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ABSTRACT. In this study, the distance-based agglomerative hierarchical clustering techniques were compared to a ratio-

based approach. Two real datasets, which were also used in a prior study by Roux (2018), were considered. Firstly, it 

was observed that the type of scaling applied to the datasets was found to affect the results of hierarchical clustering. 

Thus, various scaling methods were employed prior to implementing hierarchical clustering. Furthermore, two rank-

based goodness-of-fit measures were used to evaluate the hierarchical clustering methods. In contrast to Roux (2018) 

findings, it was observed that the distance-based methods, such as Median linkage, Average linkage, and centroid 

linkage, performed better than the ratio-based method. The ratio-based methods also showed issues with branch 

crossing in the hierarchical clustering dendrogram. Consequently, this study illustrates that, with appropriate dataset 

scaling, the distance-based methods outperform ratio-based methods in terms of goodness-of-fit measures. 

 

1. INTRODUCTION 

Agglomerative hierarchical clustering is a widely employed technique in data analysis and 

machine learning for grouping similar data points into clusters in a hierarchical manner. This 

method begins with each data point as a separate cluster and iteratively merges clusters based on 

a chosen linkage criterion until a single cluster encompassing all data points is formed [1]. 

To link the object together in a clustering algorithm, proximity measures are employed. The 

proximity measure (similarity/dissimilarity) are calculated using features or parameters in the 
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dataset. To get the dissimilarity between two cases in the study (case i and j), knowing that each 

case includes p parameters {(𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑝) and (𝑥𝑗1, 𝑥𝑗2, … , 𝑥𝑗𝑝)}, the dissimilarity measure can be 

considered as the difference between these p parameters in case i and j. One commonly used 

dissimilarity measure is Euclidean distance, which is the root of square differences between p 

parameters. The Euclidean distance [2] between them can be calculated as: 

𝑑(𝑥𝑖 , 𝑥𝑗) = √(𝑥𝑖1 − 𝑥𝑗1)
2

+ (𝑥𝑖2 − 𝑥𝑗2)
2

+ ⋯ + (𝑥𝑖𝑝 − 𝑥𝑗𝑝)
2
                              (1) 

The Euclidean distance is a measure of dissimilarity which can be calculated for distance between 

single cases. In agglomerative hierarchical clustering, only in the first step all cases are located in 

a cluster with a single case [2].  

The closest or the most similar cases are merged in each step of agglomerative hierarchical 

clustering. The distance matrix for all pairs of observations is calculated. The two cases which 

have the least pairwise distance is merged. In the next step one of the clusters includes more than 

1 case. The dissimilarity of other clusters with this cluster requires a linkage [3]. Commonly used 

linkage methods are average linkage, single linkage, complete linkage method [3]. Assume case 

1 and 2 are merged in the first step and now they are in one cluster the distance between them 

and case 3 can be calculated by using average linkage 𝐴𝐿[(1,2), (4)] given by: 

𝐴𝐿[(1,2), (4)] =
𝑑(𝑥1,𝑥4)+𝑑(𝑥2 ,𝑥4)

2
     (2) 

where d is the Euclidean distance. In the next step if the object formed by observations {1,2, 4} 

has the least average linkage compared with other objects, then the average linkage is calculated 

as: 

𝐴𝐿((1,2,4), (3)) =
𝑑(𝑥1,𝑥3)+𝑑(𝑥2,𝑥3)+𝑑(𝑥4,𝑥3)

3
                                              (3) 

If cluster 1 includes observations {1 , 2} and cluster 2 includes {3, 4} then the average linkage will 

be: 

𝐴𝐿((1,2), (3,4)) =
𝑑(𝑥1,𝑥3)+𝑑(𝑥1,𝑥4)+𝑑(𝑥2,𝑥3)+𝑑(𝑥2,𝑥4)

4
                                  (4) 

On the other hand, single linkage takes the minimum distance of observations in cluster 

1 and observations in cluster 2. The complete linkage takes the maximum distance between cases 

in cluster 1 and cluster 2 and considers it as the node level. In agglomerative hierarchical 

clustering objects are merged step by step until all the cases are located in one cluster.  

To evaluate the structure of the dendrogram in the hierarchical clustering algorithm, all 

the pairs of objects in terms of their Euclidean distance and the ultrametric distance which is 
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derived from their node level in the dendrogram are considered. Kendall’s tau [4], Goodman-

Kruskal’s coefficients [5] are rank based measures which are used as goodness of fit measure for 

hierarchical clustering, and both are useful for evaluating the hierarchical clustering structure. 

Since GK considers only comparable pairs, it is more appropriate to be used as a goodness of fit 

measure compared with KT which considers all possible pairs including ties and non-comparable 

pairs. 

Thus, the primary objective of this study is to compare various hierarchical clustering 

methods while taking into account the influence of different dataset scaling techniques. Our 

observations indicate that the choice of scaling method significantly affects the structure of 

hierarchical clustering. The secondary goal of this study is to compare the outcomes of different 

hierarchical clustering methods with those obtained in a recent study conducted by Roux [6]. 

Additionally, is to reevaluate the conclusions drawn in Roux's study in light of the findings from 

our own investigation. To ensure a fair comparison, the same datasets was employed as those 

utilized by Roux [6]. 

2. SCALING METHODS 

The dataset can be normalized or standardized by several methods. In this study the real 

datasets used by scaling them using the following scaling techniques:  

i. Mean Absolute Deviation from the Median: This scaling method involves calculating 

the absolute difference between each data point and the median of the dataset, then 

finding the average of these absolute differences. It measures the average dispersion of 

data points around the median. Suppose 𝑦𝑖 is the scaled data point, 𝑥𝑖 is the original data 

points and 𝑥 is the median of 𝑥𝑖, the scaled mean absolute deviation from the median can 

be computed using: 

𝑦𝑖 = 𝑛−1 ∑|𝑥𝑖 − 𝑥|

𝑛

𝑖=1

. 

ii. Median Absolute Deviation: This scaling method involves finding the median of the 

absolute differences between each data point and the median of the dataset. It quantifies 

the spread of data points from the median while being robust to outliers. Suppose 𝑦𝑖 is 

the scaled data point, 𝑥𝑖 is the original data points and 𝑥 is the median of 𝑥𝑖, the scaled 

median absolute deviation can be computed using: 
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𝑦𝑖 = arg
0.5

(∑|𝑥𝑖 − 𝑥|

𝑛

𝑖=1

). 

iii. Interquartile Range: The interquartile range (IQR) is a scaling method that measures the 

spread of data by calculating the difference between the third quartile (Q3) and the first 

quartile (Q1) in a dataset. It is a measure of the middle 50% of the data's distribution and 

is also robust to outliers. Suppose 𝑦𝑖 is the scaled data point, 𝑥𝑖 is the original data points 

and 𝑥 is the median of 𝑥𝑖, the scaled interquartile range can be computed using: 

𝑦𝑖 = 𝐼𝑄𝑅−1 ∑(𝑥𝑖 − 𝑥)

𝑛

𝑖=1

. 

iv. Standard Deviation: The standard deviation is a widely used scaling method that 

measures the average deviation of data points from the mean (average) of the dataset. It 

provides a comprehensive assessment of data dispersion, but it can be sensitive to outliers. 

Suppose 𝑦𝑖 is the scaled data point, 𝑥𝑖 is the original data points and 𝑥 is the median of 𝑥𝑖, 

the scaled interquartile range can be computed using: 

𝑦𝑖 = (√
∑ (𝑥𝑖 − �̅�)2𝑛

𝑖=1

𝑛 − 1
)

−1

∑(𝑥𝑖 − 𝑥)

𝑛

𝑖=1

. 

v. No Scaling: In this case, "no scaling" means that the data is used as is, without any specific 

scaling applied. This can be useful when the data is already on a compatible scale or when 

scaling isn't considered necessary for the analysis. Suppose 𝑦𝑖 is the scaled data point, 𝑥𝑖 

is the original data points the no scaled can be computed using: 

𝑦𝑖 = 𝑥𝑖. 

These scaling were used for various types of hierarchical clustering algorithms. To see the 

influence of various types of scaling on the structure of the hierarchical clustering result. 

 

3. MATERIAL AND METHODS 

3.1.   Real datasets: 

Two real datasets were used in this study which are the same as the datasets which were used 

by Roux [6]. 

 Pottery dataset: 

The chemical dataset of Romano-Bristish pottery [7]. This dataset includes 48 cases. Three of these 

are unusable, thus they are removed from the data. Therefore, the analysis data consists of 45 
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cases with 9 quantitative variables. The data were first standardized by various types of scaling 

and then used in hierarchical clustering. 

Fisher’s Irish dataset: 

This dataset is a widely used dataset in various studies of statistical analysis [8]. It includes 150 

cases and four parameters of Sepal Length, Sepal Width, Petal Length and Petal Width. This data 

is also standardized with various scaling methods and used in hierarchical clustering. 

3.2.   Hierarchical clustering 

In hierarchical clustering, the data points are initially treated as individual clusters, and then they 

are successively merged or divided based on their similarity or dissimilarity to form a tree-like 

structure known as a dendrogram. In this study two forms of agglomerative hierarchical 

clustering were considered.  

Hierarchical clustering with distance metrics: 

Various linkage methods are employed for merging the objects together in hierarchical clustering. 

In this study Average linkage, single linkage, complete linkage, centroid and Median method 

have been used as metric for merging the observations. 

i. Average linkage: Average linkage clustering, also known as UPGMA (Unweighted Pair 

Group Method with Arithmetic Mean), is a hierarchical agglomerative clustering 

method used in data analysis. It is primarily employed for grouping data points into 

clusters based on their similarity or dissimilarity. The average linkage clustering is 

computed using: 

𝐴𝐿(𝐶1, 𝐶2) =
1

𝑛1𝑛2
 ∑{𝑑(𝑥𝑖  , 𝑥𝑗): 𝑖 ∈ 𝐶1 , 𝑗 ∈ 𝐶2}. 

ii. Single Linkage: Single linkage clustering, also known as single-link clustering or nearest-

neighbor clustering, is a hierarchical agglomerative clustering method used in data 

analysis and data mining. In single linkage clustering, data points or objects are initially 

treated as individual clusters, and at each step of the clustering process, the two closest 

clusters are merged into a single cluster. The single linkage clustering is computed using: 

𝑆𝐿(𝐶1, 𝐶2) = 𝑀𝑖𝑛 {𝑑(𝑥𝑖 , 𝑥𝑗): 𝑖 ∈ 𝐶1 , 𝑗 ∈ 𝐶2}. 

iii. Complete Linkage: Complete linkage clustering is a hierarchical agglomerative clustering 

method used in data analysis and machine learning. It is a bottom-up approach where 

data points are initially treated as individual clusters and are successively merged into 
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larger clusters based on their pairwise dissimilarity or distance. The complete linkage is 

computed using: 

𝐶𝐿(𝐶1, 𝐶2) = 𝑀𝑎𝑥 {𝑑(𝑥𝑖 , 𝑥𝑗): 𝑖 ∈ 𝐶1 , 𝑗 ∈ 𝐶2}. 

iv. Median linkage: Median linkage clustering, also known as the median method or 

UPGMM (Unweighted Pair Group Method with Median), is a hierarchical clustering 

technique used in data analysis and data mining. It is commonly applied to group similar 

data points or objects into clusters based on their pairwise dissimilarity or distance 

measures when extreme values are suspected. The median linkage is computed using: 

𝑀𝐿(𝐶1, 𝐶2) = 𝑀𝑒𝑑𝑖𝑎𝑛 {𝑑(𝑥𝑖 , 𝑥𝑗): 𝑖 ∈ 𝐶1 , 𝑗 ∈ 𝐶2}. 

For each of the methods in i - iv, the d is Euclidean distance, 𝐶1 and 𝐶2 are two clusters, 𝑛1 is the 

number of cases in 𝐶1 and 𝑛2 is the number of cases in 𝐶2. 

v. Centroid method: Unlike the four methods above, the centroid method is derived from 

distance which is the distance between the centroid of objects in one cluster with the 

centroid of objects in another cluster. 

𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐶1, 𝐶2) = 𝑑(�̅�1, �̅�2) 

where d is still the Euclidean distance, 𝐶1 and 𝐶2 are two clusters, �̅�1 is the centroid of objects in 

𝐶1 and �̅�2 is centroid of objects in 𝐶2. The centroid mean or centers are computed using: 

�̅�𝑐 =
1

𝑛𝑐
∑{𝑥𝑖 ∶ 𝑐 ∈ 𝐶}. 

Hierarchical clustering with ratio-type metrics: 

This study does not primarily focus on methods that involve ratios. To make meaningful 

comparisons, a specific type of hierarchical clustering method was only, known as relative 

hierarchical clustering, as presented by Mollineda & Vidal [9]. This method, which is classified as 

a ratio-based approach, was identified as the top performer for agglomerative hierarchical 

clustering in both the real datasets (Pottery and Irish) studied by Roux [6]. In the method 

introduced by Mollineda & Vidal [9], it's important to note that it doesn't just take into account 

the dissimilarity between clusters when merging objects. It also factors in the distances between 

the clusters and the other clusters in the denominator of the dissimilarity measure. This relative 

distance metric calculates dissimilarity by considering the distance between two objects divided 
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by the minimum of the average distances of each object with the other clusters. This calculation 

is referred to as the isolation function. 

𝛾(𝑖, 𝑗) =
∑{d(i, k) | k ∈ C , k ≠ j} 

𝑁𝐶 − 2
 

𝛾(𝑗, 𝑖) =
∑{d(j, k) | k ∈ C , k ≠ i} 

𝑁𝐶 − 2
 

where C is the clusters at the current step of hierarchical clustering and NC is the number of 

clusters. it is minus two because 𝑑(𝑖, 𝑖) = 0 and 𝑑(𝑖, 𝑗) are not added in the summation in above 

formula so it subtract 2 to make it average of distance with the rest of clusters. Isolation function 

is not symmetric. 𝛾(𝑖, 𝑗) is not equal with 𝛾(𝑗, 𝑖). But the relative distance is symmetric and it 

considers the minimum of 𝛾(𝑖, 𝑗) and 𝛾(𝑗, 𝑖) in the denominator. 

𝐷𝑟ℎ(𝑖 , 𝑗 ) =
𝑑(𝑖, 𝑗)

min {𝛾(𝑖, 𝑗), 𝛾(𝑗, 𝑖)}
 

The disadvantage of ratio-type methods is that there can be branch crossing in the dendrogram 

in this type of method. It means that a level can have higher relative distance than the next level. 

While in distance type methods there is no branch crossing in the dendrogram. 

3.3.   Goodness of fit measure: 

 Two goodness-of-fit measures in this analysis was considered. These measures rely on the 

ranking of values when comparing the distances between two objects and their ultrametric 

distances within the hierarchical clustering. For a set of four values (a quadruple) to be considered 

as "concordant," it means that there is a consistent pattern in the signs when comparing the 

distances between them and their ultrametric distances. In other words, if we're comparing the 

distances of objects i and j to those of objects k and l, for them to be considered concordant: 

• If the signs of both the distance comparisons (i to j and k to l) are the same, and 

𝑑(𝑖 , 𝑗) < 𝑑(𝑘, 𝑙) => 𝑈(𝑖, 𝑗 ) < 𝑈(𝑘, 𝑙) 

• If the signs of both the ultrametric distance comparisons (i to j and k to l) are also the same, 

𝑑(𝑖 , 𝑗) > 𝑑(𝑘, 𝑙) => 𝑈(𝑖, 𝑗 ) > 𝑈(𝑘, 𝑙) 

Then, these four values are considered concordant. Here d is Euclidean distance and U is 

ultrametric distance.  

Consequently, the goodness-of-fit measures used are: 

a. Kendall’s tau: this measure considers all possible pairs of quadruples in calculating the 

goodness of fit for structure of the dendrogram. It is computed using 
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𝜏 =
𝑆+ − 𝑆−

(𝑛+1)𝑛(𝑛−1)(𝑛−2)

8

. 

b. Goodman-Kruskal: this measure for goodness of fit the number of non-comparable and 

tied observations are not considered in the denominator. It is computed using 

𝐺𝐾 =
𝑆+ − 𝑆−

𝑆+ + 𝑆−
  

 

 

Figure 1: Dendrogram illustration for hierarchical clustering using four cases 

 

Table 1: comparison of quadruples. 

quadruple i J k l d(i,j) d(k,l) u(i,j) u(k,l) status S+ S- nc GK Tau 

1 1 2 1 3 3.04 5.80 3.04 5.80 concordant 10 1 4 0.8182 0.6667 

2 1 2 1 4 3.04 3.35 3.04 3.76 concordant 

3 1 2 2 3 3.04 3.56 3.04 5.80 concordant 

4 1 2 2 4 3.04 3.76 3.04 3.76 concordant 

5 1 2 3 4 3.04 4.79 3.04 5.80 concordant 

6 1 3 1 4 5.80 3.35 5.80 3.76 concordant 

7 1 3 2 3 5.80 3.56 5.80 5.80 nc 

8 1 3 2 4 5.80 3.76 5.80 3.76 concordant 

9 1 3 3 4 5.80 4.79 5.80 5.80 nc 

10 1 4 2 3 3.35 3.56 3.76 5.80 concordant 

11 1 4 2 4 3.35 3.76 3.76 3.76 nc 

12 1 4 3 4 3.35 4.79 3.76 5.80 concordant 

13 2 3 2 4 3.56 3.76 5.80 3.76 discordant 

14 2 3 3 4 3.56 4.79 5.80 5.80 nc 

15 2 4 3 4 3.76 4.79 3.76 5.80 concordant 
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In Figure 1, Dendrogram illustration for hierarchical clustering using four cases for example for 

four cases of x1, x2, x3, x4 there are in total (n+1)*(n)*(n-1)*(n-2)/8 = 5*4*3*2 / 8 = 15 cases for 

comparison. In the illustration dendrogram in table 1, the quadruple of objects (1,3) and (2,3) 

cannot be compared directly. This is because both cases 1 and 2 belong to the same cluster, and 

they are connected to object 3 at the same hierarchical level. Consequently, their ultrametric 

distances are the same. However, among these four cases, only one discordant quadruple can be 

identified, namely, (2,3) and (2,4). In this case, the discordance arises because the distance 

between object 2 and 3 is smaller than the distance between object 2 and 4. However, the 

ultrametric distance between object 2 and 4 is smaller than that between object 2 and 3. Kendall's 

Tau, a correlation coefficient, considers all 15 possible quadruples in its denominator when 

calculating its value. This means it considers all potential combinations for comparing the ranks. 

On the other hand, the Goodman-Kruskal index does not include non-comparable (cases where 

objects are at the same hierarchical level) and tied quadruples in its calculations. It focuses on the 

comparable cases, where meaningful comparisons can be made, and excludes those cases where 

ranking the objects is not feasible. 

4. RESULTS 

Hierarchical clustering performed on the Pottery dataset using various distance type methods, 

including average linkage, complete linkage, single linkage, median linkage, and the centroid 

method. Also the Mollineda & Vidal [9] relative hierarchical clustering as a ratio-type method 

was utilized. In total, there are 45 cases in this dataset, resulting in 489,555 possible quadruples 

for comparison. These clustering methods was applied, in conjunction with various scaling 

techniques. The Goodman-Kruskal measure of goodness of fit was calculated for each method 

combined with each scaling approach for this dataset, and the results can be found in Table 2. In 

a previous study by Roux [6], the mean absolute deviation was used for scaling this dataset. It 

was observed that Mollineda & Vidal [9] algorithm for relative hierarchical clustering yielded the 

highest Goodman-Kruskal measure (0.8066), indicating superior performance compared to other 

methods. However, the data in Table 2 shows that when the median linkage method used, a 

Goodman-Kruskal measure of 0.8072, surpassing the ratio-type method. Notably, across four out 

of five scaling methods used for this dataset, the median linkage method consistently 

outperforms other clustering techniques. Regarding the structure of the dendrogram, it is worth 

mentioning that when using median absolute deviation for scaling, the highest Goodman-
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Kruskal value of 0.9233 is achieved with the average linkage method. Additionally, from the 

489,555 quadruples examined, the highest number of concordant quadruples is observed with 

the single linkage method, while the lowest number of discordant quadruples is associated with 

the average linkage method. 

 

Furthermore, when considering the Kendall's Tau measure, the single linkage method with a Tau 

value of 0.7191, using median absolute deviation for scaling, achieves the highest Tau measure. 

Following closely is the median linkage method with a Tau value of 0.7180. In terms of the 

average Goodman-Kruskal measure, the average linkage method performs best, and Mollineda 

& Vidal [9] method in combination with median absolute deviation scaling is the next best option. 

For other scaling techniques, the median linkage method consistently achieves the highest 

Goodman-Kruskal measure. 

Table 2. Hierarchical clustering using Pottery dataset. 

Scale Average linkage Complete linkage Single linkage 

S+ S- G-K S+ S- G-K S+ S- G-K 

mean absolute deviation 343726 37095 0.8052 334917 41646 0.7788 343999 38322 0.7995 

median absolute deviation 366071 14604 0.9233 359224 18135 0.9039 367244 15223 0.9204 

Standard deviation 340559 39958 0.7900 340587 40150 0.7891 341490 40759 0.7867 

interquartile range 361508 19239 0.8989 361654 18911 0.9006 362943 19374 0.8986 

None 338106 41195 0.7828 295928 54953 0.6868 338987 42652 0.7765 

Scale Mollineda & Vidal (2000) Median linkage Centroid 

S+ S- G-K S+ S- G-K S+ S- G-K 

mean absolute deviation 343225 36750 0.8066 343765 36670 0.8072 344401 37344 0.8044 

median absolute deviation 366070 14605 0.9233 366292 14815 0.9223 366202 15075 0.9209 

Standard deviation 340582 39883 0.7903 340809 39626 0.7917 341439 39956 0.7905 

interquartile range 361510 18427 0.9030 362536 17965 0.9056 362817 18792 0.9015 

None 341701 41962 0.7813 338106 41195 0.7828 338132 41283 0.7824 

 

Also, in the results presented in Table 2, the various methods evaluated by considering the 

diameter of the objects being connected. The diameter of objects in C1 connected with objects in 

C2 is defined as the maximum distance between any object in C1 and any object in C2. While the 

node level could be taken as the level of the dendrogram in each hierarchical clustering model, 

for comparison with ratio-type methods (which may involve branch crossing) and for consistency 

with the ultrametric distance calculation method used by Roux [6], diameter was used as the basis 
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for evaluation in other linkage methods as well. In addition, when the diameter for evaluating 

the hierarchical clustering models employed, it became evident that the method proposed by 

Mollineda & Vidal [9] did not perform better than the Median linkage method. However, using 

the node level itself for evaluation instead of the diameter, the distance-based methods 

demonstrate superior performance when compared to ratio-type methods. 

In Table 3, the results of the goodness-of-fit assessment are presented using the node level of each 

model. For instance, the node level for the objects in C1 connected with objects in C2 in the case of 

average linkage is defined as the average of the distances between objects in C1 and objects in C2. 

Thus, in this context, the node level is used as an alternative to the diameter for evaluation. As 

shown in Table 3, when evaluating the clusters using the node level, the Goodman-Kruskal (GK) 

value for median linkage is the highest at 0.9287, particularly when median absolute deviation is 

employed for data scaling. The highest concordant quadruple is no longer observed for single 

linkage. Instead, the method with the most concordant quadruples is median linkage, where 

median absolute deviation equal 367514. This suggests that median linkage outperforms other 

linkage methods for this dataset. Comparing the results in Table 3 to those in Table 2, when mean 

absolute deviation is used for data scaling, average linkage with GK = 0.8082 performs better than 

Mollineda & Vidal [9] with GK = 0.8066. Additionally, Kendall's tau measure also indicates that 

median linkage (tau = 0.7229) exhibits the best performance, followed by average linkage (tau = 

0.7221). 

Table 3. Hierarchical clustering using Pottery dataset. 

 

Scale 

Average linkage Single linkage Median linkage 

S+ S- G-K S+ S- G-K S+ S- G-K 

mean absolute deviation 344300 36521 0.8082 343921 38400 0.7991 344172 36263 0.8094 

median absolute deviation 367092 13583 0.9286 367183 15284 0.9201 367514 13593 0.9287 

Standard deviation 341125 39392 0.7930 340770 41479 0.7830 341391 39044 0.7947 

interquartile range 363091 17656 0.9073 363297 19020 0.9005 363536 16965 0.9108 

None 338648 40653 0.7856 338345 43294 0.7731 338642 40659 0.7856 

  

Hierarchical clustering was conducted on the Fisher Irish dataset, which comprises 150 

observations. Consequently, there are a total of 62,434,725 quadruples available for comparison 

within the dendrogram of the Fisher Irish dataset. With larger sample sizes, the number of 

quadruples significantly increases, making the calculation of the goodness-of-fit measures more 

time-consuming. In this dataset, around 62 million quadruples need to be compared to calculate 
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Kendall's Tau and the Goodman-Kruskal measure. As displayed in Table 4, the highest 

Goodman-Kruskal index (GK) is observed in the dataset without any scaling, where GK = 0.8696 

for the Centroid method, followed by GK = 0.8669 for Median linkage. Notably, when scaling the 

data using the Median Absolute Deviation method, the results from Mollineda & Vidal [9] 

outperform other methods, achieving a GK of 0.7984. The quadruples with the highest 

concordance are found in the case of single linkage, with a pattern of 4441142. The lowest number 

of discordant quadruples is observed in the Centroid method, with 3,042,850 discordant 

quadruples. Table 4 also evaluates the methods based on the diameter of the objects being 

connected. The highest Kendall's Tau measure is achieved by Median linkage, with tau = 0.6579, 

followed by the Centroid method, with tau = 0.6500. When focus shifted from diameter to node 

level for evaluating hierarchical clustering methods, the Average linkage method emerges as the 

top performer with a GK of 0.8714, followed by the Centroid method with a GK of 0.8707. Median 

linkage shows the highest number of concordant quadruples at 44 million, while the lowest 

number of discordant quadruples is observed with the Average linkage method, totaling 2.99 

million discordant quadruples. 

Table 4. Hierarchical clustering using Fisher Irish dataset. 

Scale Average linkage Complete linkage Single linkage 

S+ S- G-K S+ S- G-K S+ S- G-K 

mean abs dev 42086950 5225373 0.7791 37208588 7520098 0.6637 43471181 5808487 0.7643 

median abs dev 42451060 5012538 0.7888 41934821 5523014 0.7672 43083838 6399420 0.7414 

STD 42813393 4543039 0.8081 38315238 6616353 0.7055 43596639 5674558 0.7697 

IQR 41695840 5825778 0.7548 40283546 8741015 0.6434 42242358 7336471 0.7040 

None 43484474 3121120 0.8661 39266049 5525015 0.7533 44441142 4040738 0.8333 

Scale Mollineda & Vidal (2000) Median linkage Centroid 

S+ S- G-K S+ S- G-K S+ S- G-K 

mean abs dev 42685550 4834241 0.7965 42090010 4580544 0.8037 42848616 4698038 0.8024 

median abs dev 42397282 4751468 0.7984 42007397 5186843 0.7802 42862557 5177243 0.7845 

STD 42756263 4773238 0.7991 42895673 4691526 0.8028 42979095 4719100 0.8021 

IQR 41403483 5787590 0.7547 41830925 5718549 0.7595 42229718 6329571 0.7393 

None 43317864 3205491 0.8622 44232999 3154613 0.8669 43627528 3042850 0.8696 

 

The Goodman-Kruskal (GK) value for Mollineda & Vidal [9] is also lower when compared to 

Table 5. This difference in the GK value is primarily due to the presence of branch crossings in 

ratio-type methods. When using the node level itself to evaluate the method, it can result in a 
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reduction in the goodness of fit measure. Among the goodness-of-fit measures, Kendall’s tau 

demonstrates the best performance. Specifically, it shows the highest performance in Median 

linkage with a tau value of 0.6597. Following that, the Centroid method performs well with a tau 

value of 0.6508. 

Table 5. Hierarchical clustering using Fisher Irish dataset. 

Scale Average linkage Complete linkage Single linkage 

S+ S- G-K S+ S- G-K S+ S- G-K 

None 43609353 2996474 0.8714 39266049 5525015 0.7533 43825184 4610803 0.8096 

Scale Mollineda & Vidal (2000) Median linkage Centroid 

S+ S- G-K S+ S- G-K S+ S- G-K 

None 43110739 3419164 0.8530 44289757 3098817 0.8692 43652547 3017939 0.8707 

 

5. DISCUSSION 

The focus of this paper was on hierarchical clustering, which involved the use of various linkage 

methods to compare the outcomes of distance-based methods with a ratio-based method 

introduced by Mollineda & Vidal [9]. This ratio-based method was identified as the most effective 

approach in a previous study conducted by Roux [6]. To facilitate this comparison, different 

scaling techniques employed on the same real datasets that were used in Roux's earlier study. 

The findings revealed that the results obtained from the distance-based methods were not inferior 

to those from the ratio-based method. Contrary to the results reported by Roux [6], the 

performance of the distance-based methods outperformed the ratio-based method in both real 

datasets. This conclusion was supported by both the Goodman-Kruskal and Kendall's Tau 

measures of goodness of fit. For the Pottery dataset, the Median Absolute Deviation yielded the 

best results for scaling the dataset, while for the Fisher Irish dataset, the highest goodness-of-fit 

measures were obtained when no scaling was applied. Specifically, in the Pottery dataset, the 

Median linkage method performed best, followed by the Average linkage method. In the case of 

the Fisher Irish dataset, the Median linkage method also showed the highest performance 

according to Kendall's Tau, followed by the centroid method. In the evaluation of  the clustering 

structures using diameter as a criterion, the centroid method proved to be the most effective with 

a Goodman-Kruskal value of 0.8696, followed closely by the Median linkage method with a 

Goodman-Kruskal value of 0.8669. On the other hand, when the structures using node level was 

assessed, the Average linkage method delivered the best performance with a Goodman-Kruskal 
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value of 0.8714, with the centroid method as the runner-up with a Goodman-Kruskal value of 

0.8707. 

6. CONCLUSION  

In summary, the study demonstrated that the distance-based methods outperformed the ratio-

based method proposed by Mollineda & Vidal [9] in both datasets. Additionally, it has been 

found that the choice of data scaling method significantly influenced the hierarchical clustering 

results and selecting the appropriate scaling method for each dataset led to more consistent 

clustering structures. 
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