 1X −D =
∞⋃

i=1
Di

where (Di)’s are PFNDS’s in (X,=). Then, D = 1X −
∞⋃

i=1
Di =

∞⋂
i=1

(1X −Di). By Theorem 3.2, the

PFNDS’s (Di)’s are PFSCS’s in (X,=) and hence 1X −Di are PFSOS’s in (X,=). Let Ei = 1X −Di

thenD =
∞⋂

i=1
Ei. (Ei)’s are PFSOS’s in (X,=). �

Remark 3.1. LetD be a PFS in a PFTS (X,=). Then 1X − cl(D) = int(1X −D) and 1X − int(D) =

cl(1X −D)

Theorem 3.6. Let (X,=) be a PFTS. Then a PFS D is a PFNDS in (X,=), iff 1X − cl(D) is a PFOS

and PFDS in (X,=).

Proof. LetD be a PFNDS in (X,=). Then int[cl(D)]=0X. Now cl(D) is a PFCS in (X,=), 1X − cl(D)

is a PFOS in (X,=). Also cl[1X − cl(D)] = 1X − int[cl(D)] = 1X − 0X = 1X, implies that 1X − cl(D)

is a PFDS in (X,=). Thus, 1X − cl(D) is a PFOS and PFDS in (X,=). Conversely, let 1X − cl(D) be

PFOS and PFDS in (X,=). Then cl[1X − cl(D)] = 1X − int[cl(D)] = 1X and hence int[cl(D)] = 0X.

ThereforeD is a PFNDS in (X,=). �
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Theorem 3.7. Let (X,=) be a PFTS. If [1X − cl(D)] is a PFOS and PFDS for a PFSD in (X,=), then

D is a PFSCS in (X,=).

Proof. Let [1X − cl(D)] is a PFOS and PFDS, for a PFS D in (X,=). Then by Theorem 3.6, D is

PFNDS (X,=) and hence by Theorem 3.2,D is a PFSCS in (X,=). �

Definition 3.6. Let (X,=) be a PFTS. Then (X,=) is called a PFBS if int(
∞⋃

i=1
(Di)) = 0X where (Di)’s

are PFNDS’s in (X,=).

Theorem 3.8. Let(X,=) be a PFTS, then the following are equivalent:

(1) (X,=) is a PFBS.

(2) int(D) = 0X for a every PFfcs in (X,=).

(3) cl(E) = 1X for ever PFRS in (X,=).

Proof. (1)⇒ (2)

Let D be a PFfcs in (X,=). Then D =
∞⋃

i=1
Di where (Di)’s are PFNDS’s in (X,=). Now int(D) =

int(
∞⋃

i=1
(Di)) = 0X, since (X,=) is a PFBS. Therefore int(D) = 0X.

(2)⇒ (3)

Let E be a PFRS in (X,=). Then 1X − E is a PFfcs in (X,=). By the hypothesis, int(1X − E) = 0X,

implies that 1X − cl(E) = 0X, cl(E) = 1X. Hence (X,=) is a PFRS.

(3)⇒ (1)

Let D is a PFfcs in (X,=). Then D =
∞⋃

i=1
Di where (Di)’s are PFNDS’s in (X,=). Now D is a

PFfcs in (X,=). 1X −D is a PFRS in (X,=). By the hypothesis cl(1X −D) = 1X, 1X − int(D) = 1X,

int(D) = 0X that isD =
∞⋃

i=1
Di where (Di)’s are PFNDS’s in (X,=). Hence (X,=) is a PFBS. �

Theorem 3.9. If a PFTS (X,=) is a PFBS then int(
∞⋃

i=1
Di) = 0X, where (Di)’s are PFSCS’s in (X,=).

Proof. Let (X,=) be a PFBS. By Theorem 3.8, int(D) = 0X for a PFfcsD in (X,=) and by Theorem

3.3, D =
∞⋃

i=1
Di, where Di are PFSCS’s in (X,=). Therefore int(

∞⋃
i=1
Di) = 0X, where (Di)’s are

PFSCS’s in (X,=). �

Theorem 3.10. If a PFTS (X,=) is a PFBS then int(
∞⋂

i=1
Ei) = 1X, where (Ei)’s are PFSOS’s in (X,=).

Proof. Let (X,=) be a PFBS. By Theorem 3.8, cl(D) = 1X for a PFRS D in (X,=) and by Theorem

3.5, D =
∞⋂

i=1
Ei, where (Ei)’s are PFSOS’s in (X,=). Therefore cl(

∞⋂
i=1

Ei) = 1X, where (Ei)’s are

PFSOS’s in (X,=). �

Theorem 3.11. If a PFTS (X,=) is a PFBS then cl(
∞⋂

i=1
Ei) = 1X, where (Ei)’s are PFDS’s in (X,=).
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Proof. Let (X,=) be a PFBS. By Theorem 3.10, cl(
∞⋂

i=1
(Ei)) = 1X, where (Ei)’s are PFSOS’s in (X,=).

Now cl(
∞⋂

i=1
Ei) ⊆

∞⋂
i=1

(cl(Ei)), implies that 1X ⊆
∞⋂

i=1
(cl(Ei)). That is,

∞⋂
i=1

(cl(Ei)) = 1X and hence

cl(Ei) = 1X. Therefore, cl(
∞⋂

i=1
Ei) = 1X, where (Ei)’s are PFDS’s in (X,=). �

Theorem 3.12. If a PFTS (X,=) is a PFBS then cl(
∞⋂

i=1
Ei) = 1X, where the PFS’s (Ei)’s are such that

cl(int(Ei)) = 1X in (X,=).

Proof. Let (X,=) be a PFBS. By Theorem 3.10, cl(
∞⋂

i=1
Ei) = 1X in (X,=), where (Ei)’s are PFSOS’s

in (X,=). Now cl(
∞⋂

i=1
Ei) ⊆

∞⋂
i=1

(cl(Ei)) implies that, 1X ⊆
∞⋂

i=1
(cl(Ei)). That is

∞⋂
i=1

cl(Ei) = 1X and

cl(Ei) = 1X. Since (Ei)’s are PFSOS’s in (X,=), Ei ⊆ (cl[int(Ei)]). Then cl(Ei) ⊆ cl(cl[int(Ei)]) and

hence 1X ⊆ (cl[int(Ei)]). That is cl[int(Ei)] = 1X. Therefore cl(
∞⋂

i=1
(Ei)) = 1X where the PFS’s (Ei)’s

are such that cl[int(Ei)] = 1X in (X,=). �

Theorem 3.13. If a PFTS (X,=) is a PFfcs then (
∞⋃

i=1
Di) = 1X, where (Di)’s are PFSCS’s in (X,=).

Proof. Let (X,=) be a PFfcs. Then (
∞⋃

i=1
Di) = 1X, where (Di)’s are PFNDS’s set in (X,=). By

Theorem 3.2, the PFNDS’s (Di)’s are PFSCS’s in (X,=). Hence (
∞⋃

i=1
Di) = 1X, where (Di)’s are

PFSCS’s in (X,=). �

Remark 3.2. IfD ⊆ E and E is PFNDS in a PFTS (X,=) thenD is also a PFNDS in (X,=).

Theorem 3.14. IfD ⊆ E and E is PFfcs in a PFTS (X,=) thenD is a PFfcs in (X,=).

Proof. Let E is a PFfcs in (X,=). Then E = (
∞⋃

i=1
Di), where (Di)’s are PFNDS’s in (X,=). Now

D ⊆ E, implies thatD = D∩ E = D∩ [(
∞⋃

i=1
Di)] =

∞⋃
i=1

[D∩Di]. SinceD∩Di ⊆ Di and by Remark

3.2, [D∩Di]’s are PFNDS’s in (X,=). Hence D =
∞⋃

i=1
[D∩Di], where [D∩Di]’s are PFNDS’s in

(X,=). HenceD is a PFfcs in (X,=). �

Theorem 3.15. IfD ⊆ E andD is PFRS in a PFTS (X,=) then E is a PFRS in (X,=).

Proof. Let D is PFRS in a (X,=). Then 1X −D is a PFfcs in (X,=). Now D ⊆ E implies that,

1X −D ⊇ 1X − E. By Theorem 3.14, 1X − E is a PFfcs in (X,=) and hence E is PFRS in a (X,=). �

Theorem 3.16. Let (X,=) be a PFTS. Then the following are equivalent:

(1) (X,=) is a PFBS.

(2) Each non-zero PFOS is a PFscs in (X,=).
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Proof. (1)⇒ (2).

Let (X,=) be a PFBS. Suppose that D is a non-zero PFOS in (X,=) such that D =
∞⋃

i=1
Di, where

Di are PFNDS’s in (X,=). Then int(D) = int[
∞⋃

i=1
(Di)]. Since D is a non-zero PFOS in (X,=),

int(D) = D , 0X and hence int[
∞⋃

i=1
(Di)] , 0X, a contradiction to (X,=) being a PFBS. Hence, for

the PFOSD in (X,=),D ,
∞⋃

i=1
(Di), where (Di)’s are PFNDS’s in (X,=). That is, no non-zero PFOS

is a PFfcs in (X,=) and hence each non-zero PFOS is a PFscs in (X,=).

(2)⇒ (1).

Let (X,=) be a PFTS in which each non-zero PFOS is a PFscs in (X,=). We claim that (X,=) is a

PFBS. Suppose not. Then, by Theorem 3.8, int(D) , 0X, for a PFfcs D in (X,=) and hence there

exists a non-zero PFOS E in (X,=) such that E ⊆ D. Since D is a PFfcs in (X,=) and E ⊆ D, by

Theorem 3.14, E is also a PFfcs in (X,=), a contradiction to the hypothesis. Hence int(D) = 0X, for

each PFfcsD in (X,=) and therefore by Theorem 3.8, (X,=) is a PFBS. �

Definition 3.7. A PFTS (X,=) is called a picture fuzzy submaximal space if cl(D) = 1X, for any

non-zero PFSD in (X,=), then (D ∈ =).

Definition 3.8. A PFTS (X,=) is said to be a picture fuzzy strongly irresolvable space if cl[int(D)] =

1X, for each PFDSD in (X,=).

Theorem 3.17. If a PFTS (X,=) is a PFBS and picture fuzzy submaximal space and ifD is a PFfcs
in (X,=) thenD is a PFSCS in (X,=).

Proof. LetD be a PFfcs in (X,=). Then 1X −D is a PFRS in (X,=). By Theorem 3.8, cl(1X −D) = 1X
in (X,=). Again since (X,=) is a picture fuzzy submaximal space, the PFDS 1X −D is a PFOS in

(X,=). ThenD is a PFCS in (X,=) and hence cl(D) = D in (X,=). By Theorem 3.8, int(D) = 0X.

Now int[cl(D)] = int(D) = 0X and hence D is a PFNDS in (X,=). Then by Theorem 3.2, the

PFNDSD is a PFSCS in (X,=). �

Theorem 3.18. If a PFTS (X,=) is a PFBS and picture fuzzy strongly irresolvable space and if E is

a PFfcs in (X,=) thenD is a PFSCS in (X,=).

Proof. LetD be a PFfcs in (X,=). Then 1X −D is a PFRS in (X,=). By Theorem 3.8, cl(1X −D) =

1X in (X,=). Since (X,=) is a picture fuzzy strongly irresolvable space, for the PFDS 1X −D,

cl(int(1X −D)) = 1X in (X,=). Then 1X − int[cl(D)] = 1X, implies that int(cl(D)) = 0X and hence

D is a PFNDS in (X,=). Then by Theorem 3.2, the PFNDSD is a PFSCS in (X,=). �

4. Applications of Picture Fuzzy Fσ and Gδ-Sets in Picture Fuzzy Baire Space

Definition 4.1. Let (X,=) be a PFTS andD be a PFS inX. ThenD is called a PFGδS ifD =
∞⋂

i=1
(Di),

for eachDi ∈ =.
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Definition 4.2. Let (X,=) be a PFTS andD be a PFS inX. ThenD is called a PFFσS ifD =
∞⋃

i=1
(Di),

for eachDi ∈ =
C.

Definition 4.3. A PFSD of a PFTS X is called a PFRCS of X if cl(int(D)) = D.

Theorem 4.1. IfD is a PFD and PFGδS in a PFTS (X,=), then 1X −D is a PFfcs in (X,=).

Proof. Since D is a PFGδS in (X,=), D =
∞⋂

i=1
Di where Di ∈ =. And since D is a PFDS in (X,=),

cl(D) = 1X. Then cl
(
∞⋂

i=1
Di

)
= 1X. But cl

(
∞⋂

i=1
Di

)
⊆

∞⋂
i=1

cl(Di). Hence 1X ⊆
∞⋂

i=1
cl(Di). That is,

∞⋂
i=1

cl(Di) = 1X. Then cl(D) = 1X for each Di ∈ = and hence cl(int(Di)) = 1X which implies that

1X − (Di) is PFNDS’s for each Di ∈ =. Consider 1X −D = 1X −
∞⋂

i=1
Di =

∞⋃
i=1

(1X −Di). Therefore

1X −D =
∞⋃

i=1
(1X −Di) where (1X −Di)’s are PFNDS’s in (X,=). Hence 1X −Di is a PFfcs in

(X,=). �

Theorem 4.2. IfD is a PFD and PFGδS in a PFTS (X,=), thenD is a PFRS in (X,=).

Proof. SinceD is a PFD and PFGδS in (X,=), by Theorem 4.1, 1X −D is a PFfcs in (X,=). HenceD

is a PFRS in (X,=). �

Theorem 4.3. If a PFTS (X,=) has a PFD and PFGδS then (X,=) is a PFBS.

Proof. LetD be a PFD and PFGδS in (X,=). Then by Theorem 4.1, 1X −D is a PFfcs in (X,=) and

(1X −D) = (1X −
∞⋂

i=1
Di), (1X −D) =

∞⋃
i=1

(1X −Di), where (1X −Di)’s are PFNDSs in (X,=). But

int(1X −D) = 1X − cl(D) = 1X − 1X = 0X (sinceD is PFD, cl(D) = 1X). Then int
(
∞⋃

i=1
(1X −Di)

)
=

int(1X −D) = 0X. Hence (X,=) is a PFBS. �

Theorem 4.4. IfD is a PFfcs in (X,=). Then there is a PFFσS, G in (X, T) such thatD ⊆ G.

Proof. Let D be a PFfcs in (X,=). Then, D =
∞⋃

i=1
Di, where Di’s are PFNDS’s in (X,=). Now

1X − cl(Di) is a PFOS in (X,=). Then
∞⋂

i=1
[1X − cl(Di)] is a PFGδS in (X,=). Let E =

∞⋂
i=1

[1X − cl(Di)].

Now
∞⋂

i=1
[1X − cl(Di)] = 1X −

∞⋃
i=1

(clDi) ⊆ 1X −
∞⋃

i=1
(Di) = 1X − D. Hence E ⊆ 1X − D. Then

D ⊆ 1X − E. Let η = 1X − E. Since E is a PFGδS in (X,=), G is a PFFσS in (X,=). Therefore, ifD is

a PFfcs in (X,=), then there is a PFFσS G in (X,=) such thatD ⊆ G.

�

Theorem 4.5. If (X,=) is a PFBS and
∞⋃

i=1
(Di) = 1X, where Di’s are PFRCS’s in (X,=) then

cl
(
∞⋃

i=1
(Di)

)
= 1X.



12 Int. J. Anal. Appl. (2024), 22:67

Proof. Suppose that int(Di) = 0X for each i ∈ I. Now Di is a PFRCS in (X,=) implies that Di is

PFCS’s in (X,=). Also int(Di) = 0X implies that int(cl(Di)) = 0X and hence Di is a PFNDS’s in

(X,=). Since
∞⋃

i=1
(Di) = 1X, int

(
∞⋃

i=1
(Di)

)
= int(1) = 1X. Since (X,=) is a PFBS, int

(
∞⋃

i=1
(Di)

)
= 0X,

whereDi’s are PFNDS’s in (X,=). Therefore 0X = 1X, which is a contradiction. Hence int(Di) ,

0, for atleast one i. Hence
(
∞⋃

i=1
int(Di)

)
, 0X. Consider

(
∞⋃

i=1
cl(Di)

)
⊆ cl (

⋃
(Di)) implies that(

∞⋃
i=1

cl(int(Di))

)
⊆ cl

(
∞⋃

i=1
int(Di)

)
. That is, cl

(
∞⋃

i=1
int(Di)

)
⊇

(
∞⋃

i=1
cl(int(Di))

)
=

(
∞⋃

i=1
(Di)

)
= 1X.

Then cl
(
∞⋃

i=1
int(Di)

)
⊇ 1X. Hence cl

(
∞⋃

i=1
int(Di)

)
= 1X. �

Theorem 4.6. If a PFTS (X,=) is a PFBS, then a PFS D in (X,=) is a PFRS iff there exists a PFD

and PFGδS E in (X,=) such that E ⊆ D.

Proof. Let (X,=) be a PFBS and D be a PFRS in (X,=). Then 1X −D is a PFfcs in (X,=) and

hence 1X −D =
⋃
∞

i=1Di, where (Di)’s are PFNDS’s in (X,=). Let E =
∞⋂

i=1
[1X − cl(Di)]. Then

E is a PFGδS in (X,=). Now 1X − cl(Di) ⊆ 1X −Di implies that,
∞⋂

i=1
[1X − cl(Di)] ⊆

∞⋂
i=1

(1X −Di).

Hence
∞⋂

i=1
[1X − cl(Di)] ⊆ 1X −

∞⋃
i=1

(Di). Thus E ⊆ 1X − (1X −D). That is E ⊆ D. Since (Di)’s

are PFNDS’s in (X,=), [cl(Di)]’s are PFNDS’s in (X,=). Now E =
∞⋃

i=1
[1X − cl(Di)] implies that,

1X − E =
⋃
∞

i=1 cl(Di) and hence 1X − E is a PFfcs in (X,=). Since (X,=) is a PFBS, by Theorem 3.8,

int(1X − E) = 0X and 1X − cl(E) = int(1X − E), implies that 1X − cl(E) = 0X. Thus, E is a PFD and

PFGδS in (X,=) such that E ⊆ D. Conversely, let E be a PFD and PFGδS in (X,=) such that E ⊆ D.

By Theorem 4.2, E is a PFRS in (X,=). Since E ⊆ D and E is a PFRS in (X,=), by Theorem 3.15,D

is a PFRS in (X,=). �

Theorem 4.7. If a PFTS (X,=) is a PFBS then a PFSD in (X,=) is a PFfcs iff there exists a PFFσS, G
with int(G) = 0X, in (X,=) such thatD ⊆ G.

Proof. Let (X,=) be a PFBS and D be a PFfcs in (X,=). Then, 1X −D is a PFRS in (X,=). By

Theorem 4.6, there exists a PFD and PFGδS E in (X,=) such that E ⊆ 1X −D. Then D ⊆ 1X − E.

Since E is a PFGδS in (X,=), 1X −E is a PFFσS in (X,=). Also cl(E) = 1X implies that, int(1X −E) =
1X − cl(E) = 1X − 1X = 0X. Let G = 1X − E, then G is an PFFσS with int(G) = 0X, in (X,=) such

that D ⊆ G. Conversely, let G be a PFFσS with int(G) = 0X, in (X,=) such that D ⊆ G. Then

1X − γ is a PFD (since cl(1X −G) = 1X − int(G) = 1X − 0X = 1X) and PFGδS in (X,=) such that

1X −G ⊆ 1X −D. Then by Theorem 4.6, 1X −D is a PFRS in (X,=). HenceD is a PFfcs in (X,=). �

Remark 4.1. IfD is a PFSOS in a PFTS (X,=) then cl(D) is a PFRCS in (X,=). ForD is a PFSOS

in (X,=) implies that,D ⊆ cl(int(D)). Then cl(D) ⊆ cl(cl(int(D))) = cl(int(D) ⊆ cl(intcl(D)) and

cl(intcl(D)) ⊆ cl(cl(D)) = cl(D). This implies that cl(int(cl(D))) = cl(D) and hence cl(D) is a

PFRCS in (X,=).
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Theorem 4.8. If a PFTS (X,=) is a PFBS then
∞⋃

i=1
(cl(Ei)) = 1X, where (cl(Ei))’s are PFRCS’s in

(X,=).

Proof. Let (X,=) be a PFBS. Then int [
⋃
∞

i=1(Di)] = 0X, where (Di)’s are PFNDS’s in (X,=).

By Theorem 3.2, the PFNDS’s (Di)’s are PFSCS’s in (X,=) and hence (1X −Di)’s are PFSOSs

in (X,=) and by Remark 4.1, cl(1X − Di)’s are PFRCS’s in (X,=). Now int [
⋃
∞

i=1(Di)] = 0X

implies that, 1X − int [
⋃
∞

i=1(Di)] = 1X. Then cl
[
∞⋃

i=1
(1X −Di)

]
= 1X. But cl

[
∞⋃

i=1
(1X −Di)

]
⊆

∞⋃
i=1

[cl(1X −Di)] implies that,
∞⋃

i=1
[cl(1X −Di)] = 1X and hence cl(1X −Di) = 1X. Let Ei = 1X −Di.

Then
∞⋃

i=1
(cl(Ei)) = 1X, where (cl(Ei))’s are PFRCS’s in (X,=). �

5. Utilizing PFBS to Assess Societal Criminal Activity Levels: An Algorithmic Approach.

In this section, the applications of PFBS are discussed. The methodology demonstrates the

numerical identification of criminal activity levels based on PFBS’s. The analysis reveals the crime

level of the accused in society.

5.1. Proposed algorithm using PFBS’s:
Step 1. Let {C1, C2, ..., Cn} be a set of PFS’s in X = {x1, x2, ..., xm}.

Step 2. Next step is to find PFNDS which should satisfy the condition int[cl(Ci)] = 0X, where Ci

is the closed set Ci(i = 1, .., n).

Step 3. Verifying the structure satisfy PFBS through the condition int(
∞⋃

i=1
(Ci)) = 0X.

Step 4. Find the Cimax that corresponds to the PFNDS’s Ci obtained in step-3.

Step 5. Compute the complement of
∞⋃

i=1
(Ci)). That PFS will reveal the corresponding open set.

From this, we can identify the higher membership of the required alternative.

5.2. Illustration: Assessing Level of Criminal Activity of the accused person in the
society.
The concept of PFBS revolves around the notion of the empty set, denoted as 0X, in this space. This

method is commonly used to identify individuals who commit serious crimes while minimizing

the risks to society. It is advisable to use the following algorithm to ensure the best decisions in

this scenario.

Illustration
The analysis indicates that the accused committed a crime falling within specific categories of

criminal activity levels, considered to be PFS’s. The PFS’s are determined based on the degree

of severity of the criminal activity and are categorized as highly dangerous to the society, false

accusations, and less dangerous to society. To identify the accused, three types of offenses are

considered: violent crimes (k), property crimes (l), and drug offenses (m), denoted by X = {k, l, m}.
Effective management of these categories is essential for establishing a sustainable system that

reduces crime frequency. In the process of crime frequency analysis, it is crucial to assess the
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positive, neutral, and negative aspects of each category. This evaluation is integral to ensuring the

development of a system that leads to identifying severity of criminal activities in society. A PFBS

of picture fuzzy sets is defined by the variety of crimes committed by the accused person.

Step 1. Let σ = {1X, 0X, C1, C2, C3, C4, C5, C6, C7, C8, C9} be the PFT where

C1 = {(k, 0.5, 0.1, 0.0), (l, 0.4, 0.1, 0.3), (m, 0.4, 0.2, 0.4)},

C2 = {(k, 0.7, 0.2, 0.1), (l, 0.5, 0.1, 0.4), (m, 0.6, 0.2, 0.2)},

C3 = {(k, 0.4, 0.1, 0.3), (l, 0.6, 0.1, 0.1), (m, 0.6, 0.2, 0.1)},

C4 = C1 ∪ C2, C5 = C1 ∪ C3, C6 = C2 ∪ C3, C7 = C1 ∩ C2, C8 = C1 ∩ C3, C9 = C2 ∩ C3 and (X, σ) be

the PFTS. Then σc = {1X, 0X, C1, C2, C3, C4, C5, C6, C7, C8, C9}. Ci degree of severity of the accused

persons.

Table 8. Membership value of PFCS’s in PFTS (X,=)
C1 C2 C3 C4 C5 C6 C7 C8 C9 0X 1X

γ 0.0 0.1 0.3 0.0 0.0 0.1 0.1 0.3 0.3 1 0

k η 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0 0

ν 0.5 0.7 0.4 0.7 0.5 0.7 0.5 0.4 0.4 0 1

γ 0.3 0.4 0.1 0.3 0.1 0.1 0.4 0.3 0.4 1 0

l η 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0 0

ν 0.4 0.5 0.6 0.5 0.6 0.6 0.4 0.4 0.5 0 1

γ 0.4 0.2 0.1 0.2 0.1 0.1 0.4 0.4 0.2 1 0

m η 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0 0

ν 0.4 0.6 0.6 0.6 0.6 0.6 0.4 0.4 0.6 0 1

Step 2. int[cl(C1)] , 0X, int[cl(C7)] , 0X, int[cl(C8)] , 0X is not a nowhere dense sets.

int[cl(C2)] = 0X, int[cl(C3)] = 0X, int[cl(C4)] = 0X, int[cl(C5)] = 0X, int[cl(C6)] = 0X, and

int[cl(C9)] = 0X. Thus, C2, C3, C4, C5, C6 & C9 are PFNDS’s.

Step 3. int[C2 ∪C3 ∪C4 ∪C5 ∪C9] = 0X. int(C2 ∪C3 ∪C4 ∪C5 ∪C9) ⊆ C6.

Step 4. We can identify the Cimax set that corresponds to the picture fuzzy set for the given values

of C6 = {(k, 0.1, 0.1, 0.7), (l, 0.1, 0.1, 0.6), (m, 0.1, 0.2, 0.6)}. This satisfies the condition of the PFBS.

By following step 4 in the algorithm, we convert the set into an open set which is named as C6 .

Step 5. From this C6 = {(k, 0.7, 0.1, 0.1), (l, 0.6, 0.1, 0.1), (m, 0.6, 0.2, 0.1)}. We can identify the person

who has committed a higher crime in society. C6 = C2∪C3, where C2&C3 whose degree of criminal

activity is higher in society. The monitoring activity will reduce criminal activity in society. The

utilization of the PFBS is essential in identifying whether an individual has perpetrated a more

severe offense.

6. Conclusions

This paper introduces a new class of sets called PFDS and nowhere dense set, picture fuzzy

semi-open and semi-closed sets, picture fuzzy first and second category sets, PFRS and PFBS.
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Moreover, this work includes some characterizations of PFBS. An algorithm has been revised for

identifying the PFBS and has been discussed with an illustration to demonstrate the implemen-

tation of PFBS. The primary goal is to identify individuals who have committed severe crimes

in society, highlighting its superiority over alternative methods for measuring criminal activity

levels. In the future, this methodology will be applied to explore other fuzzy environments and

properties in topological spaces.
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