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Abstract. In this paper, we present tripling fixed point results for extended contractive mappings in the context of a
generalized metric space. Many publications in the literature are improved, unified, and generalized by our theoretical
results. Furthermore, the Ulam-Hyers stability problem for the tripled fixed point problem in vector-valued metric
spaces has been examined as a stability analysis for fixed point approaches. Finally, as a type of application to support
our research, the theoretical conclusions are used to explore the existence and uniqueness of solutions to a periodic

boundary value problem.

1. INTRODUCTION

The existence and uniqueness of solutions to various types of integral and integro-differential
equations, as well as methods for obtaining explicit or approximative solutions for these sorts of
equations, are becoming increasingly important. A lot of writers have recently considered the
problem of the existence of a fixed point (FP) for mappings with specific conditions within the

context of generalized metric spaces, and some applications to delay integro-differential equations

Received: Nov. 17, 2023.
2020 Mathematics Subject Classification. 47H10, 65H20, 54H09.
Key words and phrases. contractive mapping; fixed point technique; stability analysis; integral equation.

https://doi.org/10.28924/2291-8639-22-2024-27 © 2024 the author(s).
ISSN: 2291-8639


https://doi.org/10.28924/2291-8639-22-2024-27

2 Int. . Anal. Appl. (2024), 22:27

arising in infectious diseases from biomathematics, population growth, integral equations, and
matrix equations are presented; for more details, see [1-3].

The solution to the given problem is similar to determining the FP of a specific self-mapping
or non-self-mapping when it is expressed using FP approaches. FP theory is one of the most
significant sections of nonlinear analysis due to its numerous applications in major fields including
operational equations, fractal theory, optimization theory, etc.

In 1964, Perov [4] introduced the concept of vector-valued metrics for single-valued mappings,
while in 2004, Petrusel [5] introduced the same idea for multi-valued mappings as a generalization
of the Banach FP theorem [6]. It is useful to look at a more thorough concept called tripled fixed
points (TFPs, for short) while investigating the existence of FPs for an operator. In 1987, Guo
and Lakshmikantham [7] presented the concept of a coupled FP for continuous and discontinuous
operators in reference to triple quasi solutions of an initial value problem for ordinary differential
equations. Several authors concentrated on these ideas and utilized the findings to discuss if
certain problems have solutions; for more information, see [8-21].

The stability problem of functional equations originated from a question of Stanistaw Ulam [22],
posed in 1940, concerning the stability of group homomorphisms. In 1941, Donald H. Hyers [23]
gave a partial affirmative answer to the question of Ulam in the context of Banach spaces in the
case of additive mappings. Thus, the chronological contribution to the problem of stability is
Ulam-Hyers (HU). For more details, see [24-27].

Throughout this paper, we denote M,,,,(R"), 0 and I by the set of all m X m matrices with
components in R™, zero and identity matrices, respectively. Further, N* = IN U {0}.

A converging matrix is one whose power sequence converges to the null matrix. The spectral
radius is the maximum modulus of the eigenvaues. Thus, if it is less than one ,then all the
eigenvalues have modulus less than one. The fact that convergent matrices are stable in a discrete
context should be highlighted. This means that for every set of finite initial conditions, a discrete
linear system whose dynamics are defined by convergent matrices is globally asymptotically
stable to the zero equilibrium. The convergence of matrices is quite similar to the convergence of
sequences or vectors, i.e., let Q € My, (RT), a matrix Q is said to be convergent if and only if
lim;, 0o Q" = 0, for more details in this regards; see [28].

The following are some examples of convergent matrices to zero:

oo 0 oe

in Mo (R™) with £* + €2 < 1 is convergent.

Example 1.1. The matrix

Example 1.2. Any matrix in Ma,(R™) in the shape

o2
o-(5 )
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is convergent, provided that max{f!, 3} < 1.

Example 1.3. The matrix

rh o 0
0 Io 0
0 O |

mxXm
in My, ,m(R™) is convergent, provided that max{[;:1<j<m}<1

The following is an example of a non-convergent matrix:

Example 1.4. If we consider €' + > > 1 in the matrix

51 52
in Mpo(IR™), then, it is not convergent to zero.

The definition of addition and multiplication on R™ is described as follows: Assume that
6,0 € R", where £ = (1,0, ..., () and £ = (£;,£3, ..., ), then

C+0=(L+6,6+0G, .. lu+0,),
and
0t = (0.6, 0.6y, o b))
It should be noted that, for u € R, ¢; < 4 (resp. ¢; < f;) foreach 1 < i < m, also ¢{; < u (resp.

¢; < u) for all 1 < i < m, respectively. This subject has been thoroughly researched in academic
works [29,30].

Definition 1.1. [4] Let Q) be a non-empty set. We say that the mapping w : (O* — R™ is a vector-valued
metric on Q), if the following hypotheses are true:

(w1) @ (51,52) >0, w (51,52) =0 ifand only if (* = (2,

(@2) () = w (1),

(w3) (&) <w(0,6)+w(C 3,

forall 02,03 € Q. Ifé’l,fz € R™ where ! = (5%, . 6’,1”) and €% = (5%, vy 5%1), then €' < 2 if and only
if 51.1 < 51.2 for1<i<m,and (Q,w) is called a generalized metric space (GMS, for short).

Lemma 1.1. [31,32] Assume that Q is a square matrix of nonnegative numbers. Then, the following

statements are equivalent:

1) Q" > 0asn — oo.
(2) I-Q is non-singular and

I-Q) '=1+Q+Q*+....
(3) Inl < 1 for each h € C, with (Q — hl) is convergent to 0.
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(4) I—Q is non-singular and (I — Q)™ has non-negative elements.
In 1964, Perov [4] presented the following theorem, which was called the Perove FP theorem:
Theorem 1.1. Let (Q), w) be a complete GMS and R : Q) — Q) be a given operator satisfying
w(RI),R(€) <Qu(,¢€), forall, £ € O,

where Q € My, (R) is a convergent matrix to zero. Then

(p1) {9} = Fix{R};
(p2) the approximation sequence {{9,}neN : 94 = R" (S0)} is convergent and 9, — 9* as n — oo;

(p3) the estimation below is true
@ (8, 8) <Q"(I-Q) w (90, 91);
(pa) let I : QO — Q) be an operator and there is & € (]R:’f) withw (R (9),T(9)) <&forall S e Q. If
¢ € Fix(J), then
w(p,9) < (1-Q)7'¢
(ps) if 3 : QO — Qvis an operator and there is & € (]RT)* withw (R (9),T(9)) < &forall 9 € O, then
for the sequence £, = R" (99) , we have the following estimation:
@ (60, 9) < (1-Q)'e+Q"(I-Q)7 (@ (6o, %)) -
Definition 1.2. Let z : Q) — Q) be an operator defined on a GMS (Q, w) . The equation of FP

v=z(v), veQ, (1.1)

is called generalized Hyers-Ulam (GHU) stable if there is an increasing function ¢ : RY — R and
continuous in 0 with ¢(0) = 0 such that for any € = (€1, €y, ...€m) with €; > 0 for i € {1,..., m} and any

solution n* of the equation
o (n,z(1)) <€
there is a solution v* of (1.1) such that
w (v, 1) < ¢ (e).
Moreover, the equation of FP (1.1) is called HU stable if ¢ (£) = QC, where £ € R" and Q € My, m(R™).

The result below is considered a direct consequence of Perov’s FP theorem.

Theorem 1.2. Let (Q), w) be a complete GMS and z : Q) — Q) be a given operator. If there is a convergent
matrix Q € My, m(R) to zero, then the FP equation (1.1) is HU stable, provided that the inequality below
holds

w(z(v),z(p)) £Quw(v,p), Yv,pe Q.
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Assume that (), w) is a metric space. We shall take into consideration the following operational

equation system (OES, for simplicity):

v="R(v,p,0)
p=R(pov) ,
o=R(ov,p)

where R : O3 — () is a given operator and the solution (v, p, ) € Q3 is called a TFP of Q) [7].
There is no doubt that the study of FPs on a generalized matrix space to study the convergence
and divergence of matrices is one of the topics that has a long history in mathematical analysis due
to its frequent application. In this paper, we will study this direction by presenting the existence
and uniqueness of TFP for two contractive-type operators in GMSs. Since the stability study of
such points opens many applications for many authors in this direction, HU stability for the TFP
of two contractive-type operators in GMSs is investigated. In order for the theoretical results to
become more efficient and effective, there is a need for supporting applications, so we apply the
theoretical results to obtain the existence and uniqueness of solutions to periodic boundary value

problems (PBVDPs, for simplicity).

2. MaiIN ResuLts

In this section, we examine the results for the existence, uniqueness, data dependence, and HU

stability of single-valued operators for the TFP. We start this part with the following definition:

Definition 2.1. Let R; : O3 — Q, (i = 1,2,3) be operators defined on a GMS (Q, w) . We say that the
OES

v="R1(v,p,0)
p=Ra(v,p0 . (2.1)
0=Rs(v,p,0)

is HU stable if there exist r; > 0, (i=1,2,3,4,5,6,7,8,9) such that for each €1, €3,€3 > 0 and for a

solution (£1, £, 3) € O3 to the inequalities

w (51, %1 (51,52,53)) <€

w (b, Ry (61,62,63)) <€z,

w (63, R3 (t1,02,63)) < €3
there is a solution (v*, p*, ¢*) € O of (1.1) such that

@ (51, U*) < r1€1 +reEx + 1363
w (b2, p*) < ra€1 + 1562 + 16€3 .
w (€3, 0") < r7€1 + 1€ + r9€3

Now, we state and prove our main theorem.
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Theorem 2.1. Let (Q), ) be a complete GMS and Ry, Ry, Rz : QO3 — Q) be such that

w (R1(v,p,0), B (1,62, 63)) Smw (v, 61) + 2w (p, £2) + azw (o, (3)
w (%2 (U, P/ Q) ’ Q%2 (51162/ €3)) < asw (U, 51) + asw (,0/ 52) + aew (QI €3) ’
w (%3 (UI Pz Q) ’ 9%3 (611521 53)) < azw (U, 51) + agw (p/ 52) + agw (Ql 53)
ay dp 4as
forall (v,p,0),(t1,62,63) € Q3. If the matrix Q = | ay as ae |is convergent to zero, then
ay dg dg

(V1) there is a unique element (v*, p*, 0*) € Q2 such that

v* — %1 (vx-, p*’ Q*)

R (v, p,0) = R (R (v', %, 0°), Ra (v, 0%, 0°) , R
R (v,p,0) = RE (R (v, 7, 0°), Ra (v, 0%, 0°), R
R (v, p,0) = Ry (R (v, 0%, 07) , Ra (v7, p7, 07) , R

(V3) the estimation below holds

a)(%? (UO, Po, QO) ,U*) w (UO/ 9%1 (UOI Po, QO))
o (R2 (vo,po, 00),p7) [<Q"(T=Q)'| @ (po, Ri (v0,po, 0)) |;
w (‘RZ (vo, po, 20) , Q*) @ (00, B3 (vo, po, 20))
(©4) assume that the operators 1, 3, I3 : O3 — Q) such that there exist &1, &, E3 > 0 with

w(R1(v,p,0),31(v,p,0) <&

w (%2 (v/p/ Q) /SZ (U/P/Q)) S 52 7

w <%3 (UI Pr Q) ’ S3 (U, P, Q)) < 53
forall (v,p,0) € Q3. If (p,h,0) € O3 such that

P = Sl (gO,h, 6)
h= Sz(ghh,e) ,
0= 53 (50,7’1, 9)
then

w (p,v")

w(p) |<I-Q)7Y,

@ (0,0")

&1

where E =1 & |;

&3
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(V5) by combining (V2) — (V4), we have
w (‘R'f (vo, po, 00) , v*) ) (Uo, RT (vo, po, Qo))
o (R (o, po,20),p7) |<(T-Q)7'E+Q"(I-Q)7"| w(po, RY (vo, po, 0)) |;
a)(%g (UO/ PO/ QO) /Q*) a)(QO/ %g (UOI PO/ QO))
(06) the OES
v="R1(v,p 0
p=Ra(v,p,0) , (2.2)
0="Rs3(v,p,0)
is HU stable.
Proof. (V1) — (V2) Define the operator R : O® — Q3 by
R (v,p,0)
R (v,p,0)=| Ra(v,p,0) |=(Ri(v,p,0, Ra(v,p,0),R3(vp,0).
Rs (v,p,0)
Consider A = Q% and letw : A X A — R, x R, be described as
— v, ¢
w(w(v,m,w(a,@)):(”( 1’).
w (p, t2)
Then, we get
Ri1(v,p,0) R (61,62, 43)
o (R((v,p0),R(,6,6) = o Ra(v,p,0 || Ra(ty,l,6)
R (v,p,0) R3 (61,42, 43)
w (R1 (v, p,0), R (61,62, 03))
= | w(Ra(v,p,0),Ra(t1,6,83))
w (%3 (U, P/ Q) ’ 9%3 (51/ 52/ 63))
mw (v,4) + aw (p, ) + azw (o, €3)
< | mw (v,6) +asw (p, £2) + asw (0, €3)
ayw (v, 61) + agw (p, €2) + asw (o, €3)
a dp das @ (l), {71)
= a; as as w (p,62)
az ag dg w (Q, 3)

= Quw((v,p,0), (b, b, 06)).
Put (v,p,0) = 9 and (¢, &2, (3) = €, we obtain
o(RS),R(0) <Qw(3¢).
Based on Theorem 1.1 (py), there is a unique element (v*, p*, ¢*) € Q3 such that

(v, p%0) =RV, p,0),
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yields,
v =Ry (p,0)
px- — %2 (vx-/ ‘O*, Q*) .
o' =R (v, 0%, ")

In addition, for 9 € O3, we get R"(9) — 9% as n — oo, where

9 = RY9), RO =R(v,p,0 = (R1(v,p,0),Ra(v,p,0),R3(v,p,0)),
R*® = R (%1 (v/ P, &.0) ’ 9%2 (v/ P, &.0) ’ 9%3 (U/ P, @)) = (%% (U/ P, Q) ’ %% (U/ P, Q) ’ %g (U/ P, Q))/

and in general, we can write

R (v,p,0) = RY(Ri(v,p,0),Ra(v,0,0),R3(v,p,0),
R (v,p,0) = Ry (Ri(v,p,0),R2(v,p,0),R3(v,p,0)),
R (v,p,00 = Ry (Ri(v,p,0),R2(v,p,0),Rs3(v,p,0)).

It follows that

R”(9) = (R4 (3), Ry (9), R (3)) = 9" = (v',p", &) asn — oo, V9 € .

This implies that
Ri(v,p,0) =
R

(v,p,0) = p* , asn — oo.

2
RE (v,p,0) = ¢

(V3) According to Theorem 1.1 (p3), we successively have

we
a)( (vo, po, 00) U)
a)( vo,po,QO P)
a)(‘R (vo, po, 00) , Q)
= @ (R" (vo,po, ), (V" p",0"))

< Q'I-Q) '@ ((vo,pos o), (R1 (vo, po, 00) , Ra (vo, po, 00) , Rz (vo, po, 20)))

w (vo, R1 (vo, po, 00))
= Q"I-Q) ! w(po, R (vo, po, 20))
w (00, R3 (vo, po, 00))

U
%

() Let 3 : 0% — O3 be such that

1(v,p,0)
2(v,p,0)
35 (v,p,0)

J
J(wpe=|73

4
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and

R
w(R(v,p0),3((p0) = @] Ro(v,p0
R

R N
= | @(Ra(v,p,0),32(v,p,0) [<E (2.3)
R g

Then by Theorem 1.1 (p4), we conclude that

@ ((v'p,0),(9,10)) < (I-Q)7'¢.
(©5) It follows from (2.3) that
@ (R (v,p,0),3 (v,p,0) <&
and since 3" (v,p,0) = I (5 =1 ((v,p, Q))) for (v, p, 0) € O, we can iteratively write

w (3" (vo, po, @), (7, p,07)) < @ (3" (vo, po, 00) , R" (vo, po, 20)) + @ (R" (vo, po, 00) , (V°, %, 0%))
== a(sn <UO/PO/ QO)/%n (UOIPO/QO))
+Q"(I-Q) '@ (R (vo, po, &) , (vo, po, c0)) - (2.4)

On the other hand, we get

@ (3" (v, p0,0) , R" (vo, po, 00) = @ (I (3" (vo, po, 0)), R (R (vo, po, 00)))

@ (3 (3" (vo, po, 0)), R (3" (vo, po, 00)))
+ZJ(‘R (5”'1 (vo, po, Qo)) /R (‘Rn_l (vo, po, Qo)))
£+ Q@ (3" (vo, po, 00), R (v, po, 00))
E+Q (5 + 5(5"_2 (vo, po, 00) , B2 (o, po, Qo)))

IA

IN A IA

IA

EI+Q+Q+..+Q'+..)=&1-Q)™ (2.5)

Applying (2.5) in (2.4), we have

@ (3" (vo, po, c0), (v, 0%, 0)) EI=Q) " +Q"(I-Q) '@ (R (v, po, 00) , (vo, po, 00)) -

(vs) It follows from (©1) and (@, ) that there is a unique element (v*, p*, ¢*) € Q3 such that (v*, p*, 0*)
is a solution to (2.2) and lim,;,_,c (%’f (v, p, Q)) = (v, p%,0) . Let e1,€2,€3 > 0 and (£1,62,03) € O3
such that

w (€1, R1 (61,62,03)) < €

w (52, Ro (51,52,53» <€ .

w (€3, R3 (t1,62,03)) < €3
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Hence, we have

@ (61, 6,6), (V" p%, 0"))
@ ((61,6,63), (R1 (G, 62, 63) , R (61,2, 63) , R (61,62, 83)))
+@ ((R1 (61,62,83) , Ry (61,62, 63) , R3 (61,62, 63)) , (V°, p*, 0"))
= @ ((t,6,6), (R (€1, 6,63), Ra (61,62, 63) , R (€1, 62, (3)))
+w (R (0, 2,03), Ra (01,62, 63), R (61, 62, 63)) , (R (v, 07, 07) , Ra (v, 07, 07) , Rs (v, 07, 07)))

(Y (flr %1 ({1, €2/ 53)) w (%l (glr€2/ €3) s %l (‘U*, P*/ Q*))
= | @@ R (b, 0,6)) |+| @(Ra(ly, b2, 65), R (V' 07, 07))
w (€3/ 9{3 (51/€2/ 53)) w (%3 (61152/ 53) s %3 ( P*/ Q*))

IN

*

v,

€1
€2 +E5(% (61152153)1%(v*'p*' Q*))
€3

< €+Qa((flr€2/€3)/(v*/p*lg*))'

IN

Because (I — Q) is invertible and (I — Q)~! has positive elements, we can write

@ (6, 6,6), (v, p%,0) < (I-Q) "¢,

or, equivalently

w (€1,0")
w(t,p?) [<I-Q) e
w (63, 0°)
n rn rs
Set(I-Q)'=| ry r5 re |, then, we get
r7 1§ Y9
w (t,v") r rp 13 €1
w(l,p*) |S| e 15 15 || €2 |,
@ (53, @*) r7 18 T9 €3
which implies that
w (€1,v*) < r1€1 + 1262 + 1363
) (52, p,,) < 14€1 + 1562 +16€3 ,
w (53, Q*) < r7€1 + rg€x + 19€3
this proves that the OES (2.2) is HU stable. m|

Remark 2.1. Our theorem converts some nice papers [33-37] in coupled fixed point theorems to TFP
theorems by setting (Q), w) is a metric space and the operator R : OO® — Q is defined by R1(v,p,0) =

R(v,p,0), Ra(p,0,v) = R(p,0,v) and R3(g,v,p) = R(o,v,p).
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3. SUPPORTIVE APPLICATION

In fact, this part serves as the pillar of our paper, where we shall apply Theorem 1.2 to discuss
the existence, uniqueness, and HU stability of the solution to a periodic boundary value problem

(PBVP).
Consider the PBVP
v =91 (1,0) +92(7,p) + 93 (7,0)
p = 91(1,0) +92(7,0) + 93 (1,0) 31)
0 =91(1,0) +92(7,0) +93(1,p)

where ¢ > 0 and @1, 9> and g3 are continuous functions and fulfill the following hypothesis:

(H) there exist fi1, fip, i3, 11, M2, 113 > 0 such that, for each v,p,pe R, v >p,p > pand o > v,

0 < (p1(r,v)+hv) = (p1(7,p) +Hp) <m(v-p),
—m(p—0) < (p2(7,p) —t2p) = (92 (1,0) —h20) <0,
0 < (p3(7,0) +730) — (93 (7, v) +13v) < M3 (0-v),
m 2 13
hi1+hy+his fiy +ho+His fip+hy+his
where Q = | - +Z§ el +Zi el +g; 7 |is @ matrix convergent to zero.
3 Yt 2

i+ +hs fy +ho+His fip+hy+his
To facilitate our study, we discuss the existence of a solution to the periodic problem below.

v+ Hv —Higp +hzo = 91 (T,0) + 92 (1, p) + 93 (T, 0) + v — Fiap + Hiz0,
p +hip—Tao+ Ttz = 91 (7,p) + 92 (1,0) + 93 (1,0) + Hp - oo+ Hizv (3.2)
0 +Hh10-Tv+Tzp = 91 (1,0) + 92 (T,0) + 93 (1, p) + 10— Fav + fizp

with the periodic conditions

v(0) = v(c), p(0) = v(c),v(0) = v(c). (33)

This system is equivalent to

¢

v(t) = f@)l(%5)[501(5/0)+802(5/P)+§’3(5/@)+ﬁlv—th+ﬁ30]
0

+02 (7,0) [p1 (0, p) + 92 (6,0) + 93 (0,v) + Hirp — hp0 + Hizv)

+03 (7,0) [p1(0,0) + 92 (0,v) + 93 (6, p) + 10— Hav + Tizp] dO,
p(r) = f ©1 (1,6) [91 (6,p) + 92 (5,0) + 93 (6,0) + Fp — g + fiz0]

0

+02 (7,0) [p1 (6, 0) + 92 (6,v) + 93 (6, p) + 0 —Hov + Hizp)
+®3 (T/ 6) [801 (61 U) + 2 (6/ P) + 3 (6/ Q) + hlU - th + h30] dé/
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¢

o(7) = f ©1 (1,6) [91(6,0) + 92 (6,0) + 93 (6, p) + Fro — Fav + Fip]
0

+0, (7,0) [91 (6,v) + 92 (6, p) + 93 (6, 0) + v — hpp + Hi30)
+03 (1,0) [91 (0, p) + 92 (6, 0) + 93 (6,v) + Hiip — o + hzv] O,

where the continuous Green’s functions 1, ®, and ©; are described as

1 eYl(T—é) eY2(1-0) 6Y3(T—(3)
O 0) = O 5) = 3 ( 1-e¥1e T 1—e¥2¢ | 1_¢¥3¢ )’ O<d<rt<g,
1 (T/ ) — 3 (T/ ) - 1 eYl(’H—g—é) €Y2(1+;—¢5) eY3(T+;—6)
3 ( 1-eV1¢ 1-eY2¢ 1—eY3¢ )’ 0<t<od<g

3\ 1—¢Y2¢ 1—eY3¢ 1—eY1¢
eY2(T+¢-0) eY3(t+c-0) eY1(T+c=0)

%( - - ), 0<t<6<c,

0, (T,(S) =

Yo (7-0) Y3 (1-6) Y1 (7-6)
{ 1 (eX2 _ ¥ el )/ 0<d<t<c,
1—eY2¢ 1—eY3¢ 1-eY1¢

Y1 =—-(M +ho+H3),and Yo = Y3 = (1 —Hip + 1i3).
Now, by choosing i, fi; and #i3 suitably, we need to guarantee that ®; (7,6),03 (t,0) > 0, for
0<t7,6<cand ©;(t,0) <0, for0 < 7,0 < ¢. For this, we present the following lemma:

Lemma 3.1. If

-1
in(Z20) < (1~ +-13) (3.4

(Hy +Hy+H3) g < 1. (3.5)

Then ©1 (1,0),03(7,6) 20, for 0 < 1,0 < cand ®, (7,6) <0,for0< 7,6 <c.

Proof. Since Y1 < 0 and by (3.4), Y2 > 0 and Y > 0. Hence, ®; (7,0) <0,for0 < 7,0 <c.
On the other hand, from (3.4) and (3.5), one can obtain that

€Y1(T_6) e €Y2(T—6) eYs(T—(S) e eYz(T—é)
IV ST S oot M T T ST ST
Therefore, under the assumption, we have ©; (7,06),0s (7,0) >0,for0< 7,6 <c. O

Assume that Q) = C(U,R) is the set of real valued continuous function on the interval U.

Describe a distance w : QO X Q) — R as

w (v, p) = sup |v(’c) —p(1)|, forv,p € Q.

el

Clearly, (Q), w) is a metric space. For v, p, o, v*, p*, ¢* € Q, consider

w (v, v*)

@ ((v,p,0), "0 0)) =] w(p,p)
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Also, let us define U : Q% — Q by

¢

O(v,p0) (1) = f®1 (7,0) [91 (0,v) 4+ 92 (6, p) + 93 (6, 0) + Hyv — Fiop + Hiz)]
0

+02 (7,0) [91 (6, p) + 92 (6,0) + 93 (0,v) + T1p — 2 + Fizv]
+03 (1,0) [91 (6, 0) + 92 (6,v) + 93 (6, p) + 10— Hiav + hi3p] dO.
Obviously, if (v, p, 0) € Q% is a TFP of V, then we get
v(2) = O (v,p,0) (), p () =B (p,0,v) (¢) and o (1) = B (g,v,p) (1) forallz e U

Thus, (v, p, ) is a solution of the problem (3.2)-(3.3). To facilitate our task, we state the following
definition:

Definition 3.1. The system

v(t) = fg@l (1,8) [p1 (6,v) + 92 (8, p) + 93 (5, 0) + h1v — tiop + Hiz0)

0
+0; (7,0) [p1 (6, p) + 92 (6, 0) + 93 (6,v) + Hiap — oo + h3v]
(7,0) [91(6,0) + 92 (6,v) + 93 (6, p) + iro — Fipv + Ti3p] db

, 3.6
0,0) + 92 (6,v) + 93 (6, p) + Hr0 —hv + Fi3p] (3.6

1(
91 (6,v) + 92 (6, p) + 93 (6, 0) + H1v —Tipp + Hiz0] d6

is called HU stable if there are rj > 0, (i=1,2,3,4,5,6,7,8,9) so that for each €1,€,€3 > 0 and each
solution ({1, €2, 63) € Q3 of the following system
f®1 (7,0) [91(6,61) + 92 (6, 62) + 93 (6, 63) + v —Tiop + Hi30]

+®2 (T,é) [301 ((3 52) + 92 ((3 {)3> + 93 (5 {71> +hip —ha0+ hgv]
+03 (T, ) [5{)1 (6,€3) + 92 (6,61) + 93 (0, 62) + o —hov + h3p d(SI <€

0
G
f@)l (7,0) [91 (0, 2) + 92 (0,83) + 93 (6, 1) + Tav — Fiop + iz 0]

+® (7,0) [p1(0,63) + 92 (6,€61) + 93 (0, €2) + h1p — hnp + i3] ’
+03 (1,0) [91 (0,61) + 92 (6, 62) + 93 (0,63) + fiy0 — v + Fizp] d(SI <e

G
(1) = [ 01 (1,0) [p1 (6,63) + 92 (5, 01) + 93 (6, £2) + v — hiap + T3]

0
+0;(7,0) [p1(5,61) + 92 (6,62) + 93 (6,63) + hip — a0+ fisv]
+03 (1,6) [p1(8,€2) + 92 (6, 63) + 93 (6,&1) + 1o — i + Hiap] dO| < e
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there is a solution (v*, p*, 0") € O3 of (3.6) so that

w (€1(7),v* (7)) < r1€1 + raex + 1363
w (€2(7),p*(7)) < ra€1 + 1562 +16€3 -
w (63(7), 0°(T)) < r7€1 + 1362 + T9€3

By introducing the subsequent theorem, we can now talk about the existence, uniqueness, and
HU stability of the solution to a PBVP.

Theorem 3.1. Under the hypothesis (H), consider the problem (3.1) with 91,92, 93 € C(UXR,R). If
(3.4) and (3.5) are true, then

(Ty) there is a unique solution (€1, ¢, 3) for the PBVP (3.1), provided that

9

f|®1 (7,6) = Oz (1,0) + O3 (T,6)| ds < L

L — . 3.7
hy 4Ny + 13 (5.7)

sup
Tel

(T2) if 91,95 5 € C(U xR, R) such that there is &1, &, &3 > 0 with

|91 (2, 0) =95 (v, O] < &
|8/‘)2 T f 803 |S 52 7
|3 (7, €) =93 (7, 0)] < &

for all (t,€) € UxR. Assume that (g), h,0) € O3 is a solution to the proposed problem (3.1) by
taking 1 = 9], 92 = ¢ and 93 = @}, then

@ ((01,62,63), (9,1,0)) =| w (i) [<(I-Q)7'E.

(51 + 52 + 53) (ﬁl-i-f’;lz-‘rﬁ:;)
where & = (&1 + & + &) (h1+h12+h3) ,if and only if
(51 + 52 + 53) (ﬁ1+77112+h3)

C C G
1
f|@1 (T,é)|d5+f|®2 (T,5)|d(5—|—f|@3 (T,5)|d6J<—h1+h2+h3
0 0 0

(T3) the problem (3.6) is HU stable.

Proof. (T1)

sup
tel

w (O (6,6,6),0(,p,0))
= sup|0 (€1, 62,€3) =0 (v, p, 0)|

tel
c

= sup f@l (7,0) [p1 (0, €1) + 92 (6, L2) 4+ 93 (6, £3) + Hy b1 — Tipla + Tizl3)]

Tel
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+02(1,0) [p1 (0, 62) + 92 (6,£3) + 93 (6, 1) + i1l — Fialz 4 Tizty ]
+03(1,0) [91 (6,03) + 92 (6, €1) + 93 (0, €2) + hi1ls — hinly + Hizla] dO

9

- f 1 (%,6) [91 (5,0) + 92 (6, p) + 93 (8, 8) + v — Fiap + fsg]
0
402 (1,0) [91 (6, p) + 92 (6, 0) + 93 (6,v) + iyp — hpp + hi3v]

+03 (7,0) [p1 (6,0) + 92 (0,v) + 93 (6, p) + 10— Fiav + Tizp] d6.

97}

<
up f@l (7,0) [(91 (0, 61) + 92 (6, 62) + 93 (0, €3) + Tty = Hiply + Tizl3)
0

T€l

— (91 (0,v) + 92 (6, p) + 93 (6, 0) + v —Tap + fi30)]

+0(7,0) [(91 (0, €2) + 92 (6,63) + 93 (0, €1) + i1ty — hals + hiztq)
— (91 (0,p) +92(0,0) + 93 (6,v) +H1p — a0 + H13v)]

+03 (7,0) [p1(0,63) + 92 (0, 1) + 93 (0, £2) + Ty l3 — Fioly + Hizlr
= (91(6,0) + 92 (6,v) + 93 (6, p) + 10— Hav + fizp)] do,

which implies that

IA

w (O (61, 6,63),0 (v, p,0))

97}

tel

c
up f@1 (7,0) [(91 (5, 61) + 92 (6, 62) + 93 (0, €3) + Hy 1 — Fiplo + Tizl3)
0

— (91 (6,0) + 92 (6,p) + 93 (6, 0) + v —hpp + H30)]

—02 (7,0) [(91 (6, p) + 92 (6,0) + 93 (6,v) +F1p — T2 + hi3v)

— (91 (6,€2) + 92 (6,€3) + 93 (6, €1) + Tl — Fials + Tizty)]
+03(7,0) [91 (0,€3) + 92 (6, 61) + 93 (6, 2) + I ls — oy + i3l
= (91(0,0) + 92 (6,v) + 93 (6, p) + 10— T2v + T13p)] d6

G

sup f ©1 (1,8) (11 (€1~ v) + 12 (€2 —v) + 17 (65— v)

Tel

0
=0, (7,0) [[m (p=t2) + m2(0=143) + 13 (v=101)]
+03 (7,0) ([m (€= 0) + 12 (&1 = v) + 13 (€2 = p) ) do.

Applying the condition (3.7), we have

@ (O (61, 2,63),0(v,p,0))

< mG-v)+m(la—p)+n3(l—0)]sup

G

Tel

f|@1 (7,8) = @2 (1,8) + O3 (1,6)| do
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m 2 N3
o (tv) F (b2, p) + o (£3,0) .
O T e P o, e (0
Similarly, one can obtain
m 2 13
O (6,43,61),0 (p,0, <———w (b, —w (3, —w(l{,v),
w (O (€2, 63,61),0(p,0,v)) h1+h2+h3w( 2 P)+ﬁ1+ﬁ2+h3w( 3 Q)+h1+ﬁ2+h3w( 1,V)
and
@ (O (6,01,6),0(0,0,p)) < — 0 (€3,0) + —— 2w (£1,0) + —— L0 (62, ).
fiy +Hp + fi3 fiy +Hhy + fi3 fy +hp 413
Choose a1 = 737 +Z; T 2 = T +Z§ 7, and a3 = - +gz 7, We get
@ (O (t1,6,6),0(v,p,0) < mw(b,v)+aw(l,p)+asw (63,0),
w (O (b, 6,6),0(p,00) < mw(lyp)+anw(ls0)+aw(61,v),
and
w (O (63,6,62),0(0,v,p)) <mw (€3, 0) + aaw (6, v) + azw (&2, p) -
It follows that
w (O (t,62,63),0(v,p,0))
a((j (51162153)10(1)/,0/0)) - CL)(U (52163151)/ (P/ le))
w (O (63,61,62),0(g,v,p))
ap ay a3 w (61,v)
< as 4as de | W (52/ P) == QZ) ((51/52/ €3) ’ (U, P/ Q)) ’
ay dg dg w (53, Q)

where Q is a matrix convergent to zero. Hence, the assumption of Theorem 2.1 is fulfilled. Then
the PBVP (3.2)-(3.3) has a unique solution on U.
(T») Define an operator O* : O°* — Q) by
¢

O (v,p,0) (1) = f®1 (,0) [0} (6,0) + 93 (6,p) + 95 (6,0) + v ~ Fiap + hizg]
0

+0, (1,0) [0 (8, p) + 95 (8,0) + 95 (8,v) +Ip —hag + s
+03 (1,0) [0} (6,0) + 03 (6,v) + 95 (8, p) + o — v + Fiap| do.

Then, we get

0 (v,p,0) (1) =0 (v, p, 0) (1)

G

f ©1 (1,5 (1 (5,0) + 92 (5, p) + 93 (8, 0) + firv — fiap + Fizg]
0

+0; (7,0) [91 (6, p) + 92 (6, 0) + 93 (6,v) + i p — oo + 3]
+03 (7,0) [p1 (6, 0) + 92 (5,v) + 93 (8, p) + o — v + fizp) db
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¢

_ f®1 (1,6) [} (6,) + 93 (5, p) + 95 (5,0) + v — hap + ]
0

+0 (1,0) [0 (6, p) + 95 (5,0) + 95 (6,) +Tiap — iap + Fiz|
+05(1,0) [} (5,0) + 93 (5,v) + 95 (5, p) + o = Tiv + Fiap| daj

IA

f|@1 (7,0) [[91 (0,v) + 92 (6, p) + 93 (6, 0) + v —Tizp + Hi30]
0

= [93 (6,0) + 95 (6,p) + 95 (5,0) + v~ Fiap + fiso]|

+02 (1,6) [[91 (6, p) + 92 (6,0) + 93 (6, V) +F1p — 20 + Fi3V]
= |93 (6,p) + 95 (5,0) + 95 (6,) +Ip oo+ isv| |
+03(7,0) [[p1 (6, 0) + 92 (0,v) + 93 (6, p) + H10—Hav + Fizp]
= (95 (6,0) + 95 (8,0) + 93 (6, p) + 110~ o + iz || .

Using our assumption, we have

[0 (v,p,0) (1) = 0" (v,p, 0) (1)]

.|®1(T,6)|d6+ |92 (7,0)|do + |®3(T,(3)|d5]
e |

< (&4 & +&3) xsup

Tel

0 0
&1+&+ &3
iy +Hy + 13
Analogously, one can obtain that
* 5] + 52 + 53
— < 2= L 29
|U(p/Q/U)<T) U (p’@’v)(T)|— h1+h2+h3,

and 4yt &
) +&+
[Oev,p) (1) =T (0v,p) (1)] < Sy

Now, the rest of proof follows immediately from Theorem 2.1 (V4).

(T3) We get the conclusion from the first part of our proof and from Theorem 2.1 (¥g). m]

Remark 3.1. The conclusions below are special cases of Theorem 3.1 and Theorem 2.1 (©7), (V3).
e The sequence (0" (v,p,0),0" (p, 0,v),0" (0,0, p)) e cOnverges in QO3 to (v*, p*, 0*) asn — oo,

where

(T (v,p,0), 0" (p,0,0), 0" (g,v,p)) = U" (T (v,p,0), 0 (p,0,0), T (0,0,p)), ¥n € N".
o We have the following estimations

w (0" (vo, po, 00) , V") w (vo, O (vo, po, @0))
@ (0" (vo, po, 00) ,p*) | < Q" (I-Q)™"| @ (po, O (vo, po, o))
w (0" (vo, po, 00) , 0") @ (00,0 (vo, po, 00))
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4. CONCLUSION

In this article, we provide a new modification of the Perov-fixed point theorem for single-valued
mappings in a complete generalized metric space. Also, we have discussed some TFP results for
extended contractive mappings in the mentioned space. Moreover, the existence, uniqueness, and
stability of these points have been investigated for single-value mappings. Finally, the theoretical
results are involved to discuss the existence and availability of a solution to some periodic boundary

value problems as a kind of application and to support our study.

5. OPEN PROBLEMS

In this part, we present some problems that we are unable to complete, which in turn improve

our paper, and we list them as follows:

e What would be the results of Theorem 2.1 and Theorem 3.1 if the mapping O were replaced
by a multivalued mapping under the same constraints?

e Will the results be the same if the generalized metric-like or generalized b—metric spaces
are used?

e Can we include illustrative examples, especially numerical examples, to know the formula
for the numerical solution to integral equations and periodic boundary value problems

under study?
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