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Abstract. In this paper, we present a new four-step iterative scheme namely DH-iterative which is faster than many super

algorithms in the literature for numerical reckoning fixed points. Under this algorithm, some fixed point convergence

results and ω2-stability for contractive-like and Reich-Suzuki-type nonexpansive mappings are proposed. Our results

extend and improve several related results in the literature. Finally, some numerical examples are given to study the

efficiency and effectiveness of our iterative method.

1. Introduction

Functional and integral equations arises from many problems in engineering and applied sci-

ences. Such equations can be transferred to FP theorems in an easy manner. Moreover, we use

the FP theory to prove the existence and uniqueness of solutions of such integral and differential

equations, for example, see [1–4].

Determining fixed point by some schematic algorithms takes major of searches by studying the

behaviors of fixed points as convergence, stability, data dependance, etc. The iterative processes

have been modified to find approximate solutions.

The Picard iterative process is a first iterative processes used to approximate a fixed point of a

contraction mapping z on a nonempty subset ∆ of a Banach space Ξ.

Received: Dec. 30, 2023.

2020 Mathematics Subject Classification. 47H09, 65F05, 46L05, 11Y50.
Key words and phrases. DH-iterative scheme; contractive-like mapping; Reich-Suzuki-type nonexpansive mapping;

ω2
−stability; Banach space.

https://doi.org/10.28924/2291-8639-22-2024-42
ISSN: 2291-8639

© 2024 the author(s).

https://doi.org/10.28924/2291-8639-22-2024-42


2 Int. J. Anal. Appl. (2024), 22:42

A mapping z : ∆ → ∆ is called a contraction if there exists a constant µ ∈ [0, 1) such that

‖za− zb‖ ≤ µ‖a− b‖,∀a, b ∈ ∆. If µ = 1, then z is called a nonexpansive mapping. A point p∗ ∈ ∆ is

said to be a fixed point of z if it satisfies zp∗ = p∗. We denote the set of all fixed points of z byf(z).

Berinde [5] introduced the class of weak contractions. This class of mappings is also known by

many authors as almost contraction mappings.

Definition 1.1. [5] A mapping z : ∆→ ∆ is called a weak contraction if there exist µ ∈ (0, 1) and δ ≥ 0

such that

‖zp− zq‖ ≤ µ‖p− q‖+ δ‖p− zp‖,∀p, q ∈ ∆. (1.1)

In [6], Imoru and Olantiwo generalize the definition of a class of weak-contractions which

studied by Berinde [5] as follows:

Definition 1.2. [6] A mapping z : ∆ → ∆ is called contractive-like if there exist µ ∈ [0, 1) and a strictly
increasing continuous function ϕ : [0,∞)→ [0,∞) with ϕ(0) = 0 such that

‖zp− zq‖ ≤ µ‖p− q‖+ ϕ‖p− zp‖,∀p, q ∈ ∆. (1.2)

Remark 1.1. If ϕ(p) = δp, then (1.2) reduces to (1.1).

Several extensions and generalizations of nonexpansive mappings have been discussed by

many authors due to their importance in terms of applications. For instance, in 2008, Suzuki [7]

introduced an interesting generalization of nonexpansive mappings and presented some existence

and convergence results. Another common name for such mappings are known as mappings

satisfying condition (C).

Definition 1.3. [7] A mapping z : ∆→ ∆ is said to satisfy condition (C) if

1
2
‖p− zp‖ ≤ ‖p− q‖ implies ‖zp− zq‖ ≤ ‖p− q‖,∀p, q ∈ ∆. (1.3)

Also, Pant and Pandey [8] in 2019 introduced the class of Reich-Suzuki-type nonexpansive

mappings as follows:

Definition 1.4. [8] A mapping z : ∆ → ∆ is said to be Reich-Suzuki-type nonexpansive if there exists a
real number µ ∈ [0, 1) such that for each p, q ∈ ∆,

1
2
‖p− zp‖ ≤ ‖p− q‖ implies

‖zp− zq‖ ≤ µ‖p− zp‖+ µ‖q− zq‖+ (1− 2µ)‖p− q‖,∀p, q ∈ ∆.

(1.4)

Remark 1.2. [8]) Every mapping satisfying condition (C) is a Reich-Suzuki-type nonexpansive mapping
with µ = 0 but the converse is not true.
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On the other hand, many authors tended to create several iterative methods for approximating

fixed points in terms of improving the performance and convergence behavior of algorithms for

nonexpansive mappings [9–13] .

Some of these iterative schemes are: Mann [14], Ishikawa [15], Noor [16], Agarwal et al. [17],

Abbas and Nazir [18], CR [19], Normal-S [20], Picard-S [21], Thakur et al. [22], and M iterative

schemes [23].

The iteration of Thakur et al. [22] mentioned below

p0 ∈ ∆,

zκ = (1− ακ)pκ + ακzpκ,

wκ = z[(1− βκ)pκ + βκzκ],

pκ+1 = z(wκ), (1.5)

where ακ, βκ are sequences in (0, 1), converges faster than Picard, Mann, Ishikawa, Agarwal, Noor

and Abbas iteration for Suzuki generalized nonexpansive mappings by a numerical example.

Ahmad et al. [24] introduced an iterative scheme known as the JK iterative scheme as follows:

p0 ∈ ∆,

zκ = (1− ακ)pκ + ακzpκ,

wκ = zzκ,

pκ+1 = z[(1− βκ)zzκ + βκzwκ], (1.6)

where ακ, βκ are sequences in (0, 1). The authors showed numerically that the JK iterative scheme

converges faster than the Agarwal [17] and Thakur [22] iterative schemes.

Very recently, Hammad et al. [25] construct a new algorithm to get a better affinity rate of almost

contraction mappings and Suzuki generalized nonexpansive mappings defined as follows:

v0 ∈ ∆,

$κ = (1− ακ)vκ + ακzvκ,

uκ = z[(1− βκ)$κ + βκz$κ],

Jκ = z[(1− γκ)uκ + γκzuκ],

vκ+1 = zJκ, (1.7)

for κ ≥ 1, where ακ, βκ and γκ are sequences in [0, 1].

Motivated and inspired by the above results, we introduced new four-step iterative methods

called the DH-iterative scheme, to approximate the fixed points of contractive-like mappings and
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Reich-Suzuki-type nonexpansive mappings as follows:

p0 ∈ ∆,

zκ = z[(1− ακ)pκ + ακzpκ],

wκ = z[(1− βκ)zκ + βκzzκ],

qκ = z[(1− γκ)wκ + γκzwκ],

pκ+1 = z(zqκ), (1.8)

for κ ≥ 1, where ακ, βκ and γκ are sequences in (0, 1).

In this article, we prove that the DH-iterative scheme (1.8) converges faster than the iterative

scheme (1.7) in [25] for contractive-like mappings. Numerically, we further show that the iterative

scheme (1.8) converges faster than a number of existing iterative schemes. Also, we prove that

our proposed iterative scheme defined by (1.8) is w2
−stable and the stability result is supported

with an example. Again, we establish weak and strong convergence results of the DH-iterative

scheme (1.8) for Reich-Suzuki-type nonexpansive mappings. Further, we use a new example of

Reich-Suzuki-type nonexpansive mappings to show that the DH iterative scheme (1.8) outperforms

some existing prominent iterative schemes. Finally, we show by examples that this new iterative

process gives better approximations as compared to other methods

2. Preliminaries

Definition 2.1. A Banach space Ξ is called a uniformly convex if for each ε ∈ (0, 2]; there exists δ > 0 such
that for p, q ∈ ∆ satisfying ‖p‖ ≤ 1, ‖q‖ ≤ 1 and ‖p− q‖ > ε, we get ‖ p+q

2 ‖ < 1− δ.

Definition 2.2. A Banach space Ξ is called satisfy Opial’s condition if for any sequence {pκ} ∈ ∆ so that
pκ → p ∈ ∆ weakly, implies

lim sup
κ∞

‖pκ − p‖ < lim sup
κ→∞

‖pκ − q‖,∀q ∈ ∆, p , q.

Definition 2.3. Let ∆ be a nonempty closed convex subset of a Banach space Ξ, and {pκ} ∈ ∆ is a bounded
sequence in Ξ. For p ∈ Ξ, we put

r(p, {pκ}) = lim sup
κ→∞

‖pκ − p‖. (2.1)

The asymptotic radius of {pκ} relative to ∆ is defined by

r(∆, {pκ}) = inf{r(p, {pκ}) : p ∈ ∆}. (2.2)

The asymptotic center of {pκ} relative to ∆ is given as:

A(∆, {pκ}) = {p ∈ ∆ : r(p, {pκ}) = r(∆, {pκ})}. (2.3)

In a uniformly convex Banach space, it is well known that A(∆, {pκ}) consists of exactly one point.
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Definition 2.4. Let ∆ be a nonempty closed convex subset of a Banach space Ξ. A mapping z : ∆ → ∆ is
said to be demiclosed with respect to p ∈ Ξ, if for each sequence {pκ} that is weakly convergent to p ∈ ∆ and
{zpκ} converges strongly to q implies that zp = q.

Definition 2.5. [26] Let {βκ} and {γκ} be two sequences of real numbers that converge to β and γ ,
respectively, and assume that there exists

` = lim
κ→∞

‖βκ − β‖

‖γκ − γ‖
. (2.4)

Then,
(t1) We say that {βκ} converges to β faster than {γκ} does to γ, if ` = 0.
(t2) We say that {βκ} and {γκ} have the same rate of convergence, if 0 < ` < ∞.

Definition 2.6. A sequence {pκ} in ∆ is said to be an approximate fixed-point sequence for a mapping
z : ∆→ ∆ if

lim
κ→∞
‖zpκ − pκ‖ = 0. (2.5)

Definition 2.7. [27] A mapping z : ∆ → ∆ is said to be a satisfied condition (I) if a nondecreasing
function f : [0,∞)→ [0,∞) exists with f (0) = 0 and for all t > 0, then f (t) > 0 such that

‖p− zp‖ ≥ f (d(p,f(z))),∀p ∈ ∆, (2.6)

where d(p,f(z)) = infp∗∈f(z) ‖p− p∗‖.

Lemma 2.1. [28] Let {θκ} and {λκ} be nonnegative real sequences satisfying the following inequalities:

θκ+1 ≤ (1− ηκ)θκ + λκ, (2.7)

where ηκ ∈ (0, 1) for all κ ∈N,
∑
∞

κ=0 ηκ = ∞, and limκ→∞
λκ
ηκ

= 0, then limκ→∞ θκ = 0.

Lemma 2.2. [29] Suppose Ξ is a uniformly convex Banach space and {ζκ} is any sequence satisfying
0 < p ≤ ζκ ≤ q < 1 for all κ ≥ 1. Suppose {pκ} and {qκ} are any sequences of Ξ such that

lim sup
κ→∞

‖pκ‖ ≤ ν,

lim sup
κ→∞

‖qκ‖ ≤ ν,

lim sup
κ→∞

‖ζκpκ + (1− ζκ)qκ‖ = ν,

hold for some ν ≥ 0. Then, limκ→∞ ‖pκ − qκ‖ = 0.

Lemma 2.3. [30] Let z : ∆ → ∆ be a mapping. If z is a Reich-Suzuki-type nonexpansive mapping with
f(z) , φ, then the following hold:

(1) If z is a Reich-Suzuki-type nonexpansive mapping, then for every choice of p ∈ ∆ and p∗ ∈ f(z), it
follows that ‖zp− zp∗‖ ≤ ‖p− p∗‖.

(2) If z satisfies condition (C), then z is a Reich-Suzuki-type nonexpansive mapping.
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Lemma 2.4. Let z : ∆→ ∆ be a mapping. If z is a Reich-Suzuki-type nonexpansive mapping, then for all
p, q ∈ ∆, the following inequality holds:

‖p− zq‖ ≤
(

3+τ
1−τ

)
‖p− zp‖+ ‖p− q‖, (2.8)

for all τ ∈ [0, 1).

Now, we present some definitions that related to stability.

The concept of stability of a fixed-point iteration process was firstly studied by Harder in her Ph.D

thesis that was published in 1987.

Definition 2.8. [31] Letz : ∆→ ∆ be a mapping. Define a fixed-point iteration method by pκ+1 = f (z, pκ)
such that pκ converges to a fixed point p∗ of z. Let {Mκ} be an arbitrary sequence in Ξ. Define

δκ = ‖Mκ − f (z, Mκ)‖,∀κ ∈N. (2.9)

A fixed-point iterative method is said to be z-stable if the following condition is satisfied:

lim
κ→∞

δκ = 0 if and only if lim
κ→∞

Mκ = p∗. (2.10)

The notion of stability mentioned in Definition 2.8 has recently been studied by several authors

for different classes of contraction mappings (see e. g. [32]- [37]), and the references in them).

Berinde [38] showed that the concept of stability in Definition 2.8 is not precise because of the

sequence {Mκ} that is arbitrarily taken. Thus for overcoming this limitation, Berinde [38] showed

that it would bemore natural if {Mκ}were an approximate sequence of {pκ}. Therefore, any iteration

process that is stable will also be weakly stable but the converse is generally not true.

Definition 2.9. [38] Let {pκ} ⊂ ∆ be a given sequence. Then, a sequence {Mκ} ⊂ ∆ is an approximate
sequence of {pκ} if, for any n ∈N, there exists λ = λ(n) such that

‖pκ −Mκ‖ ≤ λ,∀κ ≥ n. (2.11)

Definition 2.10. [38] Let z : ∆ → ∆ be a mapping and {pκ} be an iterative procedure defined for p1 ∈ ∆

and

pκ+1 = f (z, pκ),κ ≥ 0. (2.12)

Let {pκ} converge to a fixed point p∗ of z. Suppose for any approximate sequence {Mκ} ⊂ ∆ of {pκ}

lim
κ→∞

δκ = lim
κ→∞
‖Mκ+1 − f (z, Mκ)‖ = 0⇒ lim

κ→∞
Mκ = p∗, (2.13)

then we say that 2.12 is weakly z-stable or weakly stable with respect to z.

Because some contractive conditions are very strictly and the associated fixed point iteration

is not weakly stable, Timiş [39] introduced a new concept of weakly stability namely ω2-stability

by replacing the approximate sequence with the notion of the equivalent sequence that is more

general. Following the previous job, Timiş in [40], gave some examples of ω2-stable but not weak

stable nor stable iterations.
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Definition 2.11. [41] Let {pκ} and {Mκ} be two sequences.We say that these sequences are equivalent if

lim
κ→∞
‖pκ −Mκ‖ = 0. (2.14)

Definition 2.12. [39] Let z : ∆ → ∆ be a mapping and {pκ} be an iterative procedure defined for p1 ∈ ∆

and

pκ+1 = f (z, pκ),κ ≥ 0. (2.15)

Let {pκ} converge to a fixed point p∗ of z. Suppose for any equivalent sequence {Mκ} ⊂ ∆ of {pκ}

lim
κ→∞

δκ = ‖Mκ+1 − f (z, Mκ)‖ = 0⇒ lim
κ→∞

Mκ = p∗. (2.16)

then we say that (2.15) is weakly ω2-stable or weakly ω2 stable with respect to z.

Remark 2.1. Any equivalent sequence is an approximative sequence but the reverse is not true. (See [39]).

3. Rate of convergence

In this section, we show the rate of convergence of DH-iterative (1.8) and show that it converges

faster than the iterative (1.7) for the contractive -like mappings.

Theorem 3.1. Let z be a contractive -like mapping satisfying (1.2) defined on a nonempty closed convex
subset ∆ of a Banach space Ξ. Then the sequence {pκ} generated by the DH-iterative scheme (1.8) converges
strongly to a unique fixed point of z.

Proof. beginning with the definition of the contractive-like mapping (1.2) and the DH-iterative

defind by (1.8), we have

‖zκ − p∗‖ = ‖z[(1− ακ)pκ + ακzpκ] − zp∗‖

= ‖zp∗ − z[(1− ακ)pκ + ακzpκ]‖

≤ µ‖p∗ − [(1− ακ)pκ + ακzpκ]‖+ ϕ‖p∗ − zp∗‖

≤ µ(1− ακ)‖(pκ − p∗)‖+ µακ‖zpκ − p∗‖

≤ µ(1− ακ)‖pκ − p∗‖+ µακ[µ‖pκ − p∗‖+ ϕ‖p∗ − zp∗‖]

= µ(1− ακ)‖pκ − p∗‖+ µ2ακ‖pκ − p∗‖

= µ(1− ακ(1− µ))‖pκ − p∗‖. (3.1)

Again using (1.8) and (3.1), we obtain

‖wκ − p∗‖ = ‖z[(1− βκ)zκ + βκzzκ] − p∗‖

≤ µ(1− βκ(1− µ))‖zκ − p∗‖

≤ µ2(1− βκ(1− µ))(1− ακ(1− µ))‖pκ − p∗‖. (3.2)
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Similarly, applying the same steps above to obtain the following:

‖qκ − p∗‖ ≤ µ(1− (1− µ)γκ)‖wκ − p∗‖

≤ µ3(1− γκ(1− µ))(1− βκ(1− µ))(1− ακ(1− µ))‖pκ − p∗‖. (3.3)

Finally, from (1.8) and (3.3)

‖pκ+1 − p∗‖ = ‖z(zqκ) − p∗‖

≤ µ‖zqκ − p∗‖

≤ µ2
‖qκ − p∗‖

≤ µ5(1− γκ(1− µ))(1− βκ(1− µ))(1− ακ(1− µ))‖pκ − p∗‖. (3.4)

Since 0 < µ < 1 and γκ, βκ,ακ ∈ (0, 1), it follows that (1− γκ(1− µ)γκ) < 1, (1− βκ(1− µ)) < 1, and

(1− ακ(1− µ)) < 1.

The inequality (3.4) becomes,

‖pκ+1 − p∗‖ ≤ µ5
‖pκ − p∗‖.

By induction, we obtain

‖pκ+1 − p∗‖ ≤ µ5(κ+1)
‖p0 − p∗‖. (3.5)

Since 0 < µ < 1, we have pκ → p∗ as κ→∞.

For the uniqueness, let p∗, q∗ ∈ f(z) such that p∗ , q∗. Since z be the contractive -like mapping, we

can write

‖p∗ − q∗‖ = ‖zp∗ − zq∗‖ ≤ µ‖p∗ − q∗‖+ ϕ‖p∗ − zp∗‖

= µ‖p∗ − q∗‖ < ‖p∗ − q∗‖. (3.6)

A contradiction. Thus p∗ = q∗ �

Theorem 3.2. Let z be a contractive-like mapping satisfying (1.2) defined on a nonempty closed convex
subset ∆ of a Banach space Ξ with f(z) , φ. If {pκ} is the sequence generated by the DH-iterative scheme
(1.8), then {pκ} converges faster than {vκ} generated by the (1.7) iterative scheme

Proof. From theorem (3.1), we have

‖pκ+1 − p∗‖ ≤ µ5(κ+1)
‖p0 − p∗‖,κ ∈N.

Also, from (1.7), we have

‖$κ − p∗‖ = ‖(1− ακ)vκ + ακzvκ − p∗‖

≤ (1− ακ)‖vκ − p∗‖+ ακ‖zvκ − p∗‖

≤ (1− ακ)‖vκ − p∗‖+ µακ‖vκ − p∗‖

= (1− (1− µ)ακ)‖vκ − p∗‖. (3.7)
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Using (3.7) and (1.7), one can write

‖uκ − p∗‖ = ‖z((1− βκ)$κ + βκz$κ) − p∗‖

= ‖zp∗ − z[(1− βκ)$κ + βκz$κ]‖

≤ µ‖p∗ − ((1− βκ)$κ + βκz$κ)‖+ ϕ‖p∗ − zp∗‖

= µ‖(1− βκ)($κ − p∗) + βκ(z$κ − p∗)‖

≤ µ(1− βκ)‖$κ − p∗‖+ µβκ‖$κ − p∗‖

= µ(1− βκ(1− µ))‖$κ − p∗‖

≤ µ(1− βκ(1− µ))(1− ακ(1− µ))‖vκ − p∗‖. (3.8)

Similarly, by (3.8) and (1.7), we have

‖Jκ − p∗‖ ≤ µ(1− γκ(1− µ))‖uκ − p∗‖

≤ µ2(1− γκ(1− µ))(1− βκ(1− µ))(1− ακ(1− µ))‖vκ − p∗‖. (3.9)

Lastly, from (3.9), we get

‖vκ+1 − p∗‖ = ‖zJκ − p∗‖

≤ µ‖Jκ − p∗‖

≤ µ3(1− γκ(1− µ))(1− βκ(1− µ))(1− ακ(1− µ))‖vκ − p∗‖

≤ µ3
‖vκ − p∗‖. (3.10)

Inductively, we have

‖vκ+1 − p∗‖ ≤ µ3(κ+1)
‖v0 − p∗‖. (3.11)

Let Γκ = µ5(κ+1)
‖p0 − p∗‖ and Υκ = µ3(κ+1)

‖v0 − p∗‖, then we have

Γκ
Υκ

=
µ5(κ+1)

‖p0 − p∗‖

µ3(κ+1)‖v0 − p∗‖
= µ2(κ+1) ‖p0 − p∗‖

‖v0 − p∗‖
→ 0 as κ→∞.

(3.12)

Thus, the sequence {pκ} converges faster to p∗ than {vκ}. �

4. Convergence results

In this section , we prove weak and strong covergence theorems of the DH-iterative scheme (1.8)

for the Reich-Suzuki type nonexpansive mappings.

Lemma 4.1. Let z be a self Reich-Suzuki type nonexpansive mappings defined on a nonempty closed convex
subset ∆ of a Banach space Ξ withf(z) , ∅. Let {pκ} be the sequence generated by the DH-iterative scheme
(1.8). Then limκ→∞ ‖pκ − p∗‖ exists for each p∗ ∈ f(z).
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Proof. Let p∗ ∈ f(z), using Lemma 2.3, we have

‖zκ − p∗‖ = ‖z[(1− ακ)pκ + ακzpκ] − zp∗‖

≤ ‖(1− ακ)pκ + ακzpκ − p∗‖

≤ (1− ακ)‖pκ − p∗‖+ ακ‖zpκ − zp∗‖

≤ (1− ακ)‖pκ − p∗‖+ ακ‖pκ − p∗‖

= ‖pκ − p∗‖. (4.1)

Also, we have

‖wκ − p∗‖ = ‖z[(1− βκ)zκ + βκzzκ] − zp∗‖

≤ ‖zκ − p∗‖

≤ ‖pκ − p∗‖. (4.2)

Similarly, we have

‖qκ − p∗‖ ≤ ‖z[(1− γκ)wκ + γκzwκ] − zp∗‖

≤ ‖wκ − p∗‖

≤ ‖pκ − p∗‖. (4.3)

At last, we obtain

‖pκ+1 − p∗‖ = ‖z(zqκ) − p∗‖

≤ ‖zqκ − p∗‖

≤ ‖qκ − p∗‖

≤ ‖pκ − p∗‖. (4.4)

Thus, the real sequence {‖pκ − p∗‖} is a bounded and decreasing sequence. Hence limn→∞ ‖pκ − p∗‖
exists for each p∗ ∈ f(z). �

Lemma 4.2. Let z be a self Reich-Suzuki type nonexpansive mappings defined on a nonempty closed convex
subset ∆ of a Banach space Ξ. Let {pκ} be the iterative sequence generated by the DH-iterative scheme (1.8).
Then, f(z) , ∅ if and only if {pκ} is bounded and limκ→∞ ‖zpκ − pκ‖ = 0.

Proof. Let f(z) , ∅ and p∗ ∈ f(z). By Lemma 4.1, limn→∞ ‖pκ − p∗‖ exists and {pκ} is bounded.

Consider the following:

lim
κ→∞
‖pκ − p∗‖ = L. (4.5)

From (4.1) and (4.5)

lim sup
κ→∞

‖zκ − p∗‖ ≤ L. (4.6)
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Using Lemma 2.3, we get

lim sup
κ→∞

‖zpκ − p∗‖ ≤ lim sup
κ→∞

‖pκ − p∗‖ = L. (4.7)

From (1.8) and (4.1), we have

‖pκ+1 − p∗‖ = ‖z(zqκ) − p∗‖

≤ ‖zqκ − p∗‖

≤ ‖qκ − p∗‖

≤ ‖z[(1− γκ)wκ + ακzwκ] − p∗‖

≤ ‖(1− γκ)wκ + γκzwκ − p∗‖

≤ (1− γκ)‖wκ − p∗‖+ γκ‖zwκ − p∗‖

≤ (1− γκ)‖wκ − p∗‖+ γκ‖wκ − p∗‖

= ‖wκ − p∗‖

= ‖z[(1− βκ)zκ + βκzzκ] − p∗‖

≤ ‖(1− βκ)zκ + βκzzκ − p∗‖

≤ (1− βκ)‖zκ − p∗‖+ βκ‖zzκ − p∗‖

≤ (1− βκ)‖pκ − p∗‖+ βκ‖zκ − p∗‖

= ‖pκ − p∗‖ − βκ‖pκ − p∗‖+ βκ‖zκ − p∗‖.

Since βκ ∈ (0, 1), The last inequality leads to

‖pκ+1 − p∗‖ − ‖pκ − p∗‖ ≤
‖pκ+1 − p∗‖ − ‖pκ − p∗‖

βκ
≤ ‖zκ − p∗‖ − ‖pκ − p∗‖,

which implies that

‖pκ+1 − p∗‖ ≤ ‖zκ − p∗‖.

Thus by (4.5), we obtain

L ≤ lim inf
κ→∞

‖zκ − p∗‖. (4.8)

Both (4.8) and (4.6) implies that

L = ‖zκ − p∗‖. (4.9)

From (4.1), we have

‖zκ − p∗‖ ≤ ‖(1− ακ)(pκ − p∗) + ακ(zpκ − p∗)‖ ≤ ‖pκ − p∗‖.

Using the inequalities (4.9) and (4.5), it follows that:

lim
κ→∞
‖(1− ακ)(pκ − p∗) + ακ(zpκ − p∗)‖ = L. (4.10)
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Lastly, from (4.5), (4.7), (4.10) and Lemma 2.2, one can write

lim
κ→∞
‖zpκ − pκ‖ = 0.

Conversely, assume that {pκ} is bounded and limκ→∞ ‖zpκ − pκ‖ = 0. Let p∗ ∈ A(∆, {pκ}), using

Lemma 2.4, we have

r(zp∗, {pκ}) = lim sup
κ→∞

‖pκ − zp∗‖

≤ ( 3+τ
1−τ ) lim supκ→∞ ‖zpκ − pκ‖+ lim supκ→∞ ‖pκ − p∗‖

= lim sup
κ→∞

‖pκ − p∗‖

= r(p∗, {pκ}).

Thus, zp∗ ∈ A(∆, {pκ}). Since Ξ is uniformly convex, then A(∆, {pκ}) contains only one element, so

we have zp∗ = p∗. �

Now, we present the following weak convergence result.

Theorem 4.1. Let z, ∆ and {pκ} as in Lemma 4.2. Let Ξ be a uniformly convex Banach space. Suppose that
Ξ satisfies Opial’s condition and 1− z is demiclosed with respect to zero
If f(z) , ∅, then the sequence {pκ} converges weakly to a point of z.

Proof. From Lemma 4.1, we have that limκ→∞ ‖pκ − p∗‖ exists. Now, it is sufficient to prove that

{pκ} have a unique weak subsequential limit in f(z). Let {pκn} and {pκm} are two subsequences of

{pκ}, which converge weakly to p, q respectively.

Now, suppose that Ξ satisfies Opial’s condition and 1− z is demiclosed with respect to zero, then

by Lemma 4.2, we have limκ→∞ ‖zpκ − pκ‖ = 0, and since 1 − z is demiclosed at zero, we have

(1− z)p = 0, that is p = zp and similarly, q = zq.

For the uniqueness, suppose that p, q ∈ f(z), p , q, by Opial’s property, we get

lim
κ→∞
‖pκ − p‖ = lim

κn→∞
‖pκn − p‖ < lim

κn→∞
‖pκn − q‖ = lim

κ→∞
‖pκ − q‖

= lim
κm→∞

‖pκm − q‖ < lim
κm→∞

‖pκm − p‖ = lim
κ→∞
‖pκ − p‖,

which is a contradiction, so p = q.

�

We now present the following strong convergence results:

Theorem 4.2. Let z, ∆ and Ξ as in Lemma 4.2. Let {pκ} be the sequence generated by the DH iterative
scheme (1.8). Then

{pκ} → p∗ ∈ f(z)⇔ lim inf
κ→∞

d(pκ,f(z)) = 0,

where d(pκ,f(z)) = inf{‖pκ − p∗‖ : p∗ ∈ f(z)}.
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Proof. The necessity is clear. Conversely, let lim infκ→∞ d(pκ,f(z)) = 0, p∗ ∈ f(z). Using Lemma

4.1, limκ→∞ ‖pκ − p∗‖ exists for all p∗ ∈ f(z). It is sufficient to prove that the sequence {pκ} is Cauchy

in ∆. Since limκ→∞ d(pκ,f(z)) = 0, then ∀ε > 0, there exists ι0 ∈N such that

∀κ ≥ ι0, d(pκ,f(z)) <
ε
2

, inf{‖pκ − p∗‖ : p∗ ∈ f(z)} <
ε
2

.

In particular, inf{‖pι0 − p∗‖ : p∗ ∈ f(z)} < ε
2 . Thus , there exists p∗ ∈ f(z) such that ‖pι0 − p∗‖ < ε

2 .

For κ, ` ≥ ι0 ,we obtain

‖pκ+` − pκ‖ ≤ ‖pκ+` − p∗‖+ ‖pκ − p∗‖

≤ ‖pι0 − p∗‖+ ‖pι0 − p∗‖

= 2‖pι0 − p∗‖ < ε.

Hence, the sequence {pκ} is Cauchy in ∆ and since ∆ is closed , there is an element q ∈ ∆ such that

limκ→∞ pκ = q. Since limκ→∞ d(pκ,f(z)) = 0, then d(q,f(z)) = 0, which means q ∈ f(z). �

In a compact domain, we establish a strong convergence in the following way:

Theorem 4.3. Let z and Ξ as in Lemma 4.2. Let ∆ be a nonempty compact convex subset of Ξ. Then, the
sequence {pκ} generated by the iterative scheme (1.8) converges strongly to a fixed point of z.

Proof. By Lemma 4.2, we have limn→∞ ‖zpκ − pκ‖ = 0. Since ∆ is convex and compact, the iterative

sequence {pκ} which contained in the set ∆ has a convergent subsequence, say {pκi} has a strong

limit, namely, p ∈ ∆. Applying Lemma 2.4 with {pκi} and p,

‖pκi − zp‖ ≤ ( 3+τ
1−τ )‖pκi − zpκi‖+ ‖pκi − p‖ (4.11)

Letting i → ∞, we obtain pκi → zp, which means q ∈ f(z). Using Lemma 4.1, limκ→∞ ‖pκ − p‖
exists, that is, p is a strong limit for {pκ}. �

In the following, A condition (I) is using for strong convergence theorem.

Theorem 4.4. Let z, ∆ and Ξ as in Lemma 4.2. Let z satisfies condition (I), then the sequence {pκ} generated
by the DH iterative scheme (1.8) converges strongly to a fixed point of z.

Proof. As in Lemma (4.2), we have shown that

lim
κ→∞
‖zpκ − pκ‖ = 0⇒ f (d(pκ,f(z))) = 0. (4.12)

By (4.12) and the definition (2.7), one can write

0 ≤ lim
κ→∞

f (d(pκ,f(z))) ≤ lim
κ→∞
‖pκ − zpκ‖ = 0.

Since f : [0,∞) → [0,∞) is a nondecreasing function that satisfies the condition f (0) = 0, and

f (t) > 0, for all t > 0, we obtain

lim
κ→∞

d(pκ,f(z)) = 0.

All the requirements of Theorem 4.3 are satisfied, thus, the sequence {pκ} is strongly convergent in

the fixed-point set of z. �
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5. Stability results

In this section, we show that the DH-iterative scheme defined in (1.8) isω2
−stability with respect

to z for contractive- like mappings.

Theorem 5.1. Let ∆ be a nonempty closed convex subset of a Banach metric space Ξ, z : ∆ → ∆ be a
contractive-like mapping such thatf(z) , φ, and {pκ} be the DH-iterative sequence defined in (1.8). Then,
the sequence {pκ} is w2-stable with respect to z.

Proof. Let {Mκ} be an equivalent sequence of {pκ} in ∆. put δκ = ‖Mκ+1 − z(zaκ)‖, where aκ =

z[(1− γκ)bκ − γκzbκ], bκ = z[(1− βκ)cκ − βκzcκ], cκ = z[(1− ακ)Mκ − ακzMκ]. Let limn→∞ δκ = 0.

Applying triangle inequality and using 1.8, we obtain

‖Mκ+1 − p∗‖ ≤ ‖Mκ+1 − pκ+1‖+ ‖pκ+1 − p∗‖

≤ ‖Mκ+1 − z(zaκ)‖+ ‖z(zaκ) − pκ+1‖+ ‖pκ+1 − p∗‖

= δκ + ‖z(zaκ) − z(zqκ)‖+ ‖pκ+1 − p∗‖

≤ δκ + µ‖zqκ − zaκ‖+ ϕ(‖zqκ − z(zqκ)‖) + ‖pκ+1 − p∗‖

≤ δκ + µ(µ‖qκ − aκ‖+ ϕ(‖qκ − zqκ‖)

+ ϕ(µ‖qκ − p∗‖+ µ‖zqκ − p∗‖) + ‖pκ+1 − p∗‖

≤ δκ + µ2
‖qκ − aκ‖+ µϕ((1 + µ)‖qκ − p∗‖)

+ ϕ(µ‖qκ − p∗‖+ µ2
‖qκ − p∗‖) + ‖pκ+1 − p∗‖

= δκ + µ2
‖qκ − aκ‖+ µϕ((1 + µ)‖qκ − p∗‖)

+ ϕ(µ(1 + µ)‖qκ − p∗‖) + ‖pκ+1 − p∗‖ (5.1)

Also, we have

‖qκ − aκ‖ = ‖z[(1− γκ)ωκ − γκzωκ] − z[(1− γκ)bκ − γκzbκ]‖

≤ µ‖(1− γκ)ωκ + γκzωκ − ((1− γκ)ωκ − γκzωκ)‖

+ ϕ(‖(1− γκ)ωκ + γκzωκ − z[(1− γκ)ωκ − γκzωκ]‖)

= µ[(1− γκ)‖ωκ − bκ‖+ γκ‖zωκ − zbκ‖]

+ ϕ(‖(1− γκ)ωκ + γκzωκ − p∗‖+ ‖zp∗ − z[(1− γκ)ωκ − γκzωκ]‖)

≤ µ(1− γκ)‖ωκ − bκ‖+ µγκ[µ‖ωκ − bκ‖ −ϕ(‖ωκ − zωκ‖)

+ ϕ((1− γκ(1− µ))‖wκ − p∗‖+ µ((1− γκ(1− µ))‖wκ − p∗‖))

= µ(1− γκ)‖ωκ − bκ‖+ µ2γκ‖ωκ − bκ‖ − µγκϕ((1 + µ)‖ωκ − p∗‖)

+ ϕ((1 + µ)(1− (1− µ)γκ)‖wκ − p∗‖)

= µ(1− (1− µ)γκ)‖ωκ − bκ‖ − µγκϕ((1 + µ)‖ωκ − p∗‖)

+ ϕ((1 + µ)(1− (1− µ)γκ)‖ωκ − p∗‖). (5.2)
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Since µ ∈ [0, 1), (1 − γκ(1 − µ)) < 1, then µ(1 − (1 − µ)γκ) < 1 and since ϕ is a strictly increasing

continuous function, then from (5.2), we get

‖qκ − aκ‖ ≤ ‖ωκ − bκ‖ − µγκϕ((1 + µ)‖ωκ − p∗‖)

+ ϕ((1 + µ)‖ωκ − p∗‖). (5.3)

Similarly

‖ωκ − bκ‖ ≤ ‖zκ − cκ‖ − µβκϕ((1 + µ)‖zκ − p∗‖)

+ ϕ((1 + µ)‖zκ − p∗‖).

(5.4)

and

‖zκ − cκ‖ ≤ ‖pκ −Mκ‖ − µακϕ((1 + µ)‖pκ − p∗‖)

+ ϕ((1 + µ)‖pκ − p∗‖).

(5.5)

Finally, using (5.3), (5.4) and (5.5)

‖Mκ+1 − p∗‖ ≤ δκ + µ2
‖qκ − aκ‖+ µϕ((1 + µ)‖qκ − p∗‖)

+ϕ(µ(1 + µ)‖qκ − p∗‖) + ‖pκ+1 − p∗‖

≤ δκ + µ2[‖ωκ − bκ‖ − µγκϕ((1 + µ)‖ωκ − p∗‖)

+ϕ((1 + µ)‖ωκ − p∗‖)] + µϕ((1 + µ)‖qκ − p∗‖)

+ϕ(µ(1 + µ)‖qκ − p∗‖) + ‖pκ+1 − p∗‖

= δκ + µ2
‖ωκ − bκ‖ − µ3γκϕ((1 + µ)‖ωκ − p∗‖)

+µ2ϕ((1 + µ)‖ωκ − p∗‖) + µϕ((1 + µ)‖qκ − p∗‖)

+ϕ(µ(1 + µ)‖qκ − p∗‖) + ‖pκ+1 − p∗‖.

which implies that

‖Mκ+1 − p∗‖ ≤ δκ + µ2[‖zκ − cκ‖ − µβκϕ((1 + µ)‖zκ − p∗‖)

+ϕ((1 + µ)‖zκ − p∗‖] − µ3γκϕ((1 + µ)‖ωκ − p∗‖)

+µ2ϕ((1 + µ)‖ωκ − p∗‖) + µϕ((1 + µ)‖qκ − p∗‖)

+ϕ(µ(1 + µ)‖qκ − p∗‖) + ‖pκ+1 − p∗‖

= δκ + µ2
‖zκ − cκ‖ − µ3βκϕ((1 + µ)‖zκ − p∗‖)

+µ2ϕ((1 + µ)‖zκ − p∗‖] − µ3γκϕ((1 + µ)‖ωκ − p∗‖)

+µ2ϕ((1 + µ)‖ωκ − p∗‖) + µϕ((1 + µ)‖qκ − p∗‖)

+ϕ(µ(1 + µ)‖qκ − p∗‖) + ‖pκ+1 − p∗‖,
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yields,

‖Mκ+1 − p∗‖ ≤ δκ + µ2[‖pκ −Mκ‖ − µακϕ((1 + µ)‖pκ − p∗‖)

+ ϕ((1 + µ)‖pκ − p∗‖)] − µ3βκϕ((1 + µ)‖zκ − p∗‖)

+ µ2ϕ((1 + µ)‖zκ − p∗‖] − µ3γκϕ((1 + µ)‖ωκ − p∗‖)

+ µ2ϕ((1 + µ)‖ωκ − p∗‖) + µϕ((1 + µ)‖qκ − p∗‖)

+ ϕ(µ(1 + µ)‖qκ − p∗‖) + ‖pκ+1 − p∗‖,

it follows that

‖Mκ+1 − p∗‖ ≤ δκ + µ2
‖pκ −Mκ‖ − µ

3ακϕ((1 + µ)‖pκ − p∗‖)

+ µ2ϕ((1 + µ)‖pκ − p∗‖) − µ3βκϕ((1 + µ)‖zκ − p∗‖)

+ µ2ϕ((1 + µ)‖zκ − p∗‖] − µ3γκϕ((1 + µ)‖ωκ − p∗‖)

+ µ2ϕ((1 + µ)‖ωκ − p∗‖) + µϕ((1 + µ)‖qκ − p∗‖)

+ ϕ(µ(1 + µ)‖qκ − p∗‖) + ‖pκ+1 − p∗‖. (5.6)

From Theorem 3.1, we get that limk→∞ ‖pκ − p∗‖ = 0, and since ϕ is a strictly increasing continuous

function with ϕ(0) = 0, then limk→∞ ‖pκ+1 − p∗‖ = 0, The equivalence of {pκ} and {Mκ} implies

that limk→∞ ‖pκ −Mκ‖ = 0. Taking the limit of both sides of (5.6) and since limk→∞ δκ = 0, we get

limk→∞ ‖Mκ − p∗‖ = 0, that is the sequence {pκ} is ω2-stable with respect to z. �

6. Numerical experiments

This section presents a sequence of numerical experiments designed to demonstrate the effec-

tiveness of the proposed methods. The main goal of these experiments is to provide insights into

the selection of optimal control settings and to conduct a comprehensive investigation of control

parameter configurations. In this section, the error term is consistently identified as Dk, while

crucial parameters, including the total number of iterations and the necessary execution time, are

denoted by k and t, respectively.

Example 6.1. Consider the sets Ξ = R and ∆ = [0, 50]. Let z : ∆ → ∆ be a mapping defined by the
expression

z(ν) =
√
ν2 − 9ν+ 54.

It is evident that 6.0000 serves as a fixed point (FP) for the mapping z. In this experiment, we assess
the numerical efficiency of Algorithm (7) and Algorithm (8) by varying the initial value for x0. The chosen
termination condition is defined as ‖xk+1 − xk‖ ≤ 10−15. Let:

αk =
1

2k + 2
, βk =

1
2k + 2

,γk =
1

2k + 2
.

Our primary objective is to accurately determine the number of iterations and the corresponding execution
time required for convergence. We are particularly interested in understanding how the initial choice of
starting points influences the algorithm’s performance.
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Figures 1–5 depict graphs illustrating the numerical results. It is crucial to note that the computational
performance in each scenario is intricately linked to the initial starting point choice. This underscores the
significance of initial conditions in shaping the overall numerical performance of the algorithm. To conduct
this experiment, we will initiate the process with the following parameters:

1 2 3 4 5 6 7 8 9

Number of iterations

10-15

10-10

10-5

100

2.5 3 3.5 4 4.5 5 5.5

Elapsed time [sec] 10-3

10-15

10-10

10-5

100

Figure 1. A numerical graph with iteration count and execution time of Algorithm

(7) [k = 9, t = 0.0050268] and Algorithm (8) [k = 7, t = 0.0048174] with p0 = 2.
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Figure 2. A numerical graph with iteration count and execution time of Algorithm

(7) [k = 11, t = 0.0118947] and Algorithm (8) [k = 8, t = 0.0108899] with p0 = 20.
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Figure 3. A numerical graph with iteration count and execution time of Algorithm

(7) [k = 12, t = 0.0073363] and Algorithm (8) [k = 9, t = 0.0046669] with p0 = 30.
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Figure 4. A numerical graph with iteration count and execution time of Algorithm

(7) [k = 12, t = 0.0048951] and Algorithm (8) [k = 9, t = 0.0063244] with p0 = 40.
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Figure 5. A numerical graph with iteration count and execution time of Algorithm

(7) [k = 13, t = 0.0079629] and Algorithm (8) [k = 10, t = 0.0062882] with p0 = 50.

Example 6.2. Consider a mapping z : ∆→ Ξ defined as

z(ν) = max{0,−ν}.

The mapping z is non-expansive and possesses a unique fixed point at ν = 0. The set ∆ is characterized
by

∆ := {ν : −100 ≤ ν ≤ 100}.

In this experiment, we evaluate the numerical efficiency of Algorithm (7) and Algorithm (8) by varying
the initial value for x0. The selected termination condition is defined as ‖xk+1 − xk‖ ≤ 10−10. Figures
6–9 present graphs illustrating the numerical results. It is imperative to recognize that the computational
performance in each scenario is intricately tied to the initial starting point choice. Let the control conditions
for both algorithms be specified as follows:

αk =
1

2k + 2
, βk =

1
2k + 2

,γk =
1

2k + 2
.
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Figure 6. A numerical graph with iteration count and execution time of Algorithm

(7) [k = 14, t = 0.0059199] and Algorithm (8) [k = 11, t = 0.0070727] with p0 = 10.
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Figure 7. A numerical graph with iteration count and execution time of Algorithm

(7) [k = 14, t = 0.0094708] and Algorithm (8) [k = 11, t = 0.0049198] with p0 = 30.
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Figure 8. A numerical graph with iteration count and execution time of Algorithm

(7) [k = 15, t = 0.0080635] and Algorithm (8) [k = 11, t = 0.0071185] with p0 = 50.
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Figure 9. A numerical graph with iteration count and execution time of Algorithm

(7) [k = 15, t = 0.0059722] and Algorithm (8) [k = 12, t = 0.0086321] with p0 = 70.

Example 6.3. Consider an operator F : ∆ ⊂ Ξ → Ξ, and define the variational inequality problem as
follows:

Find ν∗ ∈ ∆ such that
〈
F (ν∗), ν− ν∗

〉
≥ 0, for all ν ∈ ∆.

Let z : ∆ ⊂ Ξ→ Ξ be a mapping defined by

z := P∆(I − λF ),

where 0 < λ < 2
L and L is the Lipschitz constant of the mapping F . The constraint set ∆ is defined as

∆ = {ν ∈ R4 : 1 ≤ νi ≤ 5, i = 1, 2, 3, 4}.

The mapping z : R4
→ R4 is evaluated as

z(ν) =


ν1 + ν2 + ν3 + ν4 − 4ν2ν3ν4

ν1 + ν2 + ν3 + ν4 − 4ν1ν3ν4

ν1 + ν2 + ν3 + ν4 − 4ν1ν2ν4

ν1 + ν2 + ν3 + ν4 − 4ν1ν2ν3

 .

In this experiment, we assess the numerical efficiency of Algorithm (7) and Algorithm (8) by varying the
initial value for x0. The chosen termination condition is defined as ‖xk+1 − xk‖ ≤ 10−10. Figures 10–12
illustrate graphs depicting the numerical results. It is crucial to note that the computational performance
in each scenario is intricately linked to the initial starting point choice. The control conditions for both
algorithms are specified as follows:

αk =
1

2k + 2
, βk =

1
2k + 2

,γk =
1

2k + 2
.
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Figure 10. A numerical graph with iteration count and execution time of Algorithm
(7) [k = 14, t = 0.0097602] and Algorithm (8) [k = 8, t = 0.0092196] with p0 =

[1; 1; 1; 1].
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Figure 11. A numerical graph with iteration count and execution time of Algorithm
(7) [k = 16, t = 0.0105268] and Algorithm (8) [k = 10, t = 0.0095261] with p0 =

[2; 2; 2; 2].
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Figure 12. A numerical graph with iteration count and execution time of Algorithm
(7) [k = 17, t = 0.0046268] and Algorithm (8) [k = 10, t = 0.0074699] with p0 =

[3; 3; 3; 3].
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