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Abstract. Let us consider the function σ, which maps elements from the group G to the group of automorphisms of the

ring R. In this paper, we are studying new conditions under which the Malcev-Neumann ring R ∗ ((G)) is a PS, APP,

PF, PP, and a Zip rings, respectively. It has been demonstrated that if R is a reduced ring and σ is weakly rigid, then

the Malcev-Neumann ring R ∗ ((G)) over a PS-ring is a PS. Furthermore, if σ is weakly rigid and the ring R satisfies

the descending chain condition on left annihilators, then the Malcev-Neumann ring R ∗ ((G)) is a right APP-ring if and

only if, for any G-indexed generated right ideal A of R, rR(A) is left s-unital. Additionally, we have proven that if R is a

commutative ring and σ is weakly rigid, then the Malcev-Neumann ring R ∗ ((G)) is a PF ring if and only if, for any two

G-indexed subsets A and B of R such that B ⊆ annR(A), there exists c ∈ annR(A) such that bc = b for all b ∈ B. These

results extend the corresponding findings for polynomial rings and Laurent power series rings.

1. Introduction and Preliminaries

The Malcev-Neumann construction appeared for the first time in the latter part of the 1940’s

(the Laurent series ring, a particular case of Malcev-Neumann ring, was used before by Hilbert).

Using them, Malcev and Neumann independently showed (in 1948 and 1949 resp.) that the group

ring of an ordered group over a division ring can be embedded in a division ring. Since then, the

construction has appeared in many papers, mainly in the study of various properties of division

rings and related topics. For instance, Makar-Limanov in [1] used a particular skew-Laurent series

division ring to prove that the skew field of fractions of the first Weyl algebra contains a free

noncommutative subalgebra. The study of Malcev-Neumann group ring over arbitrary rings was

initiated in [2] by Lorenz while investigating properties of group algebras of nilpotent groups.

Other results on Malcev-Neumann rings can be found in Musson and Stafford [3] and Sonin [4].
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We construct the Malcev-Neumann (group) ring in the following. Let R be a ring, G an ordered

group, and suppose that σ is a map from G into the group of automorphisms of R, x→ σx, t is a map

from G×G to U(R), the group of invertible elements of R. Then we can form a Malcev-Neumann

ring R ∗ ((G)) : an element of R ∗ ((G) is a infinite series f =
∑

x∈G rxx with rx ∈ R such that the

set supp( f ) = {x ∈ G | rx , 0}, called the support of f , is a well ordered subset of G, and the ring

structure is given by componentwise addition defined as usual by∑
x∈G

axx +
∑
y∈G

byy =
∑
z∈G

(az + bz)z

and multiplication is defined by(∑
x∈G

axx
)(∑

y∈G

byy
)
=

∑
z∈G

( ∑
{(x,y)|xy=z}

axσx(by)t(x, y)
)
z.

In order to insure associativity, it is necessary to impose two additional conditions on σ and t,
namely that for all x, y, z ∈ G,

(1) t(xy, z)σz(t(x, y)) = t(x, yz)t(y, z),
(2) σyσz = σyzδ(y, z),

where δ(y, z) denotes the automorphism of R induced by the unit t(y, z) by Lemma 1.1 [5]. It is now

routine to check that R ∗ ((G)) is a ring which we call the Malcev-Neumann ring. This construction

has appeared in many papers, mainly in the study various properties of division rings and related

topic. For a more comprehensive understanding of this construction and the results associated

with it, it is recommended to refer to several scholarly papers on the topic [3], [6], [9], [10], [15]

and [16]. The subring of R ∗ ((G)) consisting of all finite sums f =
∑

x∈G rxx (i.e., sums of finite

support) is just the twisted group ring R ∗ (G). If G = Z, σx = id for all x ∈ G, t(x, y) = 1 for all

x, y ∈ G, then R ∗ ((G)), is the Laurent series ring. If σ happens to be the trivial homomorphism

and t(x, y) = 1 for all x, y ∈ G, the resulting untwisted ring will denoted by R((G)). As usual, we

shall identify R with the subring R.1 ⊆ R ∗ ((G)) and identity G with the subgroup 1.G of invertible

elements in R ∗ ((G)).

In this paper, we are studying new conditions under which the Malcev-Neumann ring R ∗ ((G))

is a PS, APP, PF, PP and a Zip rings, respectively. We prove that, if the ring R satisfies the

descending chain condition on left annihilators, then the Malcev-Neumann ring R ∗ ((G)) is a

right APP-ring if and only if, for any G-indexed generated right ideal A of R, rR(A) is left s-unital.

Furthermore, we have proven that if R is a commutative ring and σ is weakly rigid, then the

Malcev-Neumann ring R ∗ ((G)) is a PF ring if and only if, for any two G-indexed subsets A and B
of R such that B ⊆ annR(A), there exists c ∈ annR(A) such that bc = b for all b ∈ B. Additionally,

we prove that if R is a Noetherian ring, then R ∗ ((G)) is a PP ring if and only if R is a PP ring, and

the Malcev-Neumann ring R ∗ ((G)) is a right zip ring if and only if R is a right zip ring. These

results extend the corresponding findings for polynomial rings and Laurent power series rings.

Throughout the paper all rings are associative with unity. For a nonempty subset X of a ring R,

rR(X) and lR(X) denote the right and left annihilators of X in R, respectively. We will denote by
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End(R) the monoid of ring endomorphisms of R, and by Aut(R) the group of ring automorphisms

of R.

2. Main Results

A ring R is called a left PS-ring if Soc(RR) is projective. In [12] it was proved that if R is a left

PS-ring then so is R[[x]]. Xue in [13] showed that for any ring R, R[[x]] is a left PS-ring. If R is

a commutative ring and (S,≤) is a strictly totally ordered monoid which satisfies the condition

that 0 ≤ s for every s ∈ S, then in [14], it was proved that, if R is PS-ring, then the ring [[RS,≤]]

of generalized power series over R is a PS-ring. Firstly, we will consider the PS property of

Malcev-Neumann rings.

Let σ be a map from G into the group of automorphisms of R, x 7→ σx. Then, following Definition

2.1 [8], σ is called weakly rigid if ab = 0 implies aσx(b) = σx(a)b = 0 for any a, b ∈ R and any

x ∈ G. Clearly, if for any x ∈ G, σx = id, the identity map of R, then σ is weakly rigid. Let α be an

endomorphism of R. According to [19], α is called a rigid endomorphism if rα(r) = 0 implies r = 0

for r ∈ R. A ring R is called α-rigid if there exists a rigid endomorphism α of R. Clearly any rigid

endomorphism is a monomorphism and any α-rigid is reduced. Let α be a rigid automorphism

of R. It was shown in [19] that if ab = 0 then aαn(b) = αn(a)b = 0 for any positive integer n. Thus

the map σ : Z → Aut(R) : σ(x) = αx is weakly rigid. For more details and examples see [7], [8]

and [18].

The following results appeared in [8] and [12] respectively.

Lemma 2.1. Let R be reduced and σ is weakly rigid. If f =
∑

x∈G axx, g =
∑

y∈G byy ∈ R ∗ ((G)) are such
that f g = 0, then axby = 0 for any x, y ∈ G.

Lemma 2.2. The following conditions are equivalent for a ring R :

(1) R is a right PS-ring.
(2) For any maximal right ideal L of R then either lR(L) = 0 or L = eR where e2 = e ∈ R.

Theorem 2.3. Let R be a reduced ring, G an ordered group and σ is weakly rigid. If R is a right PS-ring,
then so is R ∗ ((G)).

Proof. Let L be a maximal right ideal of R ∗ ((G)). By Lemma 2.2, it is enough to show that

either lR∗((G))(L) = 0 or L = αR ∗ ((G)) for some α2 = α ∈ R ∗ ((G)). Let I be the set of all

coefficients of 1 of elements of L. Let J be the right ideal of R generated by I. If J = R, then there

exist a1
1, a2

1, . . . , an
1 ∈ I, f1, f2, . . . , fn ∈ L and r1, r2, . . . , rn ∈ R such that 1 = a1

1r1 + a2
1r2 + · · ·+ an

1rn

with fi =
∑

x∈G ai
xx, i = 1, 2, . . . , n. Suppose that g =

∑
y∈G byy ∈ lR∗((G))(L). Then g fi = 0. Thus

byai
x = 0 by Lemma 2.1. Particularly, byai

1 = 0 for any y ∈ G and any i = 1, 2, . . . n. Thus

by = by(a1
1r1 + a2

1r2 + · · ·+ an
1rn) = 0, and so g = 0. Thus lR∗((G))(L) = 0.

Now suppose that J , R. We show that J is a maximal right ideal of R. Let r ∈ R − J. Then

r ∈ R ∗ ((G)). If r ∈ L, then r ∈ J, a contradiction. Thus r < L. So R ∗ ((G)) = L + rR ∗ ((G)). It

follows that there exist f ∈ L and h ∈ R ∗ ((G)) such that 1 = f + rh. Suppose that f =
∑

x∈G axx and
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h =
∑

y∈G cyy. Then 1 = a1 + rσ1(c1)t(1, 1) ∈ J + rR. Thus R = J + rR. Hence J is a maximal right

ideal of R. Since R is a right PS-ring, it follows that either lR(J) = 0 or there exists an e2 = e ∈ R
such that J = eR.

Case (i). Suppose that lR(J) = 0. We will show that lR∗((G))(L) = 0. Let g =
∑

y∈G byy ∈
lR∗((G))(L), r ∈ J. Then there exist a1

1, a2
1, . . . , an

1 ∈ I, f1, f2, . . . , fn ∈ L and r1, r2, . . . , rn ∈ R such that

r = a1
1r1 + a2

1r2 + · · ·+ an
1rn, where ai

1 is the constant coefficient of fi. Since g ∈ lR∗((G))(L), g fi = 0

for every i = 1, 2, . . . , n. By Lemma 2.1, we have byai
1 = 0 for any y ∈ G and any i = 1, 2, . . . , n. Thus

byr = by(a1
1r1 + a2

1r2 + · · ·+ an
1rn) = 0 for any y ∈ G. This means that by ∈ lR(J) = 0 for any y ∈ G.

Thus g = 0, and so lR∗((G))(L) = 0.

Case (ii). Suppose that J = eR where e2 = e ∈ R. We will show that L = e(R ∗ ((G))). If e < L, then

R ∗ ((G)) = L+ e(R ∗ ((G))). Thus 1 = f + eh, where f =
∑

x∈G axx ∈ L and h =
∑

y∈G cyy ∈ R ∗ ((G)),

and so 1 = a1 + eσ1(c1)t(1, 1) ∈ J + eR = J, a contradiction. Therefore e ∈ L, and so e(R ∗ ((G))) ⊆ L.

Conversely, suppose that f =
∑

x∈G axx ∈ L. For any x ∈ G, there exists x−1
∈ G such that xx−1 = 1

since G is a group, and f x−1
∈ L since L is a right ideal of R ∗ ((G)). Thus axσx(1)t(x, x−1) ∈ J = eR

for any x ∈ G. Thus ax ∈ J = eR since t(x, x−1) is invertible and J is a right ideal of R, and so ax = eax.

Thus f = e
∑

x∈G σ
−1
1 (axt(1, x)−1)x ∈ e(R ∗ ((G))). Thus L ⊆ eR ∗ ((G)). Hence L = e(R ∗ ((G))) and

the result follows. �

Corollary 2.4. Let R be a reduced ring and G an ordered group. If R is a right PS-ring, then R((G)) is a
right PS-ring.

Corollary 2.5. Let R be a reduced ring and α is weakly rigid automorphism of R. If R is a PS-ring, then
R[[x, x−1;α]] is a PS-ring.

Proof. Take G = Z and t(x, y) = 1 for any x, y ∈ Z. For any x ∈ Z, let σx = αx. Then σ is weakly

rigid. Now the result follows from Theorem 2.3. �

Recall that a ring R is called (resp., quasi-) Baer if the right annihilator of every (resp., right

ideal) nonempty subset of R is generated, as a right ideal, by an idempotent of R. In [30] Kaplansky

introduced Baer rings to abstract various properties of AW∗-algebras, von Neumann algebras and

complete ∗-regular rings. In [33] Clark defined quasi-Baer rings and used them to characterize

when a finite dimensional algebra with unity over an algebraically closed field is isomorphic to

a twisted matrix units semigroup algebra. A ring R is called a right (resp., left) PP-ring if every

principal right (resp., left) ideal is projective (equivalently, if the right (resp., left) annihilator of

an element of R is generated (as a right (resp., left) ideal) by an idempotent of R). R is called a

PP-ring (also called a Rickart ring [22, p. 18]) if it is both right and left PP. A ring R is called left

(resp., right) principally quasi-Baer (or simply left (resp., right) p.q.-Baer) if the left (resp., right)

annihilator of a principal left (resp., right) ideal is generated as a left (resp., right) ideal by an

idempotent. Equivalently, R is right p.q.-Baer if R modulo the right annihilator of any principal

right ideal is projective. A ring is called p.q.-Baer if it is both right and left p.q.-Baer. The concept of

principally quasi-Baer rings initiated by Birkenmeier, Kim and Park [25]. Following Tominaga [28],
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an ideal I of R is said to be right s-unital if, for each a ∈ I there exists an element x ∈ I such that

ax = a. A submodule N of a left R-module M is called a pure submodule if L
⊗

R N→ L
⊗

R M is a

monomorphism for every right R-module L. By [21, Proposition 11.3.13], an ideal I is right s-unital

if and only if I is pure as a left ideal of R if and only if R/I is flat as a left R-module. According

to Liu and Zhao [35], a ring R is called left APP if R has the property that “the left annihilator of

a principal ideal is pure as a left ideal”. Equivalently, R is a left APP-ring if R modulo the left

annihilator of any principal left ideal is flat. Right APP-ring is also defined analogously. A ring

is called APP if it is right APP and left APP. By Proposition 2.3 [35], the class of right APP-rings

includes both left PP-rings and right p.q.-Baer rings (and hence it includes all biregular rings and

all quasi-Baer rings), for some details to use this conditions see [11] and [17]. In [20] the authors

showed that left p.q.-Baer rings are also right APP and provided various examples of commutative

APP-rings which are neither p.q.-Baer nor PP.

Liu and Zhao Proposition 3.14 [35] proved that, when R is a ring satisfying descending chain

condition on left and right annihilators and R is left APP, then R[[x]] is left APP. Zhao Theorem

3 [32] showed that, if (S,≤) is a strictly totally ordered commutative monoid, ω : S → Aut(R) a

monoid homomorphism and R satisfying descending chain condition on right annihilators, then

the skew generalized power series ring R[[S≤,ω]] is left APP if and only if for any S-indexed subset

A of R, the left annihilator of the left ideal generated by the set {ωs(a) | a ∈ A and s ∈ S} is right

s-unital. Now we consider the APP-property of Malcev-Neumann rings.

The following result follows from Tominaga Theorem 1 [28].

Lemma 2.6. An ideal J of a ring R is left(resp., right) s-unital if and only if for any finitly many elements
a1, a2, . . . , an ∈ J, there is an element e ∈ J such that ai = eai(resp., ai = aie), for each i.

Lemma 2.7. Let R be a ring, G an ordered group and σ is weakly rigid. If R is a right APP-ring, then for
any f =

∑
x∈G axx, g =

∑
y∈G byy ∈ R ∗ ((G)), f R ∗ ((G))g = 0 implies axRby = 0 for any x, y ∈ G.

Proof. Let 0 , f ∈ R ∗ ((G)) and 0 , g ∈ R ∗ ((G)) be such that f R ∗ ((G))g = 0. Then for any r ∈ R,

from

0 = f rg =
∑
z∈G

∑
{(x,y)|xy=z}

axσx(rσ1(by)t(1, y))t(x, y)z

it follows that ∑
{(x,y)|xy=z}

axσx(rσ1(by)t(1, y))t(x, y) = 0,∀z ∈ G.

Let x0 and y0 denote the minimal elements of supp( f ) and supp(g) in the ≤. order, respectively.

If x ∈ supp( f ) and y ∈ supp(g) are such that xy = x0y0, then x0 ≤ x and y0 ≤ y. If x0 < x, then

x0y0 < xy0 ≤ xy = x0y0, a contradiction. Thus x = x0. Similarly, y = y0. Hence∑
{(x,y)|xy=x0 y0}

axσx(rσ1(by)t(1, y))t(x, y) = ax0σx0(rσ1(by0)t(1, y0))t(x0, y0) = 0.
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Thus ax0σx0(rσ1(by0)t(1, y0)) = 0 since t(x0, y0) is invertible. Hence, by weakly rigidness of σ we

have σx0(ax0rσ1(by0)t(1, y0)) = 0, so ax0rσ1(by0)t(1, y0) = 0 since σx0 ∈ Aut(R). By the way as above,

we can get ax0rby0 = 0, which means that ax0Rby0 = 0.

Now suppose that w ∈ G is such that for any x ∈ supp( f ) and y ∈ supp(g) with xy < w, axRby = 0.

We will show that axRby = 0 for any x ∈ supp( f ) and y ∈ supp(g) with xy = w. If there are not

x ∈ supp( f ) and y ∈ supp(g) such that xy = w, then clearly the conclusion holds. Now suppose

that x ∈ supp( f ) and y ∈ supp(g) are such that xy = w. For convenience we write {(x, y) | xy = w}
as {(xi, yi) | i = 1, 2, . . . , n}with x1 < x2 < · · · < xn. Then for any r ∈ R, from∑

{(x,y)|xy=w}

axσx(rσ1(by)t(1, y))t(x, y) = 0

it follows that
n∑

i=1

axiσxi(rσ1(byi)t(1, yi))t(xi, yi) = 0. (2.1)

Note that x1yi < xiyi = ω for any i = 2, 3, . . . , n. By the hypothesis, we have ax1Rbyi = 0 for

i = 2, 3, . . . , n. Since R is right APP, by Lemma 2.6, there exists ex1 ∈ rR(ax1R) such that byi = ex1byi

for any i = 2, 3, . . . , n. Let r′ ∈ R and take r = r′ex1 in Eq. (2.1). Thus from ax1r′ex1 = 0 it follows

that ax1σx1(r
′ex1σ1(by1)t(1, y1)) = 0 since σ is weakly rigid. Hence

n∑
i=2

axiσxi(r
′ex1σ1(byi)t(1, yi))t(xi, yi) = 0. (2.2)

On the other hand, since byi = ex1byi for any i = 2, 3, . . . , n, and σ is weakly rigid, one gets

axiσxi(r
′(1− ex1)σ1(byi)t(1, yi)) = 0 and so

axiσxi(r
′ex1σ1(byi)t(1, yi)) = axiσxi(r

′σ1(byi)t(1, yi))

for all i = 2, 3, . . . , n. Therefore Eq. (2.2) becomes
n∑

i=2

axiσxi(r
′σ1(byi)t(1, yi))t(xi, yi) = 0. (2.3)

Since x2yi < xiyi = ω for i = 3, 4, . . . , n, by the hypothesis, there exists ex2 ∈ rR(ax2R) such that

byi = ex2byi for each i ≥ 3. So if we take r′ = pex2 in Eq. (2.3), we have

ax2σx2(pex2σ1(by2)t(1, y2)) = 0,

and
n∑

i=3

axiσxi(pex2σ1(byi)t(1, yi))t(xi, yi) =
n∑

i=3

axiσxi(pσ1(byi)t(1, yi))t(xi, yi) = 0.

Continuing in this manner yields that axnσxn(qσ1(byn)t(1, yn))t(xn, yn) = 0, where q is an arbitrary

element of R. Consequently, axnqbyn = 0. Hence axn−1qbyn−1 = 0, . . . , ax1qby1 = 0. Therefore, by

transfinite induction, we have shown that axRby = 0 for any x, y ∈ G. �

Lemma 2.8. Let R be a ring, G an ordered group and σ is weakly rigid. Then the following conditions are
equivalent:
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(1) For any f =
∑

x∈G axx, g =
∑

y∈G byy ∈ R ∗ ((G)), f R ∗ ((G))g = 0 implies axRby = 0 for any
x, y ∈ G.

(2) For any f =
∑

x∈G axx ∈ R ∗ ((G)), rR∗((G))( f R ∗ ((G))) = rR(I) ∗ ((G)), where I is the right ideal
of R generated by {ax | x ∈ G}.

Proof. (1)⇒(2) Assume that g =
∑

y∈G byy ∈ rR∗((G))( f R ∗ ((G))) with f ∈ R ∗ ((G)). By (1), axRby = 0

for all x and y. Thus by ∈ rR(I), and so g ∈ rR(I) ∗ ((G)). Hence rR∗((G))( f R ∗ ((G))) ⊆ rR(I) ∗ ((G)).

Conversely, suppose that g =
∑

y∈G byy ∈ rR(I) ∗ ((G)). Then by ∈ rR(I) for all y ∈ G. Thus

axRby = 0 for all x and y. Since R is σ-weakly rigid, then for any h =
∑

z∈G czz ∈ R ∗ ((G)), we

have axσx(cz)σxσz(by) = 0 for any x, y, z ∈ G. Thus, axσx(cz)σxσz(by)σx(t(z, y))t(x, p) = 0 for any

x, y, z, p ∈ G. Hence

f hg =
(∑

x∈G

axx
)(∑

p∈G

∑
{(z,y)|zy=p}

czσz(by)t(z, y)p
)

=
∑
q∈G

∑
{(x,p)|xp=q}

∑
{(z,y)|zy=p}

axσx(cz)σxσz(by)σx(t(z, y))t(x, p)q = 0.

This means that g ∈ rR∗((G))( f R ∗ ((G))). So rR∗((G))( f R ∗ ((G))) = rR(I) ∗ ((G)).

(2)⇒(1) Suppose that f =
∑

x∈G axx, g =
∑

y∈G byy in R ∗ ((G)) are such that f R ∗ ((G))g = 0.

Thus g ∈ rR∗((G))( f R ∗ ((G))). By (2) g ∈ rR(I) ∗ ((G)), where I be the right ideal of R generated by

{ax | x ∈ G}. Hence by ∈ rR(I). So axRby = 0 for all x, y ∈ G. �

Lemma 2.9. Let R be a ring, G an ordered group and σ is weakly rigid. Then for any a ∈ R, rR(aR) ∗ ((G)) =

rR∗((G))(aR ∗ ((G))).

Proof. Let g =
∑

y∈G byy ∈ rR∗((G))(aR ∗ ((G))). Then for any r ∈ R, arσ1(by)t(1, y) = 0. Thus

arby = 0 since t(1, y) is invertible and R is σ-weakly rigid. Hence by ∈ rR(aR). So g ∈ rR(aR) ∗ ((G)).

Conversely, suppose that g =
∑

y∈G byy ∈ rR(aR) ∗ ((G)). Then aRby = 0. Hence for any f =∑
x∈G cxx ∈ R ∗ ((G)),

aσ1(cx)t(1, x)σx(by)t(x, y) = 0.

Thus

a f g =
∑
z∈G

∑
{(x,y)|xy=z}

aσ1(cx)t(1, x)σx(by)t(x, y)z = 0.

Hence g ∈ rR∗((G))(aR ∗ ((G))). So, rR(aR) ∗ ((G)) = rR∗((G))(aR ∗ ((G))). �

In order to prove the main result, we first give the necessity of the ring R ∗ ((G)) to be right

APP-ring.

Proposition 2.10. Let R be a ring, G an ordered group and σ is weakly rigid. If R ∗ ((G)) is a right
APP-ring, then R is a right APP-ring.

Proof. Let a, b ∈ R be such that a ∈ rR(bR). Then a ∈ rR((bR) ∗ ((G))). By Lemma 2.9, a ∈ rR∗((G))(bR ∗
((G))). Since R ∗ ((G)) is right APP, then there exists an f =

∑
x∈G cxx ∈ rR∗((G))(bR ∗ ((G))) such

that a = f a. Thus br f = 0 for any r ∈ R. Hence brσ1(cx)t(1, x) = 0, and so brcx = 0 for any
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x ∈ G. In particular, c1 ∈ rR(bR). On the other hand, for a = f a it follows that (1 − f )a = 0. Thus,

(1− c1)σ1(a)t(1, 1) = 0, and so a = c1a. Therefore R is a right APP-ring. �

Let R be a ring and G an ordered group. We say a nonempty subset X of R is G-indexed, if there

exists a well-ordered subset I of G such that X is indexed by I. We say an ideal J of R is G-indexed

left (resp. right) s-unital if for any G-indexed subset {as | s ∈ I} of J, there exist a c ∈ J such that

as = cas (resp., as = asc).

Lemma 2.11. Let R be a ring and G an ordered group. If R satisfies the descending chain condition on left
(resp. right) annihilators, then for any ideal J of R, J is left (resp. right) s-unital if and only if J is G-indexed
left (resp. right) s-unital.

Proof. ⇐). Obviously since any singleton is G-indexed.

⇒) Let J be a left s-unital ideal of R and A = {ax | x ∈ I} a G-indexed subset of J. Define a set of

left annihilators

H = {lR(X) | X ⊆ A, | X |< ∞}.

Since R satisfies the descending chain condition on left annihilators, H has a minimal element, say

lR(X0). Assume that X0 = {ax1 , ax2 , . . . , axn}. Since J is left s-unital, by Lemma 2.6, there exists c ∈ J
such that axi = caxi for all i = 1, 2, . . . , n. So (1 − c) ∈ lR(X0). If there exists ax ∈ A\X0. Then by the

minimality of lR(X0), we have lR(ax, ax1 , . . . , axn) = lR(X0). Thus ax = cax. This implies that ax = cax

for any ax ∈ A. Therefore J is a G-indexed left s-unital ideal. �

Theorem 2.12. Let G be an ordered group and σ is weakly rigid. If R satisfies the descending chain condition
on left annihilators, then the following conditions are equivalent:

(1) R ∗ ((G)) is a right APP.
(2) For any G-indexed generated right ideal A of R, rR(A) is left s-unital.

Proof. (1)⇒(2) Let A =
∑

x∈I axR, where I is well-ordered subset of G. Define f =
∑

x∈G axx ∈
R ∗ ((G)), where ax = 0 if x ∈ G\I. Since R ∗ ((G)) is right APP, by Proposition 2.10, R is APP. Thus,

rR∗((G))( f R ∗ ((G))) = rR(A) ∗ ((G)) by Lemma 2.7 and Lemma 2.8. Hence, by (1) rR(A) ∗ ((G)) is

left s-unital. Now we prove rR(A) is left S-unital.

Let b ∈ rR(A). Then b ∈ rR(A) ∗ ((G)). Thus there exists an h =
∑

z∈G czz ∈ rR(A) ∗ ((G)) such that

b = hb. Consequently, c1 ∈ rR(A) and b = c1b. Hence rR(A) is left s-unital.

(2)⇒(1) Let f =
∑

x∈G axx, g =
∑

y∈G byy ∈ R ∗ ((G)) be such that g ∈ rR∗((G))( f R ∗ ((G))). Then,

by (2) and Lemma 2.7, we have axRby = 0 for any x, y ∈ G. Thus by ∈ rR(
∑

x∈supp( f ) axR) for any

y ∈ supp(g). By (2), rR(
∑

x∈supp( f ) axR) is left s-unital. So rR(
∑

x∈supp( f ) axR) is G-indexed left s-unital

by Lemma 2.11. Hence There exists c ∈ rR(
∑

x∈supp( f ) axR) such that by = cby for any y ∈ supp(g).
Now for any h =

∑
r∈G rzz ∈ R ∗ ((G)),

f hc =
∑
q∈G

∑
{(x,z)|xz=q}

axσx(rz)t(x, z)σz(c)t(z, 1))q = 0,
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and from by = cby it follows that (1− c)σ1(by) = 0 for any b ∈ G since σ is weakly rigid, so

(1− c)g =
∑
y∈G

(1− c)σ1(by)t(1, y)y = 0,

which imply that c ∈ rR∗((G))( f R ∗ ((G))) and g = cgg. Hence R ∗ ((G)) is right APP. �

Corollary 2.13. Let R be a ring and G an ordered group. If R satisfies the descending chain condition on
left annihilators, then R((G)) is right APP if and only if for any G-indexed generated right ideal A of R,
rR(A) is left s-unital.

Let R be a commutative ring with identity. Then R is called a PF-ring (resp., PP-ring) if every

principal ideal of R is a flat (resp., projective) R-module. It is well-known that if R is Noetherian,

then these two notions are equal (see Corollary 4.3 [24]). It is proved in [26] that a ring R is a

PF-ring if and only if the annihilator of each element r ∈ R, annR(r) is a pure ideal, that is, for all

b ∈ annR(r) there exists c ∈ annR(r) such that bc = b. Also proved that in [27], the power series ring

R[[X]] is a PF-ring if and only if for any two countable subsets A = {a0, a1, . . .} and B = {b0, b1, . . .}

of R such that A ⊆ annR(B), there exists r ∈ annR(B) such that ar = a for all a ∈ A. J. Kim Theorem

3 and Theorem 4 [31] proved that for a Noetherian ring R, R[[X]] is a PF (resp., PP) ring if and

only if R is a PF (resp., PP) ring. Liu and Ahsan proved in [34] that the ring [[RS,≤]] of generalized

power series is a PP-ring if and only if R is a PP-ring and every S-indexed subset C of B(R) (the

set of all idempotents of R) has a least upper bound in B(R). Also in [29], it was proved that, if R
is a commutative ring with identity and (S,≤) is a strictly totally ordered monoid, then the ring

[[RS,≤]] of generalized power series is a PF-ring if and only if for any two S-indexed subsets A and

B of R such that B ⊆ annR(A), there exists c ∈ annR(A) such that bc = b for all b ∈ B, and that for

a Noetherian ring R, [[RS,≤]] is a PP ring if and only if R is a PP-ring. Under some conditions, PF
(resp., PP) properties of Malcev-Neumann rings we have the following.

Lemma 2.14. [27, Lemma 1]. Any PF-ring is reduced.

Theorem 2.15. Let R be a commutative ring and G an ordered group. Then R ∗ ((G)) is a PF-ring if and
only if for any two G-indexed subsets A and B of R such that B ⊆ annR(A), there exists c ∈ annR(A) such
that bc = b for all b ∈ B.

Proof. ⇐) Let f =
∑

x∈G axx, g =
∑

y∈G byy ∈ R ∗ ((G)) and let g ∈ annR∗((G))( f ). Then

0 = g f =
∑
z∈G

∑
{(y,x)|yx=z}

byσy(ax)t(y, x)z.

Note that, in particular, R is a PF-ring, so by Lemma 2.14, R is reduced. Thus by Lemma 2.1,

byax = 0 for all x, y ∈ G. Let A = {ax | x ∈ supp( f )} and B = {by | y ∈ supp(g)}. Then A and B are

G-indexed and B ⊆ annR(A). So by hypothesis, there exists c ∈ annR(A) such that byc = by for all

y ∈ G. So cσx(ax)t(1, x) = 0 for any x ∈ G and byσy(1− c)t(y, 1) = 0 for any y ∈ G. Thus

c f =
∑
x∈G

cσx(ax)t(1, x)x = 0
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and

g(1− c) =
∑
y∈G

byσy(1− c)t(y, 1)y = 0,

which implies that c ∈ annR∗((G))( f ) and gc = g. Therefore R ∗ ((G)) is a PF-ring.

⇒) Assume that R ∗ ((G)) is a PF-ring. Let A = {ax | x ∈ I}, B = {by | y ∈ J} be two G-

indexed subsets of R such that B ⊆ annR(A), where I and J are well-ordered subsets of G. Define

f =
∑

x∈G axx ∈ R ∗ ((G)), where ax = 0 if x ∈ G\I, and g =
∑

y∈G byy ∈ R ∗ ((G)), where by = 0 if

y ∈ G\J. Then

g f =
∑
z∈G

∑
{(y,x)|yx=z}

byσy(ax)t(y, x)z = 0.

Therefore g ∈ annR∗((G))( f ). Thus by the assumption, there exists h =
∑

u∈G duu ∈ annR∗((G))( f )
such that gh = g. Therefore we have 0 = h f and 0 = g(h − 1). Since, by Lemma 2.14 and Lemma

2.1, R is reduced, duax = 0 for any u, x ∈ G, and by(d1 − 1) = 0 for any y ∈ G. So d1 ∈ annR(A) and

bd1 = b for all b ∈ B. Therefore the result holds. �

Corollary 2.16. Let R be a commutative ring and G an ordered group. If R is a PF-ring, then R((G))) is a
PF.

Corollary 2.17. Let R be a commutative ring and α is weakly rigid automorphism of R. Then the following
conditions are equivalent:

(1) For any countable subset A and B of R such that B ⊆ annR(A), there exists c ∈ annR(A) such that
bc = b for all b ∈ B.

(2) R[[x, x−1;α]] is a PF.

Proof. Take G = Z and t(x, y) = 1 for any x, y ∈ Z. For any x ∈ Z, let σx = αx. Then σ is weakly

rigid. Now the result follows from Theorem 2.15. �

Lemma 2.18. [8, Corollary 3.2]. Let R be a reduced ring and σ is weakly rigid. If φ ∈ R ∗ ((G)) is an
idempotent, then there exists an idempotent e ∈ R such that φ = e.

Theorem 2.19. Let R be a Noetherian ring, G an ordered group and σ is weakly rigid. Then R ∗ ((G)) is a
PP-ring if and only if R is a PP.

Proof. Suppose that R ∗ ((G)) is a PP-ring. Let a ∈ R. Then annR∗((G))(a) = φ(R ∗ ((G))) for some

idempotent φ =
∑

z dzz ∈ R ∗ ((G)). By Lemma 2.18, there exists and idempotent e ∈ R such that

φ = e, we claim that annR(a) = eR. If b ∈ annR(a), then b ∈ annR∗((G))(a) = e(R ∗ ((G))), and so

we have b = eh for some h =
∑

y∈G byy. Thus, b = eσ1(b1)t(1, 1) ∈ eR. Hence annR(a) ⊆ eR. For the

opposite inclusion is clear. So annR(a) = eR. Therefore R is a PP-ring.

Conversely, assume that R is a PP-ring. Let h =
∑

y∈G byy ∈ R ∗ ((G)). We will show that there

exists e2 = e ∈ R such that annR∗((G))(h) = e(R ∗ ((G))).

Since R is Noetherian, c(h) is finitely generated, say c(h) =< by1 , by2 , . . . , byn >, where

y1, y2, . . . , yn ∈ G. Let N = annR(by1 , . . . , byn) = ∩
n
i=1annR(byi). Since R is PP, there exist idempotent
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e1, e2, . . . , en ∈ R such that annR(byi) = eiR, for i = 1, 2, . . . , n. Take e = e1e2 · · · en. Then N = eR and

e2 = e ∈ R. Now we show that annR∗((G))(h) = e(R ∗ ((G))). Let f =
∑

x∈G axx ∈ annR∗((G))(h).
Then axby = 0 for any x, y ∈ G since R is reduced by Lemma 2.14. Thus ax ∈ N for any

x ∈ G, so ax = eax for any x ∈ G. Hence f = e(
∑

x∈G σ
−1
1 (axt(1, x)−1)x) ∈ e(R ∗ ((G))). There-

fore annR∗((G))(h) ⊆ e(R ∗ ((G))). From e ∈ N = annR(by1 , . . . , byn) it follows that e ∈ annR∗((G))(h).
Hence annR∗((G))(h) = e(R ∗ ((G))) and so R ∗ ((G)) is a PP-ring. �

Theorem 2.20. Let R be a ring, G an ordered group and σ is weakly rigid. Then R ∗ ((G)) is a reduced left
PP-ring if and only if R is a reduced left PP-ring and every G-indexed subset C of B(R) has a least upper
bound in B.

Proof. It follows from Theorem 2.3 [34] and Theorem 2.19. �

Corollary 2.21. Let R be a commutative PP-ring and G an ordered group. If every subset of B(R) has a
least upper bound in B(R), then R ∗ ((G)) is a PP-ring.

Following to Faith [23], a ring R is called right Zip provided that if the right annihilator rR(X)

of a subset X of R is zero, then there exists a finite subset Y ⊆ X such that rR(Y) = 0; equivalently,

for a left ideal J of R with rR(J) = 0, there exists a finitely generated left ideal J1 ⊆ J such that

rR(J1) = 0. R is Zip if it is right and left Zip. Faith [23] it was proved that if R is a commutative Zip
ring and G is a finite abelian group, then the group ring R[G] of G over R is a Zip-ring.

Proposition 2.22. Let R be a reduced ring, G an ordered group and σ is weakly rigid. Then R ∗ ((G)) is a
right Zip-ring if and only if R is a right Zip.

Proof. ⇒) Suppose that R ∗ ((G)) is Zip and X ⊆ R with rR(X) = 0. If f =
∑

x∈G axx ∈ rR∗((G))(X),

then c f = 0 for all c ∈ X, and so cax = 0 for all c ∈ X and all x ∈ supp( f ). Thus for all x ∈ supp( f ),
0 = ax ∈ rR(X), and so f = 0. Hence rR∗((G))(X) = 0. Since R ∗ ((G)) is Zip, there exists a finite

subset X0 ⊆ X such that rR∗((G))(X0) = 0. Hence rR(X0) = rR∗((G))(X0)∩R = 0. Therefore R is Zip
⇐) Assume that R is a Zip, and V is a subset of R ∗ ((G)) with rR∗((G))(V) = 0. For any

f =
∑

x∈G axx ∈ R ∗ ((G)), let C f denote the set {ax | x ∈ supp( f )}, and for the subset V ⊆ R ∗ ((G)),

let CV denote the set ∪ f∈VC f . Now we show that rR(CV) = 0. If r ∈ rR(CV), then ar = 0 for all

a ∈ CV. So for any f =
∑

x∈G axx ∈ V, we have axr = 0 for all x ∈ supp( f ), and so f r = 0 by Lemma

2.1. Hence 0 = r ∈ rR∗((G))(V), and so rR(CV) = 0 is proved. Since R is Zip, there exists a finite

subset U0 = {q1, q2, . . . , qn} ⊆ CV such that rR(U0) = 0. Let fi(1 ≤ i ≤ n) be an element of V such

that there exists ui ∈ supp( f ) with qi is the coefficients of ui. Let V0 = { f1, f2, . . . , fn}. Then V0 is a

finite subset of V and CV0 ⊇ U0. Then rR(CV0) ⊆ rR(U0) = 0. Now we show that rR∗((G))(V0) = 0.

Suppose g =
∑

y∈G byy ∈ rR∗((G))(V0). Then fig = 0 for any fi =
∑

x∈G ai
xx ∈ V0. By Lemma 2.1,

ai
xby = 0 for all x ∈ supp( fi) and any y ∈ supp(g). Hence 0 = by ∈ rR(CV0) for all y ∈ supp(g), and

so g = 0. Hence rR∗((G))(V0) = 0. Therefore R ∗ ((G)) is a Zip. �

Corollary 2.23. Let R be a reduced ring and α is weakly rigid automorphism of R. Then the following
conditions are equivalent:
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(1) R is a right Zip.
(2) R[[x, x−1;α]] is a right Zip.

Proof. Take G = Z and t(x, y) = 1, for any x, y ∈ Z. For any x ∈ Z, let σx = αx. Then σ is weakly

rigid. Now the result follows from Proposition 2.22. �

Corollary 2.24. Let G be an ordered group and R a reduced ring. Then R is a right Zip-ring if and only if
R((G))) is a right Zip.
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