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Practical Aspects for Applying Picard Iterations to the SIR Model Using Actual Data
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Abstract. The updated version of the Picard method for solving systems of differential equations is employed to solve

the SIR system. A local performance of the Picard iteration algorithm combined with the Gauss-Seidel approach is

applied to the SIR model. The integral form of the SIR model, in addition to the use of Gauss-Seidel philosophy (using

the most recent calculated values), achieved more accuracy in the computational work than those obtained using the

differential forms. Documented data regarding the spread of corona virus 19 in the Kingdom of Saudi Arabia region

from April to the end of December 2020 were used to calculate the corresponding actual values for the parameters and

the initial conditions. Due to efficient management and to obtain representable behaviours, we restricted the size of the

study to only 1% of the population. The global characteristics of the integral formulation have affected the calculations

accurately. The initial conditions and the model’s parameters are established depending on the documented data.

The results illustrate the superiority of the updated Picard formulation over the classical Picard within their domain

of convergence. The results of this study illuminate and validate the importance of mathematical modeling. These

findings can provide valuable insights into mathematical modeling for those involved in environmental health research,

especially those responsible for devising strategic plans.

1. Introduction

In recent years, humanity has lived through the experience of the spread of Covid-19 disease.

It was announced that it appeared for the first time in the Chinese city of Wuhan. It was a harsh

experience in which human societies experienced conflicting feelings between gratitude for scien-

tific progress at the speed of information transfer and the temporary inability of science to resist

disease spread. Among the indications of concern in many countries was the arrival of hospitals

to the peak of absorptive capacity and the large number of critical health cases and deaths.

In this work, we concentrate on the Saudi Arabia case. The Kingdom of Saudi Arabia is character-

ized by its large area relative to the number of its population. Despite this, the Kingdom of Saudi

Arabia has areas that are considered to have the highest population densities in the world. The
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Kingdom of Saudi Arabia is characterized by the abundance and diversity of visitors of different

nationalities, most of the nationalities of the world, and more than that, visitors are transported

to visit the holy places. Therefore, the Kingdom of Saudi Arabia is interested in implementing

preventive measures in strict ways, which has had a clear impact in controlling epidemic diseases,

and the Corona Covid-19 pandemic is considered the best evidence of this. In this work, we focus

on applying the SIR model to study the spread of Corona 19, setting the model parameters, choos-

ing the appropriate initial conditions, as well as the available solution methods, using documented

data during the period from April 1, 2020, until the end of December 2020, the period when there

are no vaccinations.

The scientific development has contributed effectively to the speedy work of statistics and the

circulation and documentation of data, which will be the base for future research work. Scientists

presented temporary and rapid solutions to control the spread of the disease through the rapid

publication of data and infection transmission methods. Everyone has realized the role of science

and scientists from all disciplines in participating in the work of the necessary studies to confront

such pandemics. Mathematical models are among the most valuable sciences that can be employed

to face such epidemics in advance and develop priority scenarios to meet the expected situation.

Figure 1. The components of the community and the flow direction.

The SIR (Susceptible - Infected - Removed) model is considered one of the oldest mathematical

representations that can be used to determine the number of active infected cases at any time

I(t), provided that the other unknowns and parameters of the model are correctly selected [1–5].

When studying and solving the SIR model, we look at the study community with fixed size N as

consisting of three separate groups, as shown in Fig. 1. The first S(t) is the group that has not been

infected but is susceptible to infection, the second I(t) is the active infected group and the third

R(t) is the group that was removed from the infected group whether by recovery or death, such

that at any time we have,

S(t) + I(t) + R(t) = N. (1.1)

The SIR model established by Kermack and McKendrick, 1927 − 1933, is one of the simplest

epidemiological mathematical models based on the bilinear incidence rate. The model considers

the rate of change in the size of each group. The SIR model is a system of three nonlinear ordinary

differential equations of the form:
S′(t) = −βSI,

I′(t) = βSI − αI,

R′(t) = αI,

(1.2)
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subject to the initial conditions: S (t0) = S0, I (t0) = I0, R (t0) = R0.

This system contains five non-negate parameters β,α, S0, I0 and R0. The parameter α is the

recovery coefficient, and the parameter β is the transmission coefficient. Solving the SIR model

requires the determination of the five parameters; the solutions are parameter-dependent [1–3].

In any solution R(t), must be an increasing function, and S(t) must be a decreasing function. Nu-

merical methods are the most practical techniques for such systems because of their nonlinearities.

The first numerical technique is the Euler method, which, despite its low accuracy, is the simplest

among all numerical techniques for solving systems of differential equations. The fourth-order

Runge-Kutta method is the most acceptable technique and gives reliable results, so it is the calibra-

tion technique in many research papers [3, 6–9]. Solving the SIR model can help understand and

predict how diseases can spread out through the community under consideration. Accordingly,

the policymakers can generate applicable decisions in controlling disease propagation. Due to

the system’s non-linearity, solution methods are restricted towards numerical or semi-analytical

techniques [3,6–9]. The credibility of the results does not depend on the model itself but also on the

solution technique and the system’s data (the coefficients β,α, and the initial conditions) [10–13].

In this work, we use actual documented data from the Kingdom of Saudi Arabia to determine

the model parameters related to the study area and use these parameter values in solving the

model [3, 14]. In a previous work [3], we considered the documented data of the Kingdom of

Saudi Arabia from April 2020 to the end of December 2020, as shown in Figs. (2A and 2B). we

found that the documented international statistics and reports have illustrated that the Kingdom

of Saudi Arabia has managed the pandemic efficiently. In this work, we present a numerical

implementation of the Picard iteration algorithm combined with Gauss-Seidel iteration [6] to the

SIR Model (1.2) subject to the documented data of Saudi Arabia data during the period from April

2020 to the end of December 2020, as shown in Figs. (2A and 2B). We recalculate the values of

the parameters using a more accurate numerical integration technique (Simpson’s rule) than the

Rectangle rule used in [3]. Also, we use different solution techniques alternative forms of Picard

iterations [6]. Applying the Picard technique for studying differential equations depends on refor-

mulating the given differential forms into an equivalent integral form through simple integration

and using fixed point recurrence techniques, the same as in algebraic cases. Undoubtedly, integral

representation considers the global behaviours of the system instead of the local attitudes of the

differential forms [6,15]. Moreover, for systems of differential equations, the updated Picard form

introduced in [6], which uses Gauss-Seidel treatment for algebraic systems, can be employed. It

was established that the updated Picard iteration form for systems of differential equations con-

verges faster than the classical Picard within its domain of convergence, like the algebraic cases.

Also, it is important to remember that outside the domain of convergence, the divergence of the

updated Picard iteration will be faster.
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(a) (b)

Figure 2. (A) Total daily active infected cases I(t), (B) Accumulative daily removed

cases R(t).

The remainder of the paper is organized as follows: In section 2, Material and Methods is

subdivided into four subsections in which we introduce the classical Picard formulation of the SIR
model, the updated Picard formulation of the SIR model, the choice of the initial conditions and

the tactic of determining the parameters. In section 3, results, we introduce the parameter values,

Table 1, the implementation of the classical Picard, the updated Picard, Table 2. Comparison

with the fourth-order Runge-Kutta method in addition to the documented data as shown in Fig.

(4)–Fig. (9). Section 4, Discussion, discusses our results compared with the published works and

the documented data. In section 5, based on our results and dissection, some concluding points

are mentioned.

2. Material andMethods

The Picard fixed point approach is a constructive technique used to prove the existence and

uniqueness of solutions of initial value problems of differential equations. With the rapid devel-

opments in symbolic computation and computer algebra systems, Picard iteration has become an

acceptable solution technique. Due to the use of the corresponding integral forms [6, 15] for the

initial value problem, the results of Picard iteration give accurate results provided sufficient terms

are considered. Moreover, the updated Picard iteration method [6] gives more accurate results.

The feature of this technique is that it provides a scheme for solving any problem without any

transformations or linearization, provided the included integrals are computable.

2.1. Classical Picard formulation of the SIR model. The Picard iteration formulation of the SIR
model can be written in the form:

Sn(t) = S (t0) − β

∫ t

t0

Sn−1(t)In−1(t)dt,

In(t) = I (t0) +

∫ t

t0

In−1(t)
{
βSn−1(t) − α

}
dt,

Rn(t) = R (t0) + α

∫ t

t0

In−1(t)dt, n = 1, 2, · · · .

(2.1)

So, a series solution for the unknowns S(t), I(t) and R(t) can be calculated up to the required order.
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2.2. Updated Picard formulation of the SIR model. The updated Picard iteration formulation of

the SIR model can be written in the form:

Sn(t) = S (t0) − β

∫ t

t0

Sn−1(t)In−1(t)dt,

In(t) = I (t0) +

∫ t

t0

In−1(t)
{
βSn(t) − α

}
dt,

Rn(t) = R (t0) + α

∫ t

t0

In(t)dt, n = 1, 2, · · · .

(2.2)

In this formulation, the principle of using Seidel’s approach, using the most recent calculated

data introduced in the Gauss-Seidel method for solving linear systems is employed, [6] as shown

in the last two equations, the suffix n instead of (n − 1). Accordingly, a series solution for the

unknowns S(t), I(t) and R(t) can be calculated up to the required order. The series solution

contains more terms (powers) than the corresponding terms in the classical forms accordingly the

convergence within the domain of convergence will be rapid.

2.3. Initial Conditions. Suitable initial or boundary conditions must be associated with the given

set of differential equations to solve differential equations. For the SIR model, we use the actual

documented real data of the unknowns at any starting time as initial conditions, I(t0), and R(t0)

and for the value of S(t0) the size of susceptible group usually is taken to be the overall size

of population at the beginning of the study (approximately forty million the population of the

Kingdom of Saudia Arabia). The size of the susceptible group can be taken as a significant

subsize of the overall population according to the expected spread of the disease, the experience

of researcher and policymaker expectations such that the relation S(t0) + I(t0) + R(t0) = N. So,

we considered the size of our study to be 1% of the population of the Kingdom of Saudia Arabia

which is 400000 (at first, we assumed the size to be 10% but due to the effective restriction which

successfully controlled the spread of the disease and to make graphs readable we have to reduce

the size of the sample to be only 1%). The period of our study is 275 days from the first of April

to the end of December 2020. Different initial conditions lead to different results, small changes in

the initial conditions may give major results for occurrence outcomes [10–12]. Also, the choice of

S(t0) will affect the calculated values of the parameters.

2.4. The Parameters of the Model. The reliability of the calculated results of the SIR model

depends on how realistic the parameter values used. In a previous work [3], we have used and

re-proposed two formulas to calculate the parameter values α and β from the daily published

documented data of the kingdom of Saudia Arabia.

R (tn) −R (tm) = α

∫ tn

tm

I(t)dt. (2.3)

ln (S (tm) /S (tn)) = β

∫ tn

tm

I(t)dt (2.4)
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The calculation depends on evaluating only one integral,
∫ tn

tm
I(t)dt in this work we use the

Simpson’s standard numerical integration technique in the evaluation process. Simpson’s Rule

for calculating the integral
∫ tn

tm
I(t) appears in equations (2.3) and (2.4) take the form:∫ t11

t1

I(t)dt =
1
3
{
(I1 + I11) + 4 (I2 + I4 + · · ·+ I10) + 2 (I3 + · · ·+ I9)

}
. (2.5)

We use the data for the first eleven days of the month to determine the parameters and then use

the parameter values in the SIR model over the month, Figures [7-9]. Where ti is the day number

i of the considered month and Ii denotes to the number of active infected cases at day number

i. Accordingly, the parameter values corresponding to the Saudi Arabia published data can be

calculated accurately Table 1 . Also, this approach can be adopted for the overall period.∫ t275

t1

I(t)dt =
1
3
{
(I1 + I275) + 4 (I2 + I4 + · · ·+ I274) + 2 (I3 + · · ·+ I273)

}
(2.6)

3. Results

In anticipation of establishing a suitable framework for applying epidemic disease spread mod-

els to the context of the Kingdom of Saudi Arabia, particularly concerning the initial phase of the

COVID-19 pandemic before vaccine availability (April - December 2020), we focused our work

on utilizing the SIR model (1.2) due to its simplicity and satisfactory outcomes. We established

the model’s parameters (formulas (2.3) and (2.4)), fine-turned the initial conditions, and carefully

selected solution technique (2.1) and (2.2) to yield pertinent results. Our study involved a com-

parative analysis of three solution methods: the classical Picard (2.1), an updated Picard (2.2), and

the fourth order Runge-Kutta [3].

In the following we summarize our results of implementation in connection with the actual docu-

mented daily values. The calculated parameter values are summarized in Table 1.
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Table 1. documented values and the calculated parameter values.

Total Total Total Recovery

2020 number of number of number of α β ∗ 10−7 Day’s

confirmed recovered deaths 1
α

cases cases

April 21190 2998 152 0.0234 2.771 43

May 62508 59279 341 0.0374 1.858 27

June 105562 68324 1146 0.059 3.562 17

July 85082 104892 1217 0.055 3.105 19

August 39867 55138 1031 0.052 3.530 20

September 18833 28358 871 0.0483 4.848 21

October 12677 14688 634 0.0599 6.824 17

November 10078 12960 494 0.0597 10.744 17

December 5381 7051 327 0.0773 12.011 13

Mean 1
αmean

Values 0.05234 5.4724 = 19

Overall period calculations 0.0611 4.0253 17

Using the values of the parameters in Table 1, and the recognized initial conditions, a power

series solution for the unknowns in the SIR model was generated. In the following we present the

detailed results for May 2020.

The initial conditions for the first of May are:

S(0) = 375903, I(0) = 20373, R(0) = 3724,α = 0.0374 and β = 1.858× 10−7.

S(0) + I(0) + R(0) = 400000, (1% o f the overall population).

Table 2. The generated series solution for the active infected cases during May

2020 as a sample for our results, ICP
n (t) represents the output of iteration number n,

obtained from the application of the classical Picard iteration (2.1), IUP
n (t) represents

the output of iteration number n, obtained from the application of the updated

Picard iteration (2.2).

n ICP
n (t) Classical Picard IUP

n (t) Updated Picard

1 ICP
1 (t) = 20373 + 660.957t IUP

1 (t) = 20373 + 660.957t− 2.69307t2

2 ICP
2 (t) = 20373 + 660.95t + 8.029t2 IUP

2 (t) = 20373 + 660.957t + 8.029t2
− 0.0504t3

−0.058t3
−0.0005t4 + 2.836

(
10−6

)
t5
− 3.643

(
10−9

)
t6

3 ICP
3 (t) IUP

3 (t)

4 ICP
4 (t) IUP

4 (t)
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ICP
3 (t) =20373 + 660.957t + 8.029t2 + 0.0029t3

− 0.0016t4
−

1.57
(
10−6

)
t5 + 5.126

(
10−8

)
t6
− 9.005

(
10−11

)
t7,

IUP
3 (t) =20373 + 660.957t + 8.029t2 + 0.0029t3

− 0.0018t4
−

2.5
(
10−7

)
t5 + 3.772

(
10−8

)
t6 + 6.623

(
10−10

)
t7
−

2.875
(
10−12

)
t8
− 2.622

(
10−14

)
t9 + 1.592

(
10−16

)
t10+

1.56
(
10−19

)
t11
− 3.338

(
10−21

)
t12 + 1.065

(
10−23

)
t13
−

1.475
(
10−26

)
t14 + 7.903

(
10−30

)
t15,

ICP
4 (t) = 20373. + 660.957t + 8.029t2 + 0.0029t3

− 0.0012t4
− 0.00002t5

+7.781× 10−8t6 + 1.592× 10−9t7 + 2.138× 10−12t8

−9.16× 10−14t9
− 1.611× 10−16t10 + 3.316× 10−18t11

−2.653× 10−21t12
− 4.16× 10−23t13 + 1.23× 10−25t14

−1.005× 10−28t15

IUP
4 (t) = 20373. + 660.957t + 8.029t2 + 0.0029t3

− 0.0012t4
− 0.000016t5

+7.033× 10−8t6 + 1.989× 10−9t7 + 2.762× 10−12t8

−8.506× 10−14t9
− 1.282× 10−15t10 + 2.84× 10−18t11

+9.305× 10−20t12 + 1.52× 10−22t13
− 4.901× 10−24t14

−2.1001× 10−26t15 + 2.255× 10−28t16 + 9.917× 10−31t17

−6.921× 10−33t18
− 4.366× 10−35t19 + 2.088× 10−37t20

+1.708× 10−39t21
− 9.773× 10−42t22

− 3.042× 10−44t23

+3.379× 10−46t24
− 4.077× 10−49t25

− 4.684× 10−51t26

+2.199× 10−53t27
− 1.72× 10−56t28

− 1.749× 10−58t29

+8.131× 10−61t30
− 1.863× 10−63t31 + 2.6381× 10−66t32

−2.353× 10−69t33 + 1.223× 10−72t34
− 2.847× 10−76t35

From Fig. (6), the classical Picard or the updated Picard give acceptable results even with low

iterations along small intervals one month, but from Figs. (7, 8 and 9) one have to update the

parameter values after at most forty days as shown in Fig. (9) in order to guarantee convergence

of the obtained series solutions.
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Figure 3. The performance of ICP
1 (t), IUP

1 (t), Fourth order Runge and the docu-

mented data.

Figure 4. The performance of ICP
2 (t), IUP

2 (t), Fourth order Runge and the docu-

mented data.

Figure 5. The performance of ICP
3 (t), IUP

3 (t), Fourth order Runge and the docu-

mented data.
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(a) (b)

Figure 6. The performance of the active daily infected cases ICP
4 (t), IUP

4 (t), Fourth

order Runge and the documented data, calculations according to May data in table

1.

(a) (b)

Figure 7. The performance of the active daily infected cases ICP
4 (t), IUP

4 (t), Fourth

order Runge and the documented data, calculations according to June data in table

1.

(a) (b)

Figure 8. The performance of the active daily infected cases ICP
4 (t), IUP

4 (t), Fourth

order Runge and the documented data, calculations according to July data in table

1.
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(a) (b)

Figure 9. The performance of the active daily infected cases ICP
4 (t), IUP

4 (t), Fourth

order Runge and the documented data, calculations according to August data in

table 1.

The results of this work offer valuable perspectives on the investigation of epidemic diseases

within the Kingdom of Saudi Arabia, as we will explore in the forthcoming discussion section.

There is a need for additional research to delve deeper into the specific dynamics that drive these

patterns.

4. Discussion

The efficiency of solving mathematical models used in studying epidemic diseases depends on

many factors, including the size of the study sample, the accuracy of the parameter values used,

the initial conditions and the solution method itself. Epidemic models are typically fitted for short-

term applications, where the consequence of reinfection outlooks remains restricted. Usually, the

spread of epidemic diseases begins quickly, which requires the use of solution techniques for the

mathematical models with high reliability in small periods. SIR models provide understanding

insights into the dynamics of epidemic diseases [10], as demonstrated in various case studies

conducted in different regions [16–19]. However, when employed over extended time periods,

the results of SIR models may suffer from reduced accuracy even if the solution technique is

accurate due to the cumulative impacts of errors arising from different sources. Our results not

only confirm the existing theory and the documented data but also consider the global behaviors

through the integral representations of the SIR model. The progresses in the application of epidemic

mathematical models are based on three tracks: The first track: is the mathematical models used

and the dynamics on which they are based we considered the integral form of the SIR model because

of its simplicity reliability Figs. (4–9), the differential form of the SIR model gives acceptable results

in different applications [3, 4, 7–9]. The updated Picard converges faster than the classical Picard

Table 2. The second track: is the initial conditions of the model at the beginning of study, S(0), I(0),
and R(0). Both I(0), and R(0) are documented data, and the value of S(0) is chosen to be a

significant subset of the population, we had chosen the size of the susceptible study to be 400000

(1% of the population). The size of susceptible study is effective in the determination of the

parameters α and β, formulas (2.3), (2.4) and Table 1. Also, the size of the susceptible study
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is effective in final graph output. The third track: the solution technique considered the Picard

method plays an essential role in studying differential equations, especially in proving the existence

of a solution. Although it was not typically used as a solution method due to the nature of the

calculations involved, it has gained importance with the rapid development of scientific calculation

devices and systems. With the advent of symbolic calculation systems such as MATHEMATICA,

the Picard method, particularly with the updated formula (2.1), had become a reliable method of

solution. This is due to the mathematical structure of the "fixed point theory". It is important to

note that Picard or updated Picard might not converge for all systems of differential equations if

the problem has stiff behavior or the initial guess (initial conditions) are far from the true solution

which are not our case, the initial conditions are taken from the documented data. Also, the

coefficients of the system are determined efficiently (the parameters of the model). As shown in

the result section and based on the check of the difference between consecutive iterates, we used

the fourth iteration as our solution. According to our results, we extend our sincere thanks to the

relevant authorities in the Kingdom of Saudi Arabia for controlling the spread of the epidemic by

implementing social distancing in an effective manner and quickly providing the required vaccines

as soon as they appear.

5. Conclusion

Differential equations are the most mathematical concepts used in modeling epidemic diseases.

Mathematical simulations of epidemics are important tools for identifying, expecting and orga-

nizing infectious diseases. The calculations give an overestimation, this is an acceptable situation

because of the daily progress in applying lockdown and prevention methods which daily affect

the calculated values of the parameters. Despite their restricted domain of convergence, the Picard

techniques give accurate results within their convergence domains which makes Picard techniques

a good choice at the beginning, and this is suitable for solving epidemic models. The values of the

parameters are related to the size of the sample of study not general values. In studying epidemic

diseases the size of the sample study should be chosen carefully relative to the expected spread

down of the disease in order to obtain actual representation of the values of the parameters and

accordingly solutions can be good approximations to the documented data(we have changed our

size of study from 10% to only 1%). Decisions related to epidemics should be deeply revised

by highly qualified specialists. All thanks to the health organizations that helped maintain com-

munity safety by spreading the culture of prevention and control of the spread of diseases and

ensuring social distancing despite its international costs.
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