
Int. J. Anal. Appl. (2024), 22:25 

 

 

Received Nov. 19, 2023 

2020 Mathematics Subject Classification. 65D32. 

Key words and phrases. error functional; quadrature formula; optimal coefficients; discrete analogue. 

 

https://doi.org/10.28924/2291-8639-22-2024-25 © 2024 the author(s) 

ISSN: 2291-8639  

1 

 

Optimal Quadrature Formula of Hermite Type in the Space of Differentiable Functions 

 

Khalmatvay Shadimetov1,2, Farxod Nuraliev1,2, Shaxobiddin Kuziev2,* 

 

1Tashkent State Transport University, Tashkent, Uzbekistan 

2V.I. Romanovskiy Institute of Mathematics, Uzbekistan Academy of Sciences, Tashkent, Uzbekistan 

*Corresponding author: shaxobiddin.qoziyev.89@gmail.com 

 

ABSTRACT. In this research work, a new derived optimal quadrature formula is discussed, which includes the sum of 

the values of the function and its first and second order derivatives at the points located at the same distance on the 

interval [0,1] in the ( )

2 (0,1)mL  space. we first obtain an analytical representation of the error function norm, and a system 

of equations of the Wiener-Hopf type construct using the method of Lagrange unknown multipliers for finding the 

conditional extremum of multivariable functions. Optimal coefficients found by solving the system. Using the exact 

form of the optimal coefficients, the norm of the error functional of the optimal quadrature formula for 3m =  and 

4m =   calculate and the order of approximation was shown to be ( )mO h . The obtain theoretical conclusions confirmed 

by numerical experiments. 

 

 

1. Introduction: Statement of the Problem 

          It is well known that numerical integration formulas or quadrature formulas are a method 

of approximate estimation of definite integrals. They are used when the initial functions of the 

functions under the integral cannot be expressed by elementary functions, when the integral 

exists only at discrete points, or when some special types of integrals with the property of 

singularity are approximated, for example: 
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The effectiveness of quadrature formulas is usually classified according to its degree of accuracy 

and the order of approximation of the error. Most problems of applied sciences and mathematical 

physics are brought to the calculation of integrals. In particular, in the numerical-analytical 

solution of integral equations, in the calculation of the center of mass, the moment of inertia or 

various properties of physical systems, in the calculation of integrals related to image and signal 

analysis and filtering, the construction of quadrature formulas and the evaluation of their errors 

is one of the targeted scientific studies. 

We consider the following quadrature formula 

       
1 2

0 1

0 00

( ) ( '(0) '(1)) ''
12

N Nh
x dx C C
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with error functional 
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where 
[0,1]( )x  is the indicator of the interval [0,1], ( )x  is the Dirac’s delta-function, 
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, = 0, ,
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, =1, 1,

h
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 are known coefficients, 1[ ]C  , = 0,N  are unknown coefficients of the 

quadrature formula (1.1),   h = , ( )x  is an element of the space ( )

2 (0,1)mL .   

The norm in space ( )

2 (0,1)mL  is defined by the following form: 

( )
2
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0

( )
.m

m
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In addition, the error functional (1.2) is required to satisfy the following conditions ([1,2]) 

                                        ( ( ), ) = 0, = 0,1,2,..., 1.N x x m  −                                                    (1.3) 

So, for the existence of a quadrature formula of the form (1.1), condition 2N m −  must be 

fulfilled, that is, starting from 3m = , unknown coefficients of the quadrature formula 1[ ]C   can 

be found. 

From the definition of the functional norm 
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from this equality we get the Cauchy-Schwarz inequality 

( ) ( )
2 2

| ( , ) | | .m mN NL L
     

 It can be seen from this inequality that the error of the quadrature formula (1.1) is estimated by 

the norm of the error functional ( )N x  obtained from the conjunction space ( )

2 (0,1)mL   from above. 

Therefore, the estimation of the error of the quadrature formula (1.1) is related to the 

minimization of the norm of the error functional ( )N x . In computational mathematics, 

quadrature formulas are constructed mainly in three directions: the spline method, the method 

of  −  functions, and the Sobolev method is based on using discrete analog of the linear 

differential operator. 

I. J. Shoenberg ([3,4]) constructed a quadrature formula in the ( )

2 (0, )mL n  space by spline method.  

From among the following formulas: 

1

( )

0 00

( ) ( )
N

t

t

t

x dx K x


 


 
= =

  

a) In the work of S.A. Michelli [5] it was shown that ( )

2

mW  is the best formula, when m  is an 

odd natural number; 

b) A.A. Jensikbayev [6] proved this formula is optimal in the ( )

2 (0,1)mL   space; 

c) T. Catinash, G.T. Koman [7] constructed an optimal quadrature formula using  −  

function method in the (2)

2 (0,1)L  space; 

d) Kh.M. Shadimetov [8] constructed the optimal quadrature formula in the ( )

2 (0,1)mL  space 

when 0 =  and calculated the norm of the error function; 

e) Kh.M.Shadimetov, A.R.Hayotov, F.A.Nuraliev [9] constructed the optimal quadrature 

formula for 1 =  and estimated its error. 

Article [10] presents new and effective quadrature formulas, which merge function and first 

derivative estimation at equally-spaced data points, with a particular emphasis on improving 

computational efficiency in terms of both cost and time. The objective of the research presented 

in work [11] is to simplify the computation of the components involved in the integral 

transformation, denoted as mF  and 0.m The analytical expressions for these components 

encompass definite integrals. Instead of the Newton-Cotes formulas, it is proposed to use non-
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trivial quadrature formulas with unevenly distributed integration points. The quadrature method 

is essential in the approximate solution of integral equations. In [12], the trapezoidal numerical 

integration formula is used to solve the Fredholm-Hammerstein integral equations. In [13], the 

perturbed Milne quadrature rule was derived for n -fold differentiable functions. 

Thus, in order to construct an optimal quadrature formula of the form (1.1), we need to solve the 

following problems. 

Problem 1. Find the norm of the error functional (1.2) of the quadrature formula (1.1). 

Problem 2. Finding the coefficients 
1[ ], 0,C N  = , which give the smallest value to the norm 

( )*
2
mN L

 of the error functional (1.2),  that is, calculating the value 

                                                       
1

( )*
( )*

2[ ]2

.inf mNm L
L C

N


=                                                       (1.4) 

It is important to mention that, the coefficients 
1[ ], 0,C N  =  satisfying the quantity (1.4) of the 

error functional (1.2), i.e., specifying the minimum norm ( )*
2
mN L

. If such coefficients exist, these 

are called optimal coefficients, denoted as 1[ ].C   

 

2. Known Definitions and Theorems 

           In this section, we provide definitions and formulas necessary to prove the main results. 

Assume that   and   are real-valued functions of real variable and are defined in real line . 

Definition 2.1. Function ( )h   is a function of a discrete argument if it is defined for a set of 

integer values of  . 

Definition 2.2. The inner product of two discrete functions ( )h   and ( )h   is defined following  

 
=

, = ( ) ( )h h


     


−

  

Definition 2.3. The convolution of two discrete functions ( )h   and ( )h   is defined following  

=

( )* ( ) = ( ) ( )h h h h h


        


−

 −  

The Euler-Frobenius polynomials ( )kE x ,  =1,2,...k  are defined by the following formula [5]  

2

2

(1 )
( ) = ,

(1 )

kk

k

x d x
E x x

x dx x

+−  
 

− 
           0 ( ) = 1E x .                                                 (2.1) 
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Theorem 2.1.  Polynomial ( )kQ x  which is defined by the formula [2]  

11
1

=0

0
( ) = ( 1)

( 1)

i kk
k

k i
i

Q x x
x

++
+ 

−
−

                                                                              (2.2) 

is the Euler-Frobenius polynomial (2.1) of degree k , i.e., ( ) = ( )k kQ x E x , where 

=1
0 = ( 1) .

ii k i l l k

il
C l− −    

When calculating sums, we use the following equations derived from the sum formula of 

geometric progression [14] 

1

=

=0 =0 =0

1
= 0 | ,

1 1 1 1

i inn k k
k i k i k

n

i i

q q q
q

q q q q


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
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                                      (2.3)  

where i k  is the finite difference of order i  of k . 

We use the following formula to calculate some sums [15] 

1 1
1

=0 =1

!
= ,

!( 1 )!

ii

i

B

i i

 
 




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here 1 iB + −  are Bernoulli numbers 

=0

= 0 .p p p

l

p

x C x
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    −   

For any continuous functions, the operation of convolution is defined as follows 

( )* ( ) = ( ) ( ) = ( ) ( ) .x x x y y dy y x y dy     
 

− −

− −   

Lemma 2.1.                           
1 1 13 3

1

1 1
=1 =0 =1 =0

( 1) ( 1)
0 ( 1) 0

( 1) (1 )
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q q

 
  
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+
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   

where kq  are the roots of the Euler-Frobenius polynomial 2 6 ( )mE q− , 
00 |t t 

 = =  is given by 

in (2.2), N ,  + . 

The proof of this Lemma is given in [9]. 

 

3. The Expression of the Error Functional Norm 

           In this section, we find general representation of the norm of the (1.2).  We utilize the 

extremal function for this purpose ([1,2]). The function   is called an extremal function of the 

error functional (1.2) if the following equality holds  

( ) ( )* ( )
2 2

, = m mN N L L
U U                                                                     (3.1) 
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In the ( )

2 (0,1)mL  space it is defined as follows  

1( ) = ( 1) ( )* ( ) ( )m

N m mU x x G x P x−− +                                                         (3.2) 

where  

2 1| |
( ) =

2 (2 1)!

m

m

x
G x

m

−

 −
                                                                       (3.3) 

is a solution of the equation 

2

2
( ) = ( ),

m

mm

d
G x x

dx
                                                                        (3.4) 

1 2

1 1 2 1( ) ...m m

m m mP x a x a x a x a− −

− −= + + + + . 

In addition, the extremal function satisfies the following relationships. (Riesz theorem) [16] 

( ) ( )
2 2(0,1) (0,1)
m mN L L

U =    and  ( ) ( )
2

2

(0,1)
, mN N L
U =                                   (3.5) 

Based on equations (3.2) and (3.5), the square of the norm of any linear continuous ( )N x  error 

function in the ( )*

2 (0,1)mL  space can be written as follows 

( ) ( )( )*
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1= ( , ) = ( ),( 1) ( )* ( ) ( ) ( ),( 1) ( )* ( )m

m m
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 
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 
   

Using this equation, we get a general representation of the square of the norm of the error 

functional (1.2) 

     ( )*
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2 41

.
6(2 1)! (2 1)! 144(2 3)!

h h

m m m


+ + + 

− + − 
                                     (3.6) 

Thus, Problem 1 was resolved. 
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4. Optimal Coefficients of the Optimal Quadrature Formula Form (1) 

        In this section, we will consider the problem of finding the minimum of the equation (3.6) 

under the conditions (1.3) for coefficients 1[ ], 0,1,...,C N  = . Using the method of Lagrange 

unknown multipliers, we find the conditional extremum of multivariable functions. Therefore, 

we construct the Lagrange function 

1
2

=0

= 2 ( 1) ( , ),
m

m

N N x



−

 −  −   

where   unknown multipliers. The   function is a multivariable function with respect to the 

coefficients of 1[ ]C   and  . By equalizing the derivatives of the function   with respect to 

1[ ]C   and   to zero, we obtain the following system of equations 

 1 2 3

0

[ ] [ ] [ ], 0, ,
N

m m mC G P F N


     − −

=

− + = =                                    (4.1) 

               3 3

1

0 1

!
[ ] , 0, 3,

!( 3 )!

N
j j

j

B
C h m

j j


 




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

+ − + −

= =

= − = −
+ −

                                (4.2) 

where   

3 2 22 52 5
3 33 2 2

0 1

( 1)[ ]
[ ]

(2 5 )! ( 3)! 2 !( 3 )! (2 2)!

ii mm im i
i j i ji m

m

i j

BB h B h
F h

m i i j i j m




+ −− −−
+ − + −+ −

= =

 −
= − + + 

− − + + − −  
                        (4.3) 

3 ( )mP h−  is a polynomial of degree 3m− , 
2 5

2

| |
( ) =

2(2 5)!

m

m

x
G x

m

−

−
−

, 
3i jB + −

 are Bernoulli numbers. 

The system of equations (4.1)-(4.2) is the discrete Wiener-Hopf system used to find optimal 

coefficients. This system has a unique solution, and this solution gives a minimum value to 2

N

. To solve this system, we use an approach based on the 2 ( )mD h−  discrete analogue of the 

2 4 2 4/m md dx− −  operator, which constracted in  [17].  

    To do this, we rewrite equation (4.1) in the form of convolution, taking into 1[ ] = 0C   for 

< 0  and > N . 

2 1 3( )* [ ] ( ) = ( ), = 0,1,..., .m m mG h C P h F h N    − −+                                   (4.4) 

Also, instead of the left side of equation (4.4), we introduce functions 

2 1( ) = ( )* [ ]mh G h C   −                                                                (4.5) 

3( ) = ( ) ( ).mu h v h P h  −+                                                               (4.6) 
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First of all, 1[ ]C   coefficients should be expressed by ( )u h  function. For this we need the 

2 ( )mD h−  operator  satisfying the equality 2 2( )* ( ) = ( )m mhD h G h h   − − .  

The following theorems are valid for the 2 4 2 4/m md dx− −  discrete analogue of the 2 ( )mD h−  

operator. 

Theorem 4.1.  The discrete analogue of the differential operator 2 4 2 4/m md dx− −  has the form 

2 3 | |3

=1 2 5

2 33

2 2 4
=1 2 5

2 33
2 5

=1 2 5

(1 )
, | | 2,

( )

(1 )(2 5)!
( ) = 1 , | |= 1,

( )

(1 )
2 , = 0,

( )

mm
k k

k k m k

mm
k

m m
k m k

mm
m k

k k m k

q q

q E q

qm
D h

h E q

q

q E q





 



−−

−

−−

− −

−

−−
−

−

 −



 −− 
+


 −
− +








                                 (4.7) 

where 2 5 ( )mE q−  is the Euler-Frobenius polynomial of degree 2 5m− , kq  are the roots of the Euler-

Frobenius polynomial 2 6 ( )mE q− , | |<1kq .  

Theorem 4.2. The monomials ( )kh  have the following relation with the discrete operator 

2 ( )mD h−  

2

=

0 0 2 5,
( )( ) =

(2 4)! = 2 6.

k

m

for k m
D h h

m for k m

 


−

−

  −


− −
                          (4.8) 

Considering these theorems, we obtain the following equality for the 1[ ]C   optimal coefficients 

( )2 2 2 1 3( ) ( ) = ( ) ( ) [ ] ( )m m m mD h u h D h G h C P h     − − − −   +  

( )1 2 2 1 1= [ ]* ( )* ( ) [ ]* ( ) [ ]m mC D h G h C h C      − − = =                         (4.9) 

So, we need overview of the function ( )u h  all integer values of    to calculate the (4.5) 

convolution. If [0,1]h  , then ( ) = ( )mu h F h  . 

We find the ( )u h  overview of the function when < 0  and  > N . 

Suppose < 0  , then considering (4.2), we have 

2 5 2 5

1 2 1 1

=0

| | | |
( ) = [ ]* ( ) [ ]* = [ ]

2(2 5)! 2(2 5)!

m mN

m

h h h
h C G h C C

m m

  
     

− −

−

−
=

− −
  

2 5 2 53 2 5
3 3

1

=0 1 = 2 =0

!( ) ( 1) ( ) ( 1)
= [ ]( )

2(2 5 )! ! !( 3 )! 2(2 5 )! !

m i i m i im i m N
i j i j i

i j i m

i Bh h
h C h

m i i j i j m i i 

 
 

− − − −− −
+ − + −

= −

− −
−

− −  + − − − 
     

for  > N  
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2 5 2 53 2 5
3 3

1

=0 1 = 2 =0

!( ) ( 1) ( ) ( 1)
( ) = [ ]( )

2(2 5 )! ! !( 3 )! 2(2 5 )! !

m i i m i im i m N
i j i j i

i j i m

i Bh h
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m i i j i j m i i 

 
   

− − − −− −
+ − + −

= −

− −
− +

− −  + − − − 
     

we enter the following function 

2 53
3 3

2 5

=0 1

!( ) ( 1)
( ) = ,

2(2 5 )! ! !( 3 )!

m i im i
i j i j

m

i j

i Bh
R h h

m i i j i j




− −−
+ − + −

−

=

−

− −  + −
   

                                  
2 52 5

3 1

= 2 =0

( ) ( 1)
( ) = [ ]( )

2(2 5 )! !

m i im N
i

m

i m

h
Q h C h

m i i 


  

− −−

−

−

−

− − 
                                      (4.10) 

Then,  

2 5 3

2 5 3

( ) ( ), 0,
( )

( ) ( ), .

m m

m m

R h Q h
h

R h Q h N

  
 

  

− −

− −

− 
= 

− + 
                                  (4.11) 

So, the general representation of the ( )u h  function is as follows 

2 5 3

2 5 3

( ) ( ), < 0,

( ) ( ), 0 ,

( ) ( ), < 0

m m

m

m m

R h Q h

u h f h N

R h Q h

  

  

  

−

− −

+

− −

 +


=  

− +

                                (4.12) 

where 

3 3 3

3 3 3

( ) = ( ) ( ),

( ) = ( ) ( )

m m m

m m m

Q h P h Q h

Q h P h Q h

  

  

−

− − −

+

− − −

−

+
                                       (4.13) 

And 3 ( )mQ h−

− , 3 ( )mQ h+

−   are  polynomial of degree 3m− . 

By finding 3 ( )mQ h−

−  and 3 ( )mQ h+

− , we obtain from (4.13) 

( )

( )

3 3 3

( )

3 3 3

1
( ) = ( ) ( ) ,

2

1
( ) = ( ) ( ) .

2

m m m

m m m

P h Q h Q h

Q h Q h Q h

  

  

+ −

− − −

+ −

− − −

+

−

 

Now we find the 1[ ]C   optimal coefficients  when =1,2,..., 1N −  using the form (4.7) and 

(4.12) of functions with discrete arguments 2 ( )mD h−  and  ( )u h . 

We introduce the following equalities 

( )
2 3

2 5 32 4
=12 5

(2 5)!(1 )
( ) ( ) ( ) ,

( )

m

k
k k m m mm

k m k

m q
a q R h Q h f h

h q E q





  
− 

−

− −−

−

− −
= − + − − −  

    ( )
2 3

2 5 32 4
=12 5

(2 5)!(1 )
(1 ) (1 ) (1 )

( )

m

k
k k m m mm

k m k

m q
b q R h Q h f h

h q E q





  
− 

+

− −−

−

− −
= − + + + − +           (4.14) 
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Theorem 4.3. The coefficients 1[ ]C  , =1,2,..., 1N −  of the optimal quadrature formulas of the 

form (1.1) for 3m   in the space ( )

2 (0,1)mL  have the following form  

                   ( )
3

3

1

=1

[ ] = , =1,2,..., 1,
m

N

k k k k

k

C h d q p q N  
−

−+ −                                     (4.15) 

where ,k ka b  are defined by (4.14), kq  are given in Theorem 4.2. 

Proof.  When =1,2,..., 1N − , using equations (4.3), (4.7), (4.9) and (4.12), we can write the 

following for 1[ ]C   

1 2 2

=

[ ] ( )* ( ) = ( ) ( )m mC hD h u h h D h h u h


     


− −

−

= −  

1

2 2 5 2 2

= =0

( ) ( ) ( ) ( ) ( )
N

m m m m mh D h h R h Q h D h h f h
 

      
−

−

− − − −

−


 = − + + −  


   

2 2 5 3

= 1

( ) ( ) ( )m m m

N

D h h R h Q h


   


+

− − −

+


 + − − +  


 . 

After some simplifications, we get the following 

1 2[ ] { ( )* ( )m mC h D h f h  −=  

2 33

2 5 32 4
=1 =12 5

(1 )(2 5)!
[ ( ) ( ) ( )]

( )

mm
k

k k m m mm
k k m k

qm
q q R h Q h f h

h q E q

 



  
−− 

−

− −−

−

−−
+ − + − − −   

2 33

2 5 32 4
=1 =12 5

(1 )(2 5)!
[ (1 ) (1 ) (1 )]}

( )

mm
N k
k k m m mm

k k m k

qm
q q R h Q h f h

h q E q

 



  
−− 

− +

− −−

−

−−
+ − + + + − +   

Considering Theorem 4.2 and 2 ( )* ( ) = 0m mD h f h − , we completely proved the Theorem 4.3. 

Theorem 4.4. The coefficients of the optimal quadrature formula of the form (1.1) for 3m   in 

( )

2 (0,1)mL  space are determined as follows 

                              
3

3

1

=1

[0] = ,
1

Nm
k k

k

k k

q q
C h a

q

− −

−
                                                             (4.16) 

                                   
( )

3
3

1

=1

[ ] = , =1, 1,
m

N

k k k

k

C h a q q N  
−

−+ −                             (4.17) 

                
3

3

1

=1

[ ] =
1

Nm
k k

k

k k

q q
C N h a

q

− −

−
                                                              (4.18) 

where ka  satisfy the following system of 3m−  linear equations  

13
3

1
=1 =1

( 1)
0 = , =1, 3.

(1 ) ( 1)( 2)( 3)

N i im
ik k

k i
k i k

q q B
a m

q


  

  

+ +−
+

+

+ −
 −

− + + +
                    (4.19) 
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Proof. First we use equation (4.2) to find the representation of the coefficients 1[0]C  and 1[ ]C N  

for = 0  and =1  

1 1

1 1 1

=1 =1

[0] = [ ]( ) [ ],
N N

C C h C
 

  
− −

−                                                 (4.20) 

                                 
1

1 1

=1

[ ] = [ ]( ).
N

C N C h


 
−

−                                                              (4.21) 

Equations (4.20) and (4.21) show that 1[0]C  and 1[ ]C N  coefficients depend on 1[ ]C  , =1, 1N −  

coefficients. 1[ ]C  , =1, 1N −  is represented by coefficients ka  and kb  ( 1, 3)k m= − . So we need 

to determine the unknowns ka  and kb  to find the optimal coefficients 1[ ]C  ,  = 0,N . 

We first calculate the sum of (4.1) 

2 5
( )

1 1

=0 =0

( ) sign( )
= [ ] ( ) = [ ]

2(2 5)!

mN N
IV

m

h h h h
S C G h h C

m 

   
   

−− −
−

−
   

2 5 2 5

1 1

=0 =0

( ) ( )
= [ ] [ ]

(2 5)! 2(2 5)!

m mNh h h h
C C

m m



 

   
 

− −− −
−

− −
   

From equalities (2.2), (4.2) and (4.15) and taking into account that kq  is the root of the Euler-

Frobenius polynomial of degree (2 6)m− , we get the following for S  

2 5 2 5 32 5 3

1

=0 =1 =0

( ) ( ) 1
= [0] 0

(2 5)! (2 5 )! ! 1 1

m m i im m i
ik

k

i k k k

qh h h
S C d

m m i i q q







 − − − +− −  
−  

− − −  − −  
    

  
2 53 3

3 3

=1 =0 =0 1

!( ) ( 1)
0

1 1 2(2 5 )! ! !( 3 )!

N m i im i m i
i ji i jk k

k

k i jk k

i Bq q h
p h

q q m i i j i j







 − −− −
+ − + −

=

  −
+  + 

− − − −  + −  
                (4.22) 

2 52 5

1

= 2 =0

( ) ( 1)
[ ]( ) .

2(2 5 )! !

m i im N
i

i m

h
C h

m i i 


 

− −−

−

−
−

− − 
   

Substituting the expression (4.22) into (4.1), we get the following equation with respect to h  

3( ) = ( )m mS P h f h −+                                                            (4.23) 

From (4.23) we get the system of equations to find the coefficient  1 0C  and the unknowns ka  

and kb  by equating the respective levels of  2 5( ) m ih − −   when = 0,1,..., 3i m−  and 2 5( ) mh −  

                                             
3

3

1

=1

[0] = ,
1

Nm
k k

k

k k

q q
C h a

q

− −

−


                                                            
(4.24) 

      
13

3

1
=1 =1

( 1)
0 = , =1, 3.

( 1) ( 1)( 2)( 3)

N i im
ik k k k

i
k i k

d q p q B
m

q


  

  

+ +−
+

+

+ −
 −

− + + +
  (4.25) 
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By equating the corresponding degrees of 2 5( ) m ih − −  when = 2, ,...,2 5i m m m− − , we find the 

exact form of the polynomial 3 ( )mP h−  

12 5 32 5 3

3 1
= 2 =1 =1

( 1)( )
( ) 0

(2 5 )! ! ( 1)

Nm i im m i
ik k k k

m

i m k k

d q p qh h
P h

m i i q

 








+ +− − +− −

− +
−

 + −
= 

− − −
   

           
3 2 2

33 2 2
1

=0 1

( 1)( 1)
[ ]( ) .

2 ! ( 3)! 2 !( 3 )! (2 2)!

ii mi N i
i ji i m

j

BB h B h
C h

i i j i j m

 
+ −

+ −+ −

=

−−
+ − + +

+ + − −
                       (4.26) 

From (4.2), we get the following for 0 =  

 1

0

0.
N

C



=

=  

Using (4.17) and (4.24), we find  1C N  

3
3

1

=1

[ ] = .
1

Nm
k k

k

k k

q q
C N h a

q

− −

−
  

Thus, to find the unknowns ka  and kb   ( =1,2,..., 3)k m−  from equation (4.23), we obtained the 

system of equations (4.25), and we find the remaining 3m−  using equation (4.2) 

  3 3

1

0 1

!
( ) , 1, 3

!( 3 )!

N
j j

j

B
C h h m

j j


 




  



+ − + −

= =

= − = −
+ −

                       (4.27) 

Using (2.2) and (4.15) for the left side of equation (4.27), we get the following 

( )    
3 1

3

1 1 1

=0 1 1

[ ]( ) ( )
N m N

N

k k k k

k

C h h a q b q h C N C N   

 

  
− −

−

= =

= + + =   

 

1 13 1 1 3
3 3

1
1 1 1 =1 =0

( 1)
0

(1 )

i N im N N m
N ik k k k

k k k k i
k k i k

a q b q
h a q b q h h

q


      

 

 
+ +− − − −

− +

+
= = =

  + −
+ +  =  

− 
     

13 3

11
=0 =1 =0

( 1)!
0 [ ], =1, 3.

!( )! (1 )

N i it m
i tk k k k

i
t k i k

a q b qh
C N m

t t q

 




+ ++ −

+

+ −
−  + −

− −
                  (4.28) 

Taking equality (4.28) into account, we subtract the left and right sides of (4.27) 

1 1 132 3
3

1 1
=1 =0 =0 =1 =0

( 1) ( 1)!
0 0

(1 ) !( )! (1 )

i N i N i itm m
i i tk k k k k k k k

i i
k i t k ik k

a q b q a q b qh
h

q t t q

  
  



+ + + ++− −
+

+ +

+ − + −
 − 

− − −
    

            
3

3 3

1

1 =3

!
[ ] = = 0, =1, 3

!( 3 )!

j j j

j

j j

B
C N h a h m

j j

 
 






+
+ − + −

=

+ + −
+ −

                           (4.29) 

Equating the corresponding degrees of  h  from (4.29), we get the following system 
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1 1 13 3

1 1
=1 =0 =1 =0

( 1) ( 1)
0 0 , 1, 3,

(1 ) (1 )

N i i i i Nm m
i ik k k k k k k k

i i
k i k ik k

a q b q a q b q
m

q q

 
  

+ + + +− −

+ +

+ − + −
 =  = −

− −
              (4.30) 

13
3

1
=1 =0

( 1)
0 = , =1, 1, =1, 3.

(1 ) ( 1)( 2)( 3)

N i ijm
ji jk k k k

i
k i k

Ba q b q
j m

q j j j
 

+ +−
+

+

+ −
 − −

− + + +
        (4.31) 

It can be seen that (4.31) is a part of system (4.25). Thus, using (4.30), (4.25) and Lemma 2.1 , we 

obtain the new system for the unknowns ka  and kb  

13
1 3

1
=1 =0

( 1)
0 ( 1) , =1, 3

(1 ) ( 1)( 2)( 3)

N i im
ik k k k

i
k i k

a q b q B
m

q


   

  

+ +−
+ +

+

+ −
 = − −

− + + +
         (4.32) 

3 0B+ =  when   is even numbers, from this the equation (4.32) can be written as follows 

13
3

1
=1 =0

( 1)
0 , =1, 3

(1 ) ( 1)( 2)( 3)

N i im
ik k k k

i
k i k

a q b q B
m

q


  

  

+ +−
+

+

+ −
 = −

− + + +
                  (4.33) 

If we subtract (4.33) from (4.25), we get the following system of equations 

  
13

1
=1 =1

( 1)
( ) 0 = 0, =1, 3.

(1 )

N i im
ik k

k k i
k i k

q q
a b m

q


 

+ +−

+

− −
−  −

−
                             (4.34) 

(4.34) from equality = , =1,2,..., 3k ka b k m− . 

So, from (4.25) we will have a system of equations  

13
3

1
=1 =1

( 1)
0 = , =1, 3,

(1 ) ( 1)( 2)( 3)

N i im
ik k

k i
k i k

q q B
a m

q


  

  

+ +−
+

+

+ −
 −

− + + +
                  (4.35) 

to find ka  unknowns. 

Theorem 4.4 is proved. From Theorem 4.4, we get the following results: 

Result 4.1. The coefficients of the optimal quadrature formula (1.1) in the (3)

2 (0,1)L  space are 

determined as follows 

1[ ] = 0, = 0,C N   

Result 4.2. The coefficients of the optimal quadrature formula (1.1) in the (4)

2 (0,1)L  space are 

determined as follows 

( )
3

1[0] = ,
1

Na q q
C h

q

−

−
 

( )3

1[ ] = , =1, 1,NC ah q q N  −+ −  

( )
3

1[ ] = ,
1

Na q q
C N h

q

−

−
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where  
1

120(1 )N
a

q
=

+
, 3 2q = − . 

5. High Estimate of the Error of the Optimal Quadrature Formula 

         In this section, we calculate the square of the norm of the error function. 

Theorem 5.1. The squared norm of the error functional (1.3) of the optimal quadrature formula 

(1.1) in (3)

2 (0,1)L  space has the following form  

(3)*
2

6
2

.
30240

N L

h
=                                                                 (5.1) 

Theorem 5.2. The squared norm of the error functional (1.3) of the optimal quadrature formula 

(1.1) in (4)

2 (0,1)L  space has the following form  

(4)*
2

8 9
2 (3 1)( 1)

,
1209600 518400(5 1)( 1)

N

N NL

h h q q

q q

+ −
= +

+ +
                                       (5.2) 

here 3 2q = − . 

Now we give the proof of Theorem 5.2. 

Proof. To do this, we simplify the expression (3.6) 

  
2

( )*

2 1 3

0

(0,1) ( 1) [ ] [ ]
N

m m

N m mL C P F


  −

=


= − − −


  

   
2 1 2 112 2 2 2 2

0 0

0 0 0

[ ] [ ][ ] ([ ] 1)

2(2 1)! 6 2(2 2)! (2 1)!

m mm mN N xh
C C dx

m m m 

   
 

− −− −

= =

 − −+ − 
+ − + 

− − −  
    

                         
2 41

6(2 1)! (2 1)! 144(2 3)!

h h

m m m


+ + + 

− + − 
                                            (5.3) 

We calculate the following sums 

   
2 1 2 1

1 0 0

0 0

[ ] [ ]

(2 1)! 2(2 1)!

m m
N

S C C
m m



 

   
 

− −

= =

− −
= −

− −
   

                   
22 2 1 2 2 2 2 2

2[ ] [ ] [ ] [ ]

(2 )! 2(2 1)! 4(2 2)! 12 (2 2)! (2 )!

mm m m m

mB hh

m m m m m

   − − −

= − + + −
− − −

                              (5.4) 

332 32 3 1
33

0 1

[ ] ( 1) ( 1)

(2 3 )! ( 3)! 2( 3)! 2 !( 3 )!

i jim i i im i
i ji

i j

B hB h

m i i i j i j


+ −+− −− +

+ −+

= =

 − −
+ − − 

− − + + + −  
   
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2 2 2 2 2 2 2 3 12 3

2

0

[ ] ([ ] 1) [ ] [ ] ( 1)

2(2 2)! (2 2)! 2(2 3 )!( 1)!

m m m m i im

i

S
m m m i i

   − − − − − +−

=

+ − −
= = +

− − − − +
                        (5.5)

2 11 2 2 1 2 2 2 3 32 3

3

00

[ ] [ ] [ ] [ ] [ ] ( 1)

2(2 1)! (2 )! 2(2 1)! 4(2 2)! 2(2 3 )!( 3)!

m m m m m i im

i

x
S dx

m m m m m i i

    
− − − − − +−

=

− −
= = − + +

− − − − − +
        (5.6) 

Putting (5.4), (5.5) and (5.6) into (5.3), we get the following 

  ( )*
2

2

1 3

0

( 1) [ ] [ ]m

N
m

N m mL
C P F



  −

=


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
  
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22 2 1 2 2 2 2 2
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0

0

[ ] [ ] [ ] [ ]
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mB hh

C
m m m m m
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
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=


+ − + − − −
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0 1
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B hB h h

m i i i j i j i


+ −+− − +− +

+ −+

= =

 −− − 
+ + − − 

− − + + + − +  
   

                                               
2 41

6(2 1)! (2 1)! 144(2 3)!

h h

m m m


+ + + 

− + − 
                                       (5.7) 

Now we simplify the equation (5.7) for 4m =  

  (4)*
2

2

1 1 4

0

[ ] [ ]
N

N L
C P F



  
=


= − −

  

 
8 7 6 2 6 8

0

0

[ ] [ ] [ ] [ ]

40320 10080 2880 8640 1209600

N h h
C



   


=


+ − + − − +


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2 41
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
                                                   (5.8) 

From (4.2) we get the following for 0 =  and 1 =  

 1

0

0,
N

C



=

=  

 1

0

( ) 0
N

C h


 
=

=  

taking above equations into account, we simplify (5.8) the 

 (4)*
2

4 8
2 2

1

0

[ ]
1440 362880

N

N L

h h
C



 
=

= − +                                          (5.9) 

We calculate the optimal coefficients found in Result 4.2. by putting them in (5.9) 
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   (4)*
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Theorem 5.2 is completely proved.The proof of the Theorem 5.1 is similarly. 

 

6. Numerical Results 

         We numerically analyze the analytical results obtained in this section and compare them 

with other works. 

Determining the absolute value of ( )4

2L
  which constructed in the (4)

2 (0,1)L  space by ( )NR  , we 

obtain the following from the Cauchy-Schwarz inequality 

( ) ( ) ( )4 4

2 2
N NL L

R     . 

The square of the 
( )4

2

N

L


 error functional norm of the optimal quadrature formula considered in 

the (4)

2 (0,1)L  space and the square of the ( )4

2L
  error functional norm of the quadrature formula 

constructed in the (4)

2 (0,1)L  space in [9] are numerically analyzed in TABLE 1 below. 

TABLE 1. Squared norm of error functional of optimal quadrature formula 

 N=10 N=50 N=100 N=500 N=1000 

( )4

2

2

L
  9.93*10^(-15) 2.19*10^(-20) 8.42*10^(-23) 2.12*10^(-28) 2.29*10^(-31) 

( )4

2

2

N

L


 
9.38*10^(-15) 2.17*10^(-20) 8.37*10^(-23) 2.02*10^(-28) 8.27*10^(-31) 
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When the nodes are 10;50;100;150N = , we calculate the integral value of the functions 

( )5 2( ) ln 1x x x = + +  (TABLE 2) and ( )2 2( ) cos xf x x e−= +  (TABLE 3) using the Hermite-type 

optimal quadrature formula built in the (4)

2 (0,1)L  space and denote it as O2 EM. 

At the same time, we calculate the integral value of the functions ( )5 2( ) ln 1x x x = + +  (TABLE 2) 

and ( )2 2( ) cos xf x x e−= +  (TABLE 3) using the optimal quadrature formula [9] built in the (4)

2 (0,1)L  

space when 10;50;100;150N =  is present and denote it as O1 EM. 

The exact value of the integral  
1

1

0

( )I x dx=      and    
1

2

0

( )I f x dx=  . 

TABLE 2. Error of optimal quadrature formula 

N I1 (Exact value) I1- O1 EM I1- O2 EM 

10 0.430601017 6.40*10^(-7) 4.45*10^(-7) 

50 0.430601017 2.05*10^(-10) 1.42*10^(-10) 

100 0.430601017 6.41*10^(-12) 4.45*10^(-12) 

150 0.430601017 8.55*10^(-13) 5.95*10^(-13) 

 

TABLE 3. Error of optimal quadrature formula 

N I2 (Exact value) I2- O1 EM I2- O2 EM 

10 1.33685640 2.57*10^(-7) 1.88*10^(-7) 

50 1.33685640 8.84*10^(-11) 6.20*10^(-11) 

100 1.33685640 2.79*10^(-12) 1.93*10^(-12) 

150 1.33685640 3.72*10^(-13) 2.38*10^(-13) 

 

Result 4.2 in the (4)

2 (0,1)L  space and the error of the derivative formula constructed in the work 

[10] are numerically analyzed in TABLE 4 using the following 5 functions. 

Example 1:   ( ) xf x e−=  

Example 2:  
1

( )
1

f x
x

=
+

 

Example 3:  2( ) 1f x x= +  

Example 4:  
2

ln(1 )
( )

1

x
f x

x

+
=

+
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Example 5: ( cos )( ) x xf x e− +=  

where 
1

0

( )I f x dx=   

TABLE 4. Error of optimal quadrature formula 

Error Example 1 Example 2 Example 3 Example 4 Example 5 

I - MSONC4 0.00096 0.00796 0.001277 0.01425 0.00198 

I - O2 EM 0.00085 0.00564 0.000387 0.00753 0.00151 

 

7. Conclusion 

        In this research work, the derivative optimal quadrature formula was built using the values 

of the function up to the second derivative at the nodal points for the approximate calculation of 

the exact integrals. We found the representation of the error functional corresponding to the 

difference between the quadrature sum and the exact integral. The error functional  1C   is a 

multivariate function with respect to the coefficients. To find the conditional extremum of a 

multivariable function, we constructed the Lagrange function and obtained the system of 

equations. By solving the system of equations, we found the analytical representation of the 

coefficients. Using the optimal coefficients, we calculated the norm of the error function and 

numerically analyzed the order of its approximation. We proved that this quadrature formula 

accurately integrates polynomials of  1m −  degree. We analyzed the error of the proposed 

quadrature formula in numerical experiments using degree, exponential and logarithmic 

functions. 
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